0

0
0

文字

分享

0
0
0

多少像素才「夠看」?

鄭國威 Portnoy_96
・2011/10/12 ・1574字 ・閱讀時間約 3 分鐘 ・SR值 498 ・六年級

說來有趣,當我們都市人的眼睛愈來愈容易近視而使得肉眼看不清楚真實的世界時,我們所做的應對卻是不斷提高造成近視的元兇的解析度,像是電視、電腦、手機、平板電腦等再現世界的工具…而正當大多數人還不清楚HD到底是怎樣的一個畫質時,QFHD或所謂的「4K」超高畫質就又開始進入市場,引領我們進入下一個設定好的解析度戰場。

此外,現在就連原本模糊的影像,也都有辦法將之清晰化。我們在某些刑事偵察影集才看得到的「影像去模糊技術」即將成為Photoshop內建功能,效果令人驚豔。

除此之外,也有另一套軟體「Topaz InFocus」聲稱可以做到更好,請見下圖演示:

然而愈來愈高的解析度其實也壓縮了我們的想像空間,這種無止境的競逐看似進步,卻讓我感到疲乏。Torralba A (2009)就問了一個簡單的問題:多少像素才能構成一幅影像?(How many pixels make an image?)

-----廣告,請繼續往下閱讀-----

Torralba從影像資料庫中選出若干,然後調整其解析度,製作出不同解析度的版本,從4px*4px超低解析度到128px*128px。在第1部份的實驗中,他要求觀看者判別圖片是什麼,例如臥室、海灘、森林之類的。解析度最低,如4*4的時候,通常得用猜的,但是答對的機率頗高;16*16的時候,75%的觀看者都能猜出戶外景象的圖片,順帶一提,16*16也就是瀏覽器網址列上favicon的解析度,例如PanSci網站的favicon就是一個歪斜的藍框裡頭有著深藍色的PS字樣。

在判別室內景象的時候,要猜對通常需要更高的解析度,不過16*16有時候還是足夠,例如下圖:

你大概可以看出這是一個房間,有張藍色被單的大床,旁邊還有個門。當然,這不是原始尺寸,而是先將原本清晰的圖片下調至16*16,然後再透過插值(interpolation)的方式,放大成上圖的尺寸,避免馬賽克般有稜有角。下圖可能更難一些:

看出來了嗎?這是戶外街景,有輛車停在某大樓前面。之前說過,室內的景象需要更高的解析度才好判斷,主要是因為戶外,尤其是自然景象通常有明顯的色彩可供判斷,例如看見綠色就想到草原就是森林,藍色加上米色大概就是沙灘。戶外景色的物體面(surfaces)通常也不多。

-----廣告,請繼續往下閱讀-----

如果16*16或32*32就足夠我們判斷圖片場景,那能否一併看出圖片中的物件呢?既然能夠看出場景,照理來說應該也能辨識出其中若干物件,即使這些物件必然比16*16更小。研究者在第2部份的實驗中便要求觀看者除了要判別場景,還要把場景中的物件一一指認出來。我們看看下面的例子:

在上圖中,觀看者從16*16(256px)的圖中辨別出6個物件:天花板、牆壁、地板、床、床頭板、窗戶。其中我覺得能看出床頭板真是厲害,不過這當然是因為有脈絡可循的關係,要是像下圖這樣的話:

這是啥?如果你直接看得出來,算你厲害;如果看不出來,脈絡可以替你解答:

是洗手台,研究中其中一位觀察者也成功指認出,儘管其大小頂多只有8*4 px。如果你早先知道這場景是在浴室裡頭,那麼要猜出來不難,但是如果不知道,那就很難了。研究者驚訝地發現,在32*32的情況下,觀看者平均能夠判斷出場景中80%的物件,也就是每5個物件中就能猜出4個,即使分開來看時根本無法辨識。

-----廣告,請繼續往下閱讀-----

研究結論認為,如此低解析度的圖片能夠傳達的資訊竟能如此有效,可用來解釋人腦理解視覺場景的速度跟效率為何如此高。未來應該可以複製實驗,把更細緻的人口變項跟社會文化變項加入,或許會出現有趣的結果。

我認為,從有碼到無碼,從第四台黑白沙沙畫面到藍光,儘管我們有了愈來愈高的解析度,但真正讓我們從觀看獲得樂趣的關鍵還是人腦的想像力跟猜測能力啊。獅王3D眼鏡這種東西只是騙錢的!(自暴自棄)

資料來源:How many pixels make an object?Like, 30

引用論文:
Torralba A (2009). How many pixels make an image? Visual neuroscience, 26 (1), 123-31 PMID: 19216820

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
鄭國威 Portnoy_96
247 篇文章 ・ 1435 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
242 篇文章 ・ 318 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

6
2

文字

分享

0
6
2
出來單挑啊!同樣都是鼎鼎大名的太空望遠鏡,哈伯與韋伯到底誰比較強?
htlee
・2022/09/21 ・2029字 ・閱讀時間約 4 分鐘

最近,韋伯太空望遠鏡發布首批科學影像,終於看到敲碗好久的結果——韋伯拍到了人類從未見過的許多東西!有人說,韋伯是哈伯的繼任者,但不知道大家是否好奇過,哈伯和韋伯到底誰比較強?

哈伯望遠鏡和韋伯望遠鏡之戰,正式開打!

這個問題有點難回答,因為兩部望遠鏡都是當代科技的結晶。哈伯是 1990 年升空的王者,韋伯是 30 年後科技進步下的產物,我試著用客觀的方式來比較這兩部太空望遠鏡。

哈伯觀測可見光,韋伯觀測紅外光

哈伯的主鏡直徑是 2.4 公尺,韋伯則是 6.5 公尺,韋伯的主鏡直徑比哈伯大 2.7 倍,這也是大家最常比較的部分。可是,如果主鏡大就比較厲害,那麼夏威夷大島上的凱克 10 公尺望遠鏡,不就比哈伯和韋伯更強?

哈伯的主鏡直徑是 2.4 公尺(左),韋伯的則是 6.5 公尺(右)。圖/維基百科

哈伯與韋伯觀測的波段不同,用途也不一樣。哈伯主要觀測的波段在可見光,可見光是指人類眼睛可以看見的光或顏色範圍,也就是紅、橙、黃、綠、藍、靛和紫。從紅光到紫光,光的波長由長到短,紅光的波長大約是 0.62–0.74 微米(1 微米=0.001 公釐),紫光的範圍則是 0.38–0.45 微米。

紅外光是指比紅光波長更長的光,也就是波長比 0.7 微米更長,這是韋伯望遠鏡主要觀測宇宙的波段。

-----廣告,請繼續往下閱讀-----

哈伯和韋伯太空望遠鏡觀測的波段,一個在可見光,另一個在紅外光,所以在功用上本來就不一樣,如果要比較的話就要小心,不然就像拿橘子跟蘋果相比,拿不同的東西做比較顯得很突兀。

誰看得比較清楚?來比一比解析度吧!

哈伯與韋伯可以拿來做比較的是解析度,解析度的值(角秒)愈低,表示能看到天體愈細微的部分,解析度跟主鏡直徑和觀測的波長有關。望遠鏡主鏡愈大,解析度愈好;另外也跟觀測的波長成正比。

解析度的計算公式。

以下兩張影像分別是史匹哲太空望遠鏡(Spitzer Space Telescope)和韋伯拍的天空中同一區域紅外光影像,拍攝的紅外波長也差不多(史匹哲:8 微米,韋伯 7.7 微米),不過兩幅影像的解析度卻差很多,韋伯的影像中可以看到更多的細節,史匹哲則好像糊成一團。

史匹哲與韋伯望遠鏡的影像解析度比較,顯然韋伯的影像解析度高很多。圖/NASA

當觀測的波長一樣時,解析度跟觀測望遠鏡的主鏡直徑成反比。史匹哲的主鏡是 0.85 公尺,所以韋伯的解析力是史匹哲的 6.5/0.85=7.8 倍!主鏡的大小直接反應在解析度上,韋伯與史匹哲在解析度上高下立判!

-----廣告,請繼續往下閱讀-----

解析度除了跟主鏡的直徑成反比,也跟觀測的波長成正比。所以同一面主鏡觀測天體,用愈短的波長觀測解析度愈好。下圖是史匹哲望遠鏡觀測 M81 星系的結果,同樣 0.85 公尺的主鏡觀測,隨著觀測波長的增加,解析度變差。

史匹哲望遠鏡拍攝的 M81 星系,拍攝的波段是 24(上)、70(中)、160 微米(下),拍攝的波段愈長,解析度愈差。圖/NASA

答案揭曉——哈伯的解析度略勝一籌!

前面提到解析度跟主鏡直徑與觀測波長的關係有一個重要前提,主鏡必須研磨到完美、光滑,也就是主鏡上不能出現高低起伏。如果主鏡不完美,像遊樂場裡的哈哈鏡,不能聚焦成像,解析度自然不好。

波長愈短對鏡面的要求愈高。哈伯太空望遠鏡的鏡面對 0.5 微米波長更長的光是完美的,比 0.5 微米波長更短的光波則呈現不完美,韋伯望遠鏡的主鏡則是對 2 微米更長的波長是光滑的。(光學上,物理學家的說法是哈伯和韋伯分別在 0.5 和 2 微米達到繞射極限。)

哈伯和韋伯望遠鏡最佳解析度分別在 0.5 微米和 2 微米,根據前面的解析度公式,哈伯在 0.5 微米的解析度是 0.05 角秒,而韋伯在 2 微米的解析度是 0.08 角秒,結論是哈伯的解析度比韋伯稍微好一點!也就是哈伯老當益壯,一點也不比韋伯差。

-----廣告,請繼續往下閱讀-----
史蒂芬五重星系,哈伯(左)與韋伯(右)拍攝的影像,從解析度來看,兩部太空望遠鏡不相上下。圖/NASA

從哈伯到韋伯,有如長江後浪推前浪

天文學家從 1990 年開始,透過哈伯望遠鏡研究宇宙,這三十年來科學家已經把哈伯的功能發揮到極致,我們對宇宙的了解很多都來自哈伯的觀測。不過這三十年的努力也讓天文學家發現哈伯不足的地方,科學家知道關鍵在紅外線觀測能力。前一代的紅外望遠鏡史匹哲無法達到需求,天文學家只能殷殷期盼韋伯。

韋伯首批公布的影像中,幾乎都是哈伯曾經拍過的天體,從科學上來說,比較可見光和紅外影像資料可以對目標天體更多了解,不過我認為這應該是韋伯對哈伯致敬的方式,感謝哈伯三十多年的貢獻!

韋伯站在巨人的肩膀上,必定能看得更暗、更遠!

-----廣告,請繼續往下閱讀-----
htlee
19 篇文章 ・ 9 位粉絲
屋頂上的天文學家-李昫岱,中央大學天文所博士,曾經於中央研究院天文所和美國伊利諾大學厄巴納-香檳分校從事研究工作。著有《噢!原來如此 有趣的天文學》、《天文很有事》,翻譯多本國家地理書籍和特刊。 目前在國立中正大學教授「漫遊宇宙101個天體」和「星空探索」兩門通識課。天文跟其他語文一樣,有自己的文法和結構,唯一的不同是天文寫在天上!現在的工作是用科學、藝術和文化的角度,解讀、翻譯和傳授這本無字天書,期望透過淺顯易懂的方式介紹天文的美好!

2

31
6

文字

分享

2
31
6
百倍於哈伯觀測能力,大小尺度通通包辦!——NASA 的下一個旗艦級「羅曼太空望遠鏡」
EASY天文地科小站_96
・2021/01/14 ・3606字 ・閱讀時間約 7 分鐘 ・SR值 507 ・六年級

  • 文/林彥興(EASY天文地科團隊總編輯,就讀清大理學院學士班)

「一個哈伯不夠用,那你有試過來一百個嗎?」

哈伯太空望遠鏡可說是世上最著名的科學儀器之一。在它 1990 年升空的這三十年中,拍攝了無數令人嘆為觀止的宇宙奇景。然而,隨著時光流逝,垂垂老矣的哈伯剩下的時日恐怕已經不多。

倘若再次出現嚴重故障,可能就得和這座傳奇的天文望遠鏡永遠告別。好在,哈伯並非後繼無人,在今 (2021) 年十月韋伯太空望遠鏡升空之後,NASA 的下一個旗艦級太空望遠鏡,將以相仿的體型,卻百倍於哈伯的觀測能力幫助天文學家更深入了解宇宙的奧秘。它就是「南希.葛莉絲.羅曼太空望遠鏡 Nancy Grace Roman Space Telescope 」。

南希.葛莉絲.羅曼太空望遠鏡 Nancy Grace Roman Space Telescope。圖/Wikimedia common

誰是羅曼?人稱哈伯之母的天文學家

在介紹望遠鏡之前,讓我們先來看看羅曼究竟是誰,居然偉大到讓 NASA 以她的名字命名下一代的旗艦級望遠鏡。

南希.葛莉絲.羅曼 (1925-2018) 是著名的美國天文學家。在二十世紀前葉,科學界中的性別不平等遠比現在嚴重。但她仍然努力撐過他人的冷眼與勸退,選擇攻讀天文並在取得博士學位後,在恆星分類、星團運動等領域貢獻卓越。

-----廣告,請繼續往下閱讀-----

1959年,羅曼到 NASA 任職,並從此長年擔任 NASA 的首席天文學家。在她任職的時代,太空科技才剛剛起步,人們對太空望遠鏡的概念也相當陌生。但羅曼憑著她的遠見,參與、主持了許多 1960 與 1970 年代 NASA 的太空望遠鏡計畫,並四處為這些計畫籌措資金,為現代太空望遠鏡的蓬勃發展打下基礎。

同時,她也推動 NASA 將觀測到的資料開放給全世界使用,最終讓天文界開放資料的文化延續至今。她對 NASA 太空望遠鏡計畫的卓越貢獻,最終讓她獲得「哈伯之母」的美譽。

1972 年的羅曼博士,攝於 NASA 哥達德太空中心。圖/NASA

我要一個打一百個!羅曼的超廣視野

在被命名為羅曼太空望遠鏡之前,這個望遠鏡計畫名為「廣域紅外巡天望遠鏡
WFIRST 」
。顧名思義,這是一台觀測可見光與近紅外線,用於進行廣域巡天——也就是觀測大範圍天空——的望遠鏡。預計將在 2020 年代中期發射,與蓋亞、韋伯等前輩一起運行於日地第二拉格朗日點。

在望遠鏡的構造上,羅曼與哈伯太空望遠鏡相當類似,都使用一面直徑 2.4 公尺的主鏡。但得益於三十年來的科技進步,同樣是 2.4 公尺的主鏡,性能卻大不相同。

首先,利用先進的新式材料,羅曼的主鏡重量僅有哈伯的兩成,約 186 公斤重。再者,為了增加鏡片的反射率,一般的望遠鏡都會在鏡片的表面鍍上一層高反射率的金屬。比如哈伯太空望遠鏡的鏡片表面,就鍍上了一層約 850 奈米厚的鋁。但鋁雖然能夠很好的反射可見光與紫外光,對紅外線的反射率卻不夠理想。因此作為一個觀測近紅外線為主的望遠鏡,羅曼的主鏡片表面鍍上了厚度 400 奈米的銀,讓它能夠更好反射來自宇宙深處的黯淡紅外線。

-----廣告,請繼續往下閱讀-----
2020 年中完成製造的主鏡。圖/L3 Harris Technologies

但單純只是反射還不夠,想要得到清晰的影像,就得精確的讓光線聚焦到正確的位置。因此,望遠鏡需要非常精密的拋光。羅曼的主鏡在拋光完成後,鏡片表面的平均起伏僅有 1.2 奈米。這有多平整呢?如果我們將鏡片放大到跟地球一樣,那它表面的起伏將僅有 6 毫米高!

最後,當光線經過一連串複雜的鏡片聚焦之後,將匯聚到羅曼的相機—— 3 億像素的「廣域儀器 Wide Field Instrument 」上,轉化為影像資料後送回地球讓天文學家分析。在這一整套光學系統的合作下,羅曼太空望遠鏡保有與哈伯相同解析度的情況下,擁有視野一百倍以上的超廣視野!

羅曼太空望遠鏡的超廣視野。圖/NASA

視野超大,然後咧?

誒不過話說回來,視野廣大有什麼用呢?

望遠鏡不是要讓我們去看更暗、更小的東西用的嗎?視野變大了,解析度卻沒有提升,這樣真的算是有進步嗎?

當然有囉!

在大家的印象中,天文學家好像總拿著望遠鏡,鉅細靡遺的觀察、研究某個天體。這當然是其中一種重要的方式,但並不是天文研究的全貌。其實在真正的天文物理研究中,很多天文學家想知道的並不是特定天體的特性(比如仙女座銀河有幾根懸臂、有多少顆恆星),而是藉由大量普查宇宙中該種天體的基本性質,然後在海量的資料中尋找擁有科學價值的寶藏。

-----廣告,請繼續往下閱讀-----

覺得這像有字天書嗎?沒關係,我們舉個比較親民的例子。

如果你今天想知道新課綱對孩子們的學習成效如何,你會怎麼做呢?也許你可以找幾個孩子出來談談,仔細地問問他們對新課綱的想法。就像那些鉅細靡遺的研究特定目標的天文學家一樣;但你也可以用更宏觀的方式,比如看看他們全體的考試成績或補習花費,來了解新課綱的影響。

同理,對宇宙學家與星系天文學家來說,羅曼太空望遠鏡的廣大視野,讓他們可以在相同的時間內拍攝更廣的天空,或是在對同一片天空拍攝更久的時間,以看見更暗的天體。

當羅曼升空之後,將會拍攝早期宇宙中數以百萬計的大量星系與超新星,並對其中一部份進行更詳盡的光譜分析,藉由觀測這些星系的紅移、位置分佈、形狀、亮度、大小⋯⋯等等資訊,可以回推出宇宙膨脹歷史(與暗能量有關)、星際間暗物質的分佈(利用重力透鏡效應)、尋找早期宇宙中的特殊星系、甚至是幫忙測量本星系群之中的恆星移動。

天文學家將利用羅曼拍攝大量的星系影像進行分析,了解暗能量、暗物質與星系演
化。圖/NASA

另一方面,系外行星學家也對它充滿期待。羅曼太空望遠鏡將藉由兩種方式來偵測系外行星:

一個是藉由「微重力透鏡 Microlensing 」效應。當一顆恆星通過一個背景光源時,恆星的質量會扭曲周圍的時空並匯聚後方的光源,使得背景光源看起來像在短時間內快速的變亮、然後又恢復原狀,而且亮度變化的曲線有相當明顯的特徵。而如果這顆恆星旁邊有行星環繞,那行星的質量也將對亮度曲線造成影響。天文學家就能藉由分析亮度的變化曲線,來探測系外行星的存在。

-----廣告,請繼續往下閱讀-----
微重力透鏡效應的示意圖。圖片/NASA

第二個重點,羅曼將攜帶最先進的日冕儀 (CGI),直接拍攝系外行星與原行星盤。

甚麼是日冕儀呢?顧名思義,它最早是為了研究太陽的日冕而發明的儀器。由於平常的太陽實在太亮,使得旁邊相對黯淡的日冕相當難以觀測,因此科學家發明了日冕儀,藉由複雜的光學系統,遮擋住視野中心來自太陽的強光,才能好好的拍攝、研究黯淡的日冕。

而系外行星的探測中,由於系外行星本身又小又暗、又非常靠近明亮的母恆星,想要直接拍攝到他們,就像要你直視著汽車頭燈,然後尋找頭燈旁的蚊子一樣困難。因此,天文學家必須借助日冕儀的力量才能夠直接拍攝到它們。

哈伯太空望遠鏡 STIS 儀器的日冕儀拍攝的北落師門。藉由遮住中心恆星的強光,才能拍攝北落師門四周複雜的塵埃結構。圖/NASA

而羅曼搭載的光譜儀,將更進一步利用各種特殊的光學元件,以及類似調適光學技術中採用的可變形鏡片,利用破壞性干涉來消除主恆星的光線,讓我們能看到主恆星旁 邊,比恆星暗數百萬倍的系外行星。並進一步研究它們的光譜,看看他們溫度多高、 是由甚麼組成、讓我們更加了解這些外星世界。 

結語:值得期待的未來

作為韋伯之後的下一款大型光學太空望遠鏡,天文學大尺度與小尺度的問題羅曼通通包辦。它將能夠以哈伯等級的解析度,拍攝廣大宇宙中數以百萬計中的星系來研究宇宙學與星系演化;同時,它搭載的新一代日冕儀將能讓我們更清楚的直接拍攝系外行星。羅曼太空望遠鏡將產出哪些令人驚艷的資料?又將如何協助我們揭開宇宙的神秘面紗?就讓我們拭目以待吧!

-----廣告,請繼續往下閱讀-----

參考資料

  1. STSCI, Roman. Nancy Grace Roman Space Telescope
  2. Roman Space Telescope NASA 官網. Roman Space Telescope/NASA
  3. 主鏡製造商 Nancy Grace Roman Space Telescope 
  4. Roman Lecture Series
  5. 初稿:【時事新聞】羅曼太空望遠鏡的鍍銀主鏡
-----廣告,請繼續往下閱讀-----
所有討論 2
EASY天文地科小站_96
23 篇文章 ・ 1698 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事