Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

2015台灣國際科展 民俗祕方、太空氣候、蟑螂觸角皆題材 

劉珈均
・2015/03/09 ・4280字 ・閱讀時間約 8 分鐘 ・SR值 559 ・八年級

-----廣告,請繼續往下閱讀-----

文/劉珈均、蔡佩容、簡韻真

台灣國際科展自2002年起舉辦,像個科學競技場,各國好手在此交流、過招,選手的競技選擇繁多,有數學、化學、物理與天文學、動物學、微生物學、醫學與健康科學、行為與社會科學等13科,看見這些只有15到18歲左右的國高中生,是如此努力地「應用所學增進人類福祉」,若你也(跟採編們一樣)抱憾自己高中時代被考卷淹沒,一起來看看上個月的科展有哪些中學生驚人研究,逛逛今年來自20國家、展出150件作品的有趣攤位吧!

青少年科學家得主

各科獲獎學生有機會被選派繼續參與美國、荷蘭等國際科展,大會評審並從13科的一等獎選拔出三件專題,成為科展最高榮譽「青少年科學獎」,今年由建中高一生陳韋同、台中一中高二生李嘉峻、來自美國的華裔高中生張杰西(Jesse Zhang)共同獲得這最大獎。

IMG_9015
由左至右分別為陳韋同、李嘉峻、張杰西。圖/劉珈均攝。

陳韋同已不是第一次進入國際科展複賽了,此次他設計「單點定位系統應用於無人飛行器控制系統」,厲害的地方在於,只要單一參考點,即可即時而精準的定位!目前常用的定位系統仍稍有不便,如GPS定位需要三四顆衛星,且無法用於室內追蹤;一般室內定位用的RSSI技術(Received Signal Strength Indicator)亦需要至少三個定位點,且訊號易受物體干擾或牆壁反射,常得多一道演算法抵消;無人飛行器常以相機定位,易有死角,也有妨害隱私疑慮。陳韋同讓定位點減少的方法是利用兩個旋轉速率不同的磁鐵產生磁場變化,只要測磁場的相位差,再配合分頻多工(Frequency Division Multiplexing)的數位訊號處理,就可得知物體在三度空間中的位置與角度,相當方便用於室內定位。年紀輕輕的他已在申請專利,除了應用於無人飛行器,也可延伸用在行動穿戴裝置、照護機器人甚至送餐機器人的室內定位控制,讓機器人更完美地執行任務。

-----廣告,請繼續往下閱讀-----
Ocean_currents_from_GOCE
根據GOCE衛星資料繪成的地球洋流影像。photo credit:ESA/CNES/CLS

太空也要有天氣預報!大氣層最上層的熱氣層常受太陽風影響,讓空氣分子的密度產生變化,這也會影響到在這個高度巡弋的衛星。來自美國科羅拉多州的張杰西發現,除了太陽風之外,月球重力場也對大氣層上層的「太空天氣」影響甚鉅。他分析歐洲太空總署2009至2013年的的GOCE海洋環流探測衛星資料(Gravity field and steady-state Ocean Circulation Explorer, GOCE),由該衛星提供的地球磁場、地表冰層厚度及洋流等數據,計算出不受月潮振盪和地磁影響的結果。發現月球的重力也會影響增溫層的氣象,如同影響地球的潮汐一般,且影響力可以達到太陽風的 50 %。這個月潮信號(lunar tidal signature)的動態分布與氣層的相對密度及帶狀氣流(zonal wind)都有季節-緯度(seasonal-latitudinal)上的關係。

李嘉峻喜歡數學,在看書過程中看到有趣的題目,他以六個環狀數字為雛形,分析相間兩數字相減之後的絕對值,在這些環狀排列的條件下,探討其守衡狀態及其全數歸零的研究。李嘉峻說,不同於一般多以數論角度去解釋數列的性質,這專題提供另一個角度討論盧卡斯數列與梅森數列;就實際應用,守衡狀態中的同餘性質或許可用於通訊傳遞與密碼學的加密資料,不過這是否可行還要進一步探究。

颱風、鄉野傳說、攝影機腳架──生活即科學

每個家庭可能都有些祖傳秘方,從小立志當醫生的加拿大高中生艾蜜莉˙歐萊里(Emily O’Reilly)也不例外,她的科展作品靈感來自她克羅埃西亞爺爺的「民俗保健食品」──杏子(apricot)。幽門螺旋桿菌會引起胃黏膜慢性發炎,進而導致胃及十二指腸潰瘍,甚至胃癌。在她爺爺的家鄉,相傳杏子可以治療胃癌,歐萊里歷時一年作這實驗專題,她移去杏仁中的氰化物成份,以確定幽門螺旋桿菌不是被氰化物殺死,再將杏子萃取物加進幽門螺旋桿菌的培養皿,發現杏子萃取物的確能產生生長抑制圈。歐萊里的爺爺已過世,歐萊里以此專題紀念爺爺,她也期盼未來能進一步研究杏子對抗胃癌的功效及應用。

IMG_9000
加拿大高中生艾蜜莉˙歐萊里探討爺爺家鄉的「民俗保健食品」杏子是否真有抑制胃病的效用,以此專題紀念爺爺。圖/劉珈均攝。

人人喊打的外來入侵種「小花蔓澤蘭」嚴重影響台灣本土生態系。但是曉明女中的許芷瑄利用移植腫瘤到裸鼠身上,發現小花蔓澤蘭的葉和根莖萃取物有清除自由基的能力,以及保護紅血球不受自由基誘發溶血反應,研究也發現它可以抑制血癌細胞生長。換句話說,小花蔓澤蘭可能具有抗氧化及抗血癌的功效!若未來成功利用它開發預防自由基疾病及抗癌的保健食品,也許就能促使大家踴躍除去小花蔓澤蘭,讓台灣生態系鬆一口氣,還另外賦予了「害草」重大生存意義(天生我材必有用,突然有點勵志啊)。

-----廣告,請繼續往下閱讀-----

每次颱風來襲,大家除了關心有沒有放假之外,也都會緊盯颱風轉來轉去到底會從哪裡登陸,來自美國的吳威廉(William Wu)也希望能找到預測墨西哥灣颶風登陸地點的方式。他分析超過八十筆颶風登陸的歷史資料後,發現颶風登陸地點與路徑的相關性。他將會指向登陸地點的颶風路徑的切線位置連起來,建立出三條紐帶,當颶風經過時,可以大致估計其前往的登陸地點,他說這種方法的平均預測誤差比目前美國國家颶風中心模型的預測誤差少了 50 %。

天文學專題在科展屬鳳毛麟角,今年北一女學生柯芷蓉與江郁儀從選修課的作業延伸發想專題,從高一斷斷續續作到高三,探討紅移與星系顏色的關係,此專題拿下物理與天文學科別首獎。天文學家用望遠鏡擷取遙遠星系的資料,而宇宙正在加速膨脹,導致星系的顏色會往光譜波長較長的紅光方向移動,此為「紅移」,天體距離愈遠,遠離速度愈快,紅移值愈高,紅移值可用於計算地球與天體的距離。柯芷蓉說,他們看到一篇研究(Strateva et al. 2001),該研究使用史隆巡天計畫(SDSS)釋出的數據推想,但當時SDSS尚未有紅移資料,因此該學者用星系的亮度推論紅移,設想愈暗的星系,離地球愈遠,紅移值也愈高,偏紅星系的紅移值高會偏紅,但偏藍的星系紅移值愈高則偏藍。「這感覺跟我們課堂聽到的天文知識相衝突。」他們決定深入探究。柯芷蓉說,SDSS後期的資料有紅移值,他們分析SDSS第7至12版本的57萬多筆資料,加入實際觀測的紅移數據,重新探討紅移值與星系顏色、亮度的關係,發現紅移與顏色並無絕對的線性對應關係,不能從亮度推論紅移,且偏藍星系紅移值高一樣偏紅。他們修正了原本缺乏資訊造成的誤差,讓星系資訊更精確。

IMG_9012
瑞士高中生埃利亞斯˙漢普的多軸手持腳架在現場吸引大批人潮。圖/劉珈均攝。

現場非常受歡迎的瑞士高中生埃利亞斯˙漢普(Elias Hampp)設計了多軸攝影機手持腳架,不論各種手持姿勢,腳架縱軸重心皆可巧妙的維持不變,其多軸關節緩衝手持給予的外力,讓影像維持平穩、不晃動,使用者也可調整螺絲位置,分配力矩配重。這腳架加上一台GoPro,簡直無往不利!只可惜腳架重量略沉了一點,小編熱烈期待以後是否有更輕巧的作品上市(若太輕巧,手持又容易晃動影像了,得抓到平衡點)。

國際科展有蟑螂入侵!

蜚蠊目 姬蜚蠊科 德國姬蠊 Blattella germanica  94昆蟲營 惠蓀林場
圖為德國姬蠊。photo credit: https://flic.kr/p/4Z7S7。

中山女高的生物老師蔡任圃有個綽號「蟑螂艦長」,他期望教育不只傳遞知識,更要引燃熱情,總是不斷鼓勵學生去闖。林沂萱、陳永文所做的《螂吞虎嚥》利用影像分析及電位記錄,探討斐蠊前腸的消化機制,結果發現牠們可以敏感偵測人體無法辨識的低揮發性物質,也會對可能影響酸鹼與滲透壓恆定的物質呈現趨避反應,未來也許可以利用這些趨避性來調配蟑螂藥。

-----廣告,請繼續往下閱讀-----

另一組的姚乃筠、毛靖雯研究非真社會性昆蟲的蜚蠊,是否像黃蜂一樣,具有警告費洛蒙(alarm pheromone),能提醒其他個體逃亡或攻擊。結果發現自美洲蟑螂 (Periplaneta americana )分泌萃取的警告物質,具種內甚至是種間驅散效果,顯示其可能不為單一物種專屬的費洛蒙;此外,在不同性別與年齡間有不同的反應,推測分別有行為演化上的意義。未來也許可以利用以上兩組發現的趨避性甚至警戒物質,調配對環境傷害更小的蟑螂藥。

蟑螂總是惱人的爬上爬下,迅速躲開拖鞋攻勢,李欣玫與陳韻安探討蟑螂是不是能知道重力方向在哪裡。依據文獻資料,多數昆蟲用本體感受器如肌肉、關節、毛板等偵測身體各處的壓力,整合壓力資訊後才能推測出重力方向,這種方式需要較長的時間,若壓力資訊錯誤或身體各處壓力均等(例如被埋在沙子中),就會導致昆蟲判斷錯誤。蟑螂在地面、天花板、牆面等處爬行的過程中,重力方向不時變換,而蟑螂爬行速度又快,因此,李欣玫與陳韻安推論蟑螂身上有直接偵測重力的器官,讓牠可以迅速正確地判斷重力方向並作出反射以避免摔落,他們稱該器官為重力感受器(gravity receptor)。他們研究發現:蟑螂的觸角以及位於腹部末端的尾毛就是重力感受器;觸角需要兩側都存在才保有完整功能,尾毛只需單側即可;觸角的擺動可能是感測到重力方向改變後,產生的反射;蟑螂的尾毛有一種像小石頭的構造懸掛表面,與人類的耳石(同是與平衡有關的構造)十分相似,這種小石頭或許跟蟑螂感測重力有關,若之後有更多研究,找出相關的平衡機制,也許未來可以利用蟑螂來研究與人類前庭系統(包括耳石)相關的疾病。困擾很多人的暈眩症就是跟耳石有關,但耳石在耳朵裡,又小又不好找,若能利用長在蟑螂尾毛表面的小石頭研究應該會方便許多。

社科學生站出來 科展不由理工組「壟斷」

在這充滿自然組與理工氣息的場合,「行為與社會科學類」的攤位顯得獨樹一幟,國外科展多有此項目,台灣國際科展則是近三年才新增此科別。

北一女學生黃以寧與孟玉婕研究身障者與消費行為,過去研究顯示,不論是求職或消費,身障者常受到不平等待遇,黃以寧與孟玉婕換個角度想,若讓身障者轉換角色,位於生產者端,所受待遇如何?她們到夜市擺攤,請同一人分飾正常人與坐輪椅的身障者兩個角色,賣飲料六天,她們觀察記錄輔以問卷,分析來往一百多位顧客的行為。她們調查發現,年齡較高或是平日不常購買飲料的消費者,向身障業者購買飲料的比例及可能性較高(雖然購買行為受飲料吸引程度影響極高),這些族群的消費行為可能更受同理心驅策,其他變項如性別則較不顯著。她們希望藉由這些研究未來可以幫助身障業者,在打動消費者的時候做到更有效的行銷。

-----廣告,請繼續往下閱讀-----

南非高中生蕾雅˙法蘭區(Leia French)自己設計遊戲「Gaming for Social Change」,在遊戲關卡中埋入社會議題暗示,希望以遊戲喚起對南非社會議題的關注,例如缺水問題、基礎建設不足、煤油燈造成的火災。蕾雅以問卷分析90位玩家玩遊戲前後的價值觀改變,發現這類遊戲能較輕鬆而更貼近生活的方式,喚起大家對社會議題的重視。

有趣的作品太多實在寫不下,對其他專題作品有興趣的讀者可以上科教館的網站看更多歷年的得獎作品。

 

-----廣告,請繼續往下閱讀-----
文章難易度
劉珈均
35 篇文章 ・ 1 位粉絲
PanSci 特約記者。大學時期主修新聞,嚮往能上山下海跑採訪,因緣際會接觸科學新聞後就不想離開了。生活總是在熬夜,不是趕稿就是在屋頂看星星,一邊想像是否有外星人也朝著地球方向看過來。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
1

文字

分享

0
1
1
說好的颱風呢?!氣象預報不準?要準確預測天氣有多難?
PanSci_96
・2023/09/12 ・4646字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

小心啊,打雷囉,下雨收衣服啊!

氣象報告說好是晴天的,怎麼一踏出門就開始下雨了?

昨天都說要直撲的颱風,怎麼又彎出去了?

多麼希望天氣預報能做到百分之百正確,只要出門前問一下手機,就能確定今天是出大太陽還是午後雷陣雨,是幾點幾分在哪裡?又或是最重要的,颱風到底會不會來?

-----廣告,請繼續往下閱讀-----

但你知道,現在的氣象預報,已經動用全球最強的超級電腦們了嗎?既然如此,我們現在的氣象預報能力到底有多準?我們什麼時候能徹底掌握這顆蔚藍星球上發生的所有天氣現象?

天氣預報有多困難?

雖然我們常常嫌說氣象預報不準、颱風路徑不準、預測失靈等等。但我們現在的實力如何呢?

目前美國國家海洋暨大氣總署的數據分析,對西太平洋颱風的 24 小時預測,誤差平均值約 50 英哩,也就是一天內的路徑誤差,大約是 80 公里。其他國家的氣象局,24 小時的誤差也約在 50 到 120 公里之間。台灣呢?根據中央氣象局到 2010 年的統計,誤差大約在 100 公里內。也就是臺灣對颱風的預測,沒有落後其他先進單位。

現在只要打開手機隨便開個 APP,就能問到今天的天氣概況,甚至是小區域或是短時間區間內的天氣預報。但在過去沒有電腦的時代,要預測天氣根本可以不可能(諸葛孔明:哪泥?)。

-----廣告,請繼續往下閱讀-----

近代且稱得上科學的天氣預測可追溯回 1854 年,那個只能靠人工觀測的年代,英國氣象學家為了保護漁民出海的安危,利用電報傳遞來蒐集各地居民的觀察,並進行風暴預報。後來演變成天氣預報後,卻因為有時預報不準,預報員承受了輿論與國會批判的巨大壓力,最後甚至鬱鬱離世。

19 世紀的氣象學家為了保護漁民出海的安危,會利用電報蒐集各地居民的觀察進行風暴預報。圖/Giphy

在電腦還在用打洞卡進行運算的年代,一台電腦比一個房間還大。氣象局要預測天氣,甚至判斷颱風動向,得要依賴專家對天氣系統、氣候型態的認知。因此在模擬預測非主流的年代,我們可以看到氣象局在進行預測時,會拿著一個圓盤,依據量測到的大氣壓力、風速等氣象值,進行專家分析。

當時全球的氣象系統,則是透過全球約一千個氣象站,共同在 UTC 時間(舊稱格林威治時間)的零零時施放高空探測氣球,透過聯合國的「World Weather Watch」計畫來共享天氣資料,用以分析。關於氣象氣球,我們之前也介紹過,歡迎看看這集喔。

也就是說,以前的颱風預測就是專家依靠自身的學理與經驗,來預測颱風的動向,但是,大氣系統極其複雜,先不說大氣系統受到擾動就會有所變化,行星風系、科氏力、地形、氣壓系統這些系統間互相影響,都會造成預測上的失準,更遑論模擬整個大氣系統需要的電腦資源,是非常巨大的。

-----廣告,請繼續往下閱讀-----

那麼,有了現代電腦科技加持的我們,又距離全知還有多遠呢?是不是只要有夠強的超級電腦,我們就能無所不知呢?

有了電腦科技加持,我們的預報更準了嗎?

當然,有更強的電腦,我們就能算得更快。才不會出現花了三天計算,卻只能算出一個小時後天氣預報的窘況。但除了更強悍的超級電腦,也要更先進的預測模型與方法。現在的氣候氣象模擬,會先給一個初始值,像是溫度、壓力、初始風場等等,接著就讓這個數學模型開始跑。

接著我們會得到一個答案,這還不是我們真正要的解,而是一種逼近真實的解,我們還必須告訴模型,我容許的誤差值是多少。什麼意思呢?因為複雜模型算出來的數值不會是整數,而是拖著一堆小數點的複雜數字。我們則要選擇取用數值小數點後 8 位還是後 12 位等等,端看我們的電腦能處理到多少位,以及我們想算多快。時間久了,誤差的累積也越多,預測就有可能失準。沒錯,這就是著名的蝴蝶效應,美國數學暨氣象學家 Edward Norton Lorenz 過去的演講題目「蝴蝶在巴西揮動了翅膀,會不會在德州造成了龍捲風?」就是在講這件事。

回到颱風預報,大家有沒有發現,我們看到的颱風路徑圖,颱風的圈怎麼一定會越變越大,難道颱風就像戶愚呂一樣會從 30% 變成 100% 力量狀態嗎?

-----廣告,請繼續往下閱讀-----
輕颱鴛鴦的颱風路徑潛勢圖。圖/中央氣象局

其實那不是颱風的暴風圈大小,而是颱風的路徑預測範圍,也就是常聽到的颱風路徑潛勢圖,​是未來 1 至 3 天的颱風可能位置,颱風中心可能走的區域​顯示為潛勢圖中的紅圈,機率為 70%,所以圈圈越大,代表不確定性越大。​

1990 年後,中央氣象局開始使用高速電腦,並且使用美國國家大氣研究中心 (NCAR) 為首開發的 Weather Research and Forecasting 模型做數值運算,利用系集式方法,藉由不同的物理模式或參數改變,模擬出如同「蝴蝶效應」的結果,運算出多種颱風的可能行進路線。預測時間拉長後,誤差累積也更多,行進路徑的可能性當然也會越廣。

「真鍋模型」用物理建模模擬更真實的地球氣候!

大氣模擬不是只要有電腦就能做,其背後的物理複雜度,也是一大考驗。因此,發展與地球物理相關的研究變得非常重要。

2021 年的諾貝爾物理學獎,就是頒給發展氣候模型的真鍋淑郎。他所開發的地表模式,在這六十年間,從一個沒考慮地表植物的簡單模型,經各家發展,變成現在更為複雜、更為真實的模型。其中的參數涵蓋過去沒有的植物反應、地下水流動、氮碳化合反應等等,增強了氣候氣象模型的真實性。

-----廣告,請繼續往下閱讀-----
2021 年的諾貝爾物理學獎得主真鍋淑郎。圖/wikimedia

當然,越複雜的模型、越短的時間區間、越高的空間精細度,需要更強大的超級電腦,還有更精準的觀測數據,才能預測接下來半日至五日的氣象情況。

世界上前百大的超級電腦,都已被用來做大氣科學模擬。各大氣象中心通常也配有自己的超級電腦,才能做出每日預測。那麼,除了等待更加強大的超級電腦問世,我們還有什麼辦法可以提升預報的準度呢?

天氣預報到底要怎樣才能做得準?

有了電腦,人類可以紀錄一切得到的數據;有了衛星,人類則可以觀察整個地球,對地球科學領域的人來說,可以拿這些現實資訊來校正模擬或預測時的誤差,利用數學方法將觀測到的單點資料,乃至衛星資料,融合至一整個數值模型之中,將各種資料加以比對,進一步提升精準度,這種方法叫做「資料同化 (Data Assimilation)」。例如日本曾使用當時日本最強的超級電腦「京」,做過空間解析度 100 公尺的水平距離「局部」超高解析氣象預測,除了用上最強的電腦,也利用了衛星資料做資料同化。除了日本以外,歐洲中程氣象預測中心 (ECMWF),或是美國大氣暨海洋研究中心 (NOAA),也都早在使用這些技術。

臺灣這幾年升空的福衛系列衛星,和將要升空的獵風者等氣象衛星,也將在未來幫助氣象學家取得更精準的資料,藉由「資料同化」來協助模擬,達到更精準的預測分析。

-----廣告,請繼續往下閱讀-----

如果想要進一步提升預報準度呢?不用擔心,我們還有好幾個招式。

人海戰術!用更多的天氣模型來統計出機率的「概率性模擬」

首先,如果覺得一個模型不夠準,那就來 100 個吧!這是什麼意思?當我們只用一種物理模型來做預測時,我們總是會追求「準」,這種「準確」模型做的模擬預測,稱為「決定性模擬」,需要的是精確的參數、公式,與數值方法。就跟遇上完美的夢中情人共度完美的約會一樣,雖然值得追求,但你可能會先變成控制狂,而且失敗機率極高。

「準確」的模型就跟遇上完美情人共度完美約會一樣,雖然值得追求,但失敗機率極高。圖/Giphy

不如換個角度,改做「概率性模擬」,利用系集模擬,模擬出一大堆可能的交往對象,啊不對,是天氣模型,再根據一定數量的模擬結果,我們就可以統計出一個概率,來分析颱風路徑或是降雨機率,讓成功配對成功預測的機率更高。

製造一個虛擬地球模擬氣象?

再來,在物理層面上,目前各國正摩拳擦掌準備進行等同「數位攣生 (Digital Twin) 」的高階模擬,簡單來說,就是造出一個數位虛擬地球,來進行 1 公里水平長度網格的全球「超高」解析度模擬計算。等等,前面不是說日本可以算到 100 公尺的水平距離,為什麼 1 公里叫做超高解析度?

-----廣告,請繼續往下閱讀-----

因為 500 公尺到 1 公里的網格大小也是地表模式的物理適用最小單位,在這樣的解析度下,科學家相信,可以減少數值模型中被簡化的地方,產生更真實的模擬結果。

電腦要怎麼負荷這麼大的計算量?交給電腦科學家!

當然,這樣的計算非常挑戰,除了需要大量的電腦資源,還需要有穩定的超級電腦,以及幾個 Petabyte,也就是 10 的 15 次方個位元組的儲存設備來存放產出的資料。

不用為了天氣捐贈你的 D 槽,就交給電腦科學家接棒上場吧。從 CPU、GPU 間的通訊、使用 GPU 來做計算加速或是作為主要運算元件、到改寫符合新架構的軟體程式、以及資料壓縮與讀寫 (I/O)。同時還要加上「資料同化」時所需的衛星或是全球量測資料。明明是做氣象預報,卻需要等同發展 AI 的電腦科技做輔助,任務十分龐大。對這部分有興趣的朋友可以參考我們之前的這一集喔!

結語

這一切的挑戰,是為了追求更精確的計算結果,也是為了推估大魔王:氣候變遷所造成的影響必須獲得的實力。想要計算幾年,甚至百年後的氣候狀態,氣象與氣候學家就非得克服上面所提到的問題才行。

一百年來,氣候氣象預測已從專家推估,變成了利用龐大電腦系統,耗費百萬瓦的能量來進行運算。所有更強大、更精準的氣象運算,都是為了減少人類的經濟與生命損失。

對於伴隨氣候變遷到來的極端天氣,人類對於這些變化的認知還是有所不足。2021 年的德國洪水,帶走了數十條人命,但是身為歐洲氣象中心的 ECMWF,當時也只能用叢集式系統算出 1% 的豪大雨概率,甚至這個模擬出的豪大雨也並沒有達到實際量測值。

我們期待我們對氣候了解和應對的速度,能追上氣候變遷的腳步,也由衷希望,有更多人才投入地球科學領域,幫助大家更了解我們所處的這顆藍色星球。

也想問問大家,你覺得目前的氣象預報表現得如何?你覺得它夠準嗎?

  1. 夭壽準,我出門都會看預報,說下雨就是會下雨。
  2. 有待加強,預報當參考,自己的經驗才是最準的。
  3. 等科學家開發出天候棒吧,那才是我要的準。更多想法,分享給我們吧

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

1

7
3

文字

分享

1
7
3
看見蟑螂就害怕?為什麼我們總特別怕牠?
PanSci_96
・2023/08/26 ・3929字 ・閱讀時間約 8 分鐘

***溫馨提醒,本文有小強畫面,請斟酌觀看***

唐伯虎點秋香讓小強成為蟑螂的代名詞。圖/經典放映

周星馳的唐伯虎點秋香上映後,讓小強成為蟑螂的代名詞,但你看到小強的瞬間,是順手將它解決,還是尖叫著逃跑呢?

台灣曾做過調查——不做調查也知道,蟑螂絕對是大家最討厭的害蟲第一名。美國甚至做過大規模調查,有超過四分之一的美國人表示自己最討厭的害蟲就是蟑螂,是第二名蜘蛛的兩倍之多!

所以,若要幫全人類找一個共同的敵人,蟑螂肯定算得上是一個。

但過去的日本節目中,卻發現北海道人竟然不怕蟑螂,難道他們都是勇者嗎?或是我們能從他們身上找到克服蟑螂恐懼的方法?

-----廣告,請繼續往下閱讀-----
北海道人好像沒看過蟑螂?!圖/Hituzi Chang

恐懼源自於未知?北海道人為什麼不怕蟑螂

你是不是光想到蟑螂的外表,就覺得全身起雞皮疙瘩?

面對蟑螂還能如此淡定,甚至能覺得牠們可愛的北海道人,別說你不敢相信,一群演化心理學家也是覺得匪夷所思,開始針對這些人做起了研究。

演化心理學就如字面上的意思,是將達爾文演化論套用到現代人的心理特質上,試圖以天擇的角度解釋許多無法解釋的人類心理現象。

例如近年來被診斷率越來越高的注意力不集中與過動症,也就是所謂的 ADHD,在演化心理學看來其實不是需要治療的「病」,而是環境變化太大導致的適應不良。想像一下,如果你是上萬年前生活在野外的人類,每天都必須在山林裡一邊躲避猛獸、一邊想辦法靠打獵與採集獲取食物。

-----廣告,請繼續往下閱讀-----

在這種環境下,眼觀四面、耳聽八方,且隨時保持能戰能跑的機動性,反而都是生存必須的特質,自然會成為演化過程中被保留下來的心理特質。隨著人類社會在近幾百年快速進步,我們不需要再去當高風險的獵人,但那些經年累月刻印在基因裡的特質還來不及被汰換掉,反而讓這些天生的獵人無法適應現代生活。

獵人的基因反倒讓人無法適應現代生活。圖/Giphy

同樣的道理,演化心理學認為人類對蟑螂的莫名恐懼,其實是來自於大腦主動識別並排斥潛在威脅的生存機制。在醫療資源匱乏的過去,隨便受個傷、生個病都有可能是致命的,人類只能戰戰兢兢,想辦法避開任何可能會傷害到自己的東西。這讓我們在無法辨別敵友時,會本能地戒備未知的東西。

即使從生態系的角度出發,同時兼具環境清道夫與許多動物主要食物來源的蟑螂,是維持自然平衡不可或缺的益蟲。但在無法感受到牠們好處的普通人眼裡,經常出沒於被我們視為髒亂、有害健康的垃圾與廚餘堆的蟑螂身上,只會被貼滿很髒,甚至是有害的負面標籤,當然不可能有好印象。

我猜這時有些觀眾心中閃過了「那又如何」、「我就討厭蟑螂啊」的念頭,但千萬別小看這份理所當然。雖說蟑螂因為生存與繁衍力強,被人類刻意撲殺這麼多年都還沒有要絕跡的意思,但其他昆蟲就沒那麼幸運了。由於人類對昆蟲,特別是只占大約10%的害蟲抱有負面觀感,使得這些小生物常在生態保育的討論中被冷落,甚至就這樣默默絕種,在地球生態系中留下無法彌補的缺口。久而久之,嘗到苦果的還是人類自己。

-----廣告,請繼續往下閱讀-----

話說回來,既然演化心理學表明恐懼來自於未知,那只要我們學到關於這些昆蟲的正確知識,就能扭轉刻板印象了,對吧!那麼看完泛科學,想必你就能擺脫對小強的恐懼!

只要學到正確知識,就能對蟑螂的恐懼了嗎?圖/Giphy

——雖然我很想這樣說,但很可惜,事情沒這麼簡單。還記得北海道人的訪問嗎?按照演化心理學,這些從來見過蟑螂本螂的北海道人,既然對蟑螂完全陌生,那麼應該不會有這麼正向的反應。就算不覺得被威脅,至少也該有點基本的戒備才是啊?

一篇發表於 2021 年的日本研究,正是想探討這個落差。研究團隊分析過往研究,發現「增加昆蟲相關知識」與「減輕恐懼」之間似乎沒有必然的關聯。而且,與出身郊區的人相比,從小生活在都市的人對於昆蟲竟然普遍有著較強、也較難改變的昆蟲嫌惡。

深入研究後,才發現,原來連怕不怕蟑螂這種事都得要看出身的。

-----廣告,請繼續往下閱讀-----

都市化—嫌惡假說

在針對13,000名日本人進行調查後,研究團隊提出了「都市化—嫌惡假說」。此假說以都市化為起點,拆解出兩條人類培養對昆蟲嫌惡感的路徑。

你不該出現在我家!由破壞安全感引發的厭惡

首先,由於都市化導致自然環境縮減,無法適應都市環境的昆蟲大量減少,相對的,像蟑螂、蒼蠅、蜘蛛等適應良好的昆蟲,數量不可避免地會增加,也更容易出現在室內環境裡。對我們來說,穩固的牆壁與天花板會帶來與外界隔絕的安全感。因此,當有不請自來、侵門踏戶的東西出現,除了對昆蟲本身的厭惡,我們對所處環境原有的信任也跟著崩塌了。

回想一下,上次在家裡或辦公室茶水間看到蟑螂,就算當下就把它消滅了,在接下來的一段時間內,是不是會到處疑神疑鬼,總覺得某些角落或通風管裡藏著一支蓄勢待發的蟑螂大軍,準備趁你不注意時再出來嚇你一跳?

對蟑螂的厭惡可能源自於牠破壞了你對環境的信任感。圖/Giphy

同樣的,就算不是在你家,而是外出用餐時在餐廳裡看見蟑螂,基於恨烏及屋的情感連結,你對於餐廳的信任感也跟著下降,甚至激動一點當場走人也有可能。但換個場景,假如你今天是在馬路上看見蟑螂,或許還是會覺得害怕、覺得噁心,但反應很可能不會像在家裡這麼大。

-----廣告,請繼續往下閱讀-----

這便是都市化—嫌惡假說第一條路徑強調的重點。在都市化程度高的環境裡「室內」跟「室外」的界線變得分明,因此當有不該存在的東西出現,我們的反應也會更強烈。

因為不熟,所以討厭?

至於都市化—嫌惡假說的第二條路徑,是延續演化心理學裡,人們對於不了解的事物會產生恐懼的觀點。但比起針對單一種昆蟲,都市化—嫌惡假說發現,都市化環境會普遍降低其居民接觸大自然的頻率。就算是出生於郊區環境的人,在都市生活久了也會喪失這股熟悉感,甚至開始對大自然出現排斥心理。

同樣的,今天即便你是個都市小孩,只要到郊外生活夠久,而且自發地去接觸自然環境,那份對昆蟲的恐懼便會在洪水療法下逐漸被減敏感。說不定某天你會跟北海道人一樣,開始欣賞蟑螂的可愛之處喔!

說不定某天你會跟北海道人一樣,開始欣賞蟑螂的可愛之處!圖/Hituzi Chang

從「害怕蟑螂」看見早期教育

除了解釋了我們對蟑螂的厭惡,都市化—嫌惡假說其實也點出了現代社會一個很重要的議題,那就是在現代科技的干擾下,我們接觸真實世界的頻率正在下降,無形中也失去不少珍貴的「經驗」。

-----廣告,請繼續往下閱讀-----

我們的大腦仰賴經驗法則才能運轉,想學習新技能、建立穩固的知識結構,都需要持續且頻繁地暴露在特定刺激下。讀書、背講義是一種刺激,與人社交締結關係是一種刺激,走出戶外接觸山林也是一種刺激,任何一種刺激少了,我們就會錯過發展相應能力的機會。

就好像最近幾年特別被重視的語言教育、科學教育、情感教育,甚至是平權與美感教育,其實都是在努力把握小孩子學習的黃金期,讓他們盡早接觸到足夠的相關刺激,打下扎實基礎。這在教育心理學叫做「早期暴露」(early exposure),這個理論反對只把重心放在學齡後與學校教育的傳統觀念,認為父母在學齡前給予孩子多元化刺激同樣重要。

不需要花大錢上才藝班,平時多帶孩子出門走走,或是準備不同的課外讀物與嗜好,都是很好的新奇刺激,不單能增進大腦發展,還可以培養認知彈性,讓他們在未來遇到未知事物時能保持好奇心、積極自發地去吸收新知,而非縮在固有觀念裡。

早期暴露對兒童發展學習尤為重要。圖/Pexels

這個乍看很冷門、沒什麼了不起的研究,其實衍生出來的意義可是與我們息息相關。就好像我們常說在家裡看到一隻蟑螂,代表看不見的地方還有十隻。怕不怕蟑螂事小,因為享受現代科技的便利而錯失與真實世界互動的經驗,才是最得不償失的。

-----廣告,請繼續往下閱讀-----

要在都市中增加對昆蟲的好感不容易,但也有像是中山女中蔡任圃老師,成功透過一系列的觀察、研究等課程活動,讓許多學生愛上了蟑螂這個小生物。那麼你呢,你覺得你還有機會跟小強達成和解嗎?

  1. 這還用說嗎?馬上當成寵物養起來!每天一起睡
  2. 先不要,我們彼此人蟑殊途不犯河水
  3. 絕對不可能,只要看到蟑螂,這個房子我就不要了!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1