Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

多少像素才「夠看」?

鄭國威 Portnoy_96
・2011/10/12 ・1574字 ・閱讀時間約 3 分鐘 ・SR值 498 ・六年級

說來有趣,當我們都市人的眼睛愈來愈容易近視而使得肉眼看不清楚真實的世界時,我們所做的應對卻是不斷提高造成近視的元兇的解析度,像是電視、電腦、手機、平板電腦等再現世界的工具…而正當大多數人還不清楚HD到底是怎樣的一個畫質時,QFHD或所謂的「4K」超高畫質就又開始進入市場,引領我們進入下一個設定好的解析度戰場。

此外,現在就連原本模糊的影像,也都有辦法將之清晰化。我們在某些刑事偵察影集才看得到的「影像去模糊技術」即將成為Photoshop內建功能,效果令人驚豔。

除此之外,也有另一套軟體「Topaz InFocus」聲稱可以做到更好,請見下圖演示:

然而愈來愈高的解析度其實也壓縮了我們的想像空間,這種無止境的競逐看似進步,卻讓我感到疲乏。Torralba A (2009)就問了一個簡單的問題:多少像素才能構成一幅影像?(How many pixels make an image?)

-----廣告,請繼續往下閱讀-----

Torralba從影像資料庫中選出若干,然後調整其解析度,製作出不同解析度的版本,從4px*4px超低解析度到128px*128px。在第1部份的實驗中,他要求觀看者判別圖片是什麼,例如臥室、海灘、森林之類的。解析度最低,如4*4的時候,通常得用猜的,但是答對的機率頗高;16*16的時候,75%的觀看者都能猜出戶外景象的圖片,順帶一提,16*16也就是瀏覽器網址列上favicon的解析度,例如PanSci網站的favicon就是一個歪斜的藍框裡頭有著深藍色的PS字樣。

在判別室內景象的時候,要猜對通常需要更高的解析度,不過16*16有時候還是足夠,例如下圖:

你大概可以看出這是一個房間,有張藍色被單的大床,旁邊還有個門。當然,這不是原始尺寸,而是先將原本清晰的圖片下調至16*16,然後再透過插值(interpolation)的方式,放大成上圖的尺寸,避免馬賽克般有稜有角。下圖可能更難一些:

看出來了嗎?這是戶外街景,有輛車停在某大樓前面。之前說過,室內的景象需要更高的解析度才好判斷,主要是因為戶外,尤其是自然景象通常有明顯的色彩可供判斷,例如看見綠色就想到草原就是森林,藍色加上米色大概就是沙灘。戶外景色的物體面(surfaces)通常也不多。

-----廣告,請繼續往下閱讀-----

如果16*16或32*32就足夠我們判斷圖片場景,那能否一併看出圖片中的物件呢?既然能夠看出場景,照理來說應該也能辨識出其中若干物件,即使這些物件必然比16*16更小。研究者在第2部份的實驗中便要求觀看者除了要判別場景,還要把場景中的物件一一指認出來。我們看看下面的例子:

在上圖中,觀看者從16*16(256px)的圖中辨別出6個物件:天花板、牆壁、地板、床、床頭板、窗戶。其中我覺得能看出床頭板真是厲害,不過這當然是因為有脈絡可循的關係,要是像下圖這樣的話:

這是啥?如果你直接看得出來,算你厲害;如果看不出來,脈絡可以替你解答:

是洗手台,研究中其中一位觀察者也成功指認出,儘管其大小頂多只有8*4 px。如果你早先知道這場景是在浴室裡頭,那麼要猜出來不難,但是如果不知道,那就很難了。研究者驚訝地發現,在32*32的情況下,觀看者平均能夠判斷出場景中80%的物件,也就是每5個物件中就能猜出4個,即使分開來看時根本無法辨識。

-----廣告,請繼續往下閱讀-----

研究結論認為,如此低解析度的圖片能夠傳達的資訊竟能如此有效,可用來解釋人腦理解視覺場景的速度跟效率為何如此高。未來應該可以複製實驗,把更細緻的人口變項跟社會文化變項加入,或許會出現有趣的結果。

我認為,從有碼到無碼,從第四台黑白沙沙畫面到藍光,儘管我們有了愈來愈高的解析度,但真正讓我們從觀看獲得樂趣的關鍵還是人腦的想像力跟猜測能力啊。獅王3D眼鏡這種東西只是騙錢的!(自暴自棄)

資料來源:How many pixels make an object?Like, 30

引用論文:
Torralba A (2009). How many pixels make an image? Visual neuroscience, 26 (1), 123-31 PMID: 19216820

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
鄭國威 Portnoy_96
247 篇文章 ・ 1302 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

6
2

文字

分享

0
6
2
出來單挑啊!同樣都是鼎鼎大名的太空望遠鏡,哈伯與韋伯到底誰比較強?
htlee
・2022/09/21 ・2029字 ・閱讀時間約 4 分鐘

最近,韋伯太空望遠鏡發布首批科學影像,終於看到敲碗好久的結果——韋伯拍到了人類從未見過的許多東西!有人說,韋伯是哈伯的繼任者,但不知道大家是否好奇過,哈伯和韋伯到底誰比較強?

哈伯望遠鏡和韋伯望遠鏡之戰,正式開打!

這個問題有點難回答,因為兩部望遠鏡都是當代科技的結晶。哈伯是 1990 年升空的王者,韋伯是 30 年後科技進步下的產物,我試著用客觀的方式來比較這兩部太空望遠鏡。

哈伯觀測可見光,韋伯觀測紅外光

哈伯的主鏡直徑是 2.4 公尺,韋伯則是 6.5 公尺,韋伯的主鏡直徑比哈伯大 2.7 倍,這也是大家最常比較的部分。可是,如果主鏡大就比較厲害,那麼夏威夷大島上的凱克 10 公尺望遠鏡,不就比哈伯和韋伯更強?

哈伯的主鏡直徑是 2.4 公尺(左),韋伯的則是 6.5 公尺(右)。圖/維基百科

哈伯與韋伯觀測的波段不同,用途也不一樣。哈伯主要觀測的波段在可見光,可見光是指人類眼睛可以看見的光或顏色範圍,也就是紅、橙、黃、綠、藍、靛和紫。從紅光到紫光,光的波長由長到短,紅光的波長大約是 0.62–0.74 微米(1 微米=0.001 公釐),紫光的範圍則是 0.38–0.45 微米。

紅外光是指比紅光波長更長的光,也就是波長比 0.7 微米更長,這是韋伯望遠鏡主要觀測宇宙的波段。

-----廣告,請繼續往下閱讀-----

哈伯和韋伯太空望遠鏡觀測的波段,一個在可見光,另一個在紅外光,所以在功用上本來就不一樣,如果要比較的話就要小心,不然就像拿橘子跟蘋果相比,拿不同的東西做比較顯得很突兀。

誰看得比較清楚?來比一比解析度吧!

哈伯與韋伯可以拿來做比較的是解析度,解析度的值(角秒)愈低,表示能看到天體愈細微的部分,解析度跟主鏡直徑和觀測的波長有關。望遠鏡主鏡愈大,解析度愈好;另外也跟觀測的波長成正比。

解析度的計算公式。

以下兩張影像分別是史匹哲太空望遠鏡(Spitzer Space Telescope)和韋伯拍的天空中同一區域紅外光影像,拍攝的紅外波長也差不多(史匹哲:8 微米,韋伯 7.7 微米),不過兩幅影像的解析度卻差很多,韋伯的影像中可以看到更多的細節,史匹哲則好像糊成一團。

史匹哲與韋伯望遠鏡的影像解析度比較,顯然韋伯的影像解析度高很多。圖/NASA

當觀測的波長一樣時,解析度跟觀測望遠鏡的主鏡直徑成反比。史匹哲的主鏡是 0.85 公尺,所以韋伯的解析力是史匹哲的 6.5/0.85=7.8 倍!主鏡的大小直接反應在解析度上,韋伯與史匹哲在解析度上高下立判!

-----廣告,請繼續往下閱讀-----

解析度除了跟主鏡的直徑成反比,也跟觀測的波長成正比。所以同一面主鏡觀測天體,用愈短的波長觀測解析度愈好。下圖是史匹哲望遠鏡觀測 M81 星系的結果,同樣 0.85 公尺的主鏡觀測,隨著觀測波長的增加,解析度變差。

史匹哲望遠鏡拍攝的 M81 星系,拍攝的波段是 24(上)、70(中)、160 微米(下),拍攝的波段愈長,解析度愈差。圖/NASA

答案揭曉——哈伯的解析度略勝一籌!

前面提到解析度跟主鏡直徑與觀測波長的關係有一個重要前提,主鏡必須研磨到完美、光滑,也就是主鏡上不能出現高低起伏。如果主鏡不完美,像遊樂場裡的哈哈鏡,不能聚焦成像,解析度自然不好。

波長愈短對鏡面的要求愈高。哈伯太空望遠鏡的鏡面對 0.5 微米波長更長的光是完美的,比 0.5 微米波長更短的光波則呈現不完美,韋伯望遠鏡的主鏡則是對 2 微米更長的波長是光滑的。(光學上,物理學家的說法是哈伯和韋伯分別在 0.5 和 2 微米達到繞射極限。)

哈伯和韋伯望遠鏡最佳解析度分別在 0.5 微米和 2 微米,根據前面的解析度公式,哈伯在 0.5 微米的解析度是 0.05 角秒,而韋伯在 2 微米的解析度是 0.08 角秒,結論是哈伯的解析度比韋伯稍微好一點!也就是哈伯老當益壯,一點也不比韋伯差。

-----廣告,請繼續往下閱讀-----
史蒂芬五重星系,哈伯(左)與韋伯(右)拍攝的影像,從解析度來看,兩部太空望遠鏡不相上下。圖/NASA

從哈伯到韋伯,有如長江後浪推前浪

天文學家從 1990 年開始,透過哈伯望遠鏡研究宇宙,這三十年來科學家已經把哈伯的功能發揮到極致,我們對宇宙的了解很多都來自哈伯的觀測。不過這三十年的努力也讓天文學家發現哈伯不足的地方,科學家知道關鍵在紅外線觀測能力。前一代的紅外望遠鏡史匹哲無法達到需求,天文學家只能殷殷期盼韋伯。

韋伯首批公布的影像中,幾乎都是哈伯曾經拍過的天體,從科學上來說,比較可見光和紅外影像資料可以對目標天體更多了解,不過我認為這應該是韋伯對哈伯致敬的方式,感謝哈伯三十多年的貢獻!

韋伯站在巨人的肩膀上,必定能看得更暗、更遠!

-----廣告,請繼續往下閱讀-----
htlee
19 篇文章 ・ 9 位粉絲
屋頂上的天文學家-李昫岱,中央大學天文所博士,曾經於中央研究院天文所和美國伊利諾大學厄巴納-香檳分校從事研究工作。著有《噢!原來如此 有趣的天文學》、《天文很有事》,翻譯多本國家地理書籍和特刊。 目前在國立中正大學教授「漫遊宇宙101個天體」和「星空探索」兩門通識課。天文跟其他語文一樣,有自己的文法和結構,唯一的不同是天文寫在天上!現在的工作是用科學、藝術和文化的角度,解讀、翻譯和傳授這本無字天書,期望透過淺顯易懂的方式介紹天文的美好!

2

31
6

文字

分享

2
31
6
百倍於哈伯觀測能力,大小尺度通通包辦!——NASA 的下一個旗艦級「羅曼太空望遠鏡」
EASY天文地科小站_96
・2021/01/14 ・3606字 ・閱讀時間約 7 分鐘 ・SR值 507 ・六年級

-----廣告,請繼續往下閱讀-----

  • 文/林彥興(EASY天文地科團隊總編輯,就讀清大理學院學士班)

「一個哈伯不夠用,那你有試過來一百個嗎?」

哈伯太空望遠鏡可說是世上最著名的科學儀器之一。在它 1990 年升空的這三十年中,拍攝了無數令人嘆為觀止的宇宙奇景。然而,隨著時光流逝,垂垂老矣的哈伯剩下的時日恐怕已經不多。

倘若再次出現嚴重故障,可能就得和這座傳奇的天文望遠鏡永遠告別。好在,哈伯並非後繼無人,在今 (2021) 年十月韋伯太空望遠鏡升空之後,NASA 的下一個旗艦級太空望遠鏡,將以相仿的體型,卻百倍於哈伯的觀測能力幫助天文學家更深入了解宇宙的奧秘。它就是「南希.葛莉絲.羅曼太空望遠鏡 Nancy Grace Roman Space Telescope 」。

南希.葛莉絲.羅曼太空望遠鏡 Nancy Grace Roman Space Telescope。圖/Wikimedia common

誰是羅曼?人稱哈伯之母的天文學家

在介紹望遠鏡之前,讓我們先來看看羅曼究竟是誰,居然偉大到讓 NASA 以她的名字命名下一代的旗艦級望遠鏡。

南希.葛莉絲.羅曼 (1925-2018) 是著名的美國天文學家。在二十世紀前葉,科學界中的性別不平等遠比現在嚴重。但她仍然努力撐過他人的冷眼與勸退,選擇攻讀天文並在取得博士學位後,在恆星分類、星團運動等領域貢獻卓越。

-----廣告,請繼續往下閱讀-----

1959年,羅曼到 NASA 任職,並從此長年擔任 NASA 的首席天文學家。在她任職的時代,太空科技才剛剛起步,人們對太空望遠鏡的概念也相當陌生。但羅曼憑著她的遠見,參與、主持了許多 1960 與 1970 年代 NASA 的太空望遠鏡計畫,並四處為這些計畫籌措資金,為現代太空望遠鏡的蓬勃發展打下基礎。

同時,她也推動 NASA 將觀測到的資料開放給全世界使用,最終讓天文界開放資料的文化延續至今。她對 NASA 太空望遠鏡計畫的卓越貢獻,最終讓她獲得「哈伯之母」的美譽。

1972 年的羅曼博士,攝於 NASA 哥達德太空中心。圖/NASA

我要一個打一百個!羅曼的超廣視野

在被命名為羅曼太空望遠鏡之前,這個望遠鏡計畫名為「廣域紅外巡天望遠鏡
WFIRST 」
。顧名思義,這是一台觀測可見光與近紅外線,用於進行廣域巡天——也就是觀測大範圍天空——的望遠鏡。預計將在 2020 年代中期發射,與蓋亞、韋伯等前輩一起運行於日地第二拉格朗日點。

在望遠鏡的構造上,羅曼與哈伯太空望遠鏡相當類似,都使用一面直徑 2.4 公尺的主鏡。但得益於三十年來的科技進步,同樣是 2.4 公尺的主鏡,性能卻大不相同。

首先,利用先進的新式材料,羅曼的主鏡重量僅有哈伯的兩成,約 186 公斤重。再者,為了增加鏡片的反射率,一般的望遠鏡都會在鏡片的表面鍍上一層高反射率的金屬。比如哈伯太空望遠鏡的鏡片表面,就鍍上了一層約 850 奈米厚的鋁。但鋁雖然能夠很好的反射可見光與紫外光,對紅外線的反射率卻不夠理想。因此作為一個觀測近紅外線為主的望遠鏡,羅曼的主鏡片表面鍍上了厚度 400 奈米的銀,讓它能夠更好反射來自宇宙深處的黯淡紅外線。

-----廣告,請繼續往下閱讀-----
2020 年中完成製造的主鏡。圖/L3 Harris Technologies

但單純只是反射還不夠,想要得到清晰的影像,就得精確的讓光線聚焦到正確的位置。因此,望遠鏡需要非常精密的拋光。羅曼的主鏡在拋光完成後,鏡片表面的平均起伏僅有 1.2 奈米。這有多平整呢?如果我們將鏡片放大到跟地球一樣,那它表面的起伏將僅有 6 毫米高!

最後,當光線經過一連串複雜的鏡片聚焦之後,將匯聚到羅曼的相機—— 3 億像素的「廣域儀器 Wide Field Instrument 」上,轉化為影像資料後送回地球讓天文學家分析。在這一整套光學系統的合作下,羅曼太空望遠鏡保有與哈伯相同解析度的情況下,擁有視野一百倍以上的超廣視野!

羅曼太空望遠鏡的超廣視野。圖/NASA

視野超大,然後咧?

誒不過話說回來,視野廣大有什麼用呢?

望遠鏡不是要讓我們去看更暗、更小的東西用的嗎?視野變大了,解析度卻沒有提升,這樣真的算是有進步嗎?

當然有囉!

在大家的印象中,天文學家好像總拿著望遠鏡,鉅細靡遺的觀察、研究某個天體。這當然是其中一種重要的方式,但並不是天文研究的全貌。其實在真正的天文物理研究中,很多天文學家想知道的並不是特定天體的特性(比如仙女座銀河有幾根懸臂、有多少顆恆星),而是藉由大量普查宇宙中該種天體的基本性質,然後在海量的資料中尋找擁有科學價值的寶藏。

-----廣告,請繼續往下閱讀-----

覺得這像有字天書嗎?沒關係,我們舉個比較親民的例子。

如果你今天想知道新課綱對孩子們的學習成效如何,你會怎麼做呢?也許你可以找幾個孩子出來談談,仔細地問問他們對新課綱的想法。就像那些鉅細靡遺的研究特定目標的天文學家一樣;但你也可以用更宏觀的方式,比如看看他們全體的考試成績或補習花費,來了解新課綱的影響。

同理,對宇宙學家與星系天文學家來說,羅曼太空望遠鏡的廣大視野,讓他們可以在相同的時間內拍攝更廣的天空,或是在對同一片天空拍攝更久的時間,以看見更暗的天體。

當羅曼升空之後,將會拍攝早期宇宙中數以百萬計的大量星系與超新星,並對其中一部份進行更詳盡的光譜分析,藉由觀測這些星系的紅移、位置分佈、形狀、亮度、大小⋯⋯等等資訊,可以回推出宇宙膨脹歷史(與暗能量有關)、星際間暗物質的分佈(利用重力透鏡效應)、尋找早期宇宙中的特殊星系、甚至是幫忙測量本星系群之中的恆星移動。

天文學家將利用羅曼拍攝大量的星系影像進行分析,了解暗能量、暗物質與星系演
化。圖/NASA

另一方面,系外行星學家也對它充滿期待。羅曼太空望遠鏡將藉由兩種方式來偵測系外行星:

一個是藉由「微重力透鏡 Microlensing 」效應。當一顆恆星通過一個背景光源時,恆星的質量會扭曲周圍的時空並匯聚後方的光源,使得背景光源看起來像在短時間內快速的變亮、然後又恢復原狀,而且亮度變化的曲線有相當明顯的特徵。而如果這顆恆星旁邊有行星環繞,那行星的質量也將對亮度曲線造成影響。天文學家就能藉由分析亮度的變化曲線,來探測系外行星的存在。

-----廣告,請繼續往下閱讀-----
微重力透鏡效應的示意圖。圖片/NASA

第二個重點,羅曼將攜帶最先進的日冕儀 (CGI),直接拍攝系外行星與原行星盤。

甚麼是日冕儀呢?顧名思義,它最早是為了研究太陽的日冕而發明的儀器。由於平常的太陽實在太亮,使得旁邊相對黯淡的日冕相當難以觀測,因此科學家發明了日冕儀,藉由複雜的光學系統,遮擋住視野中心來自太陽的強光,才能好好的拍攝、研究黯淡的日冕。

而系外行星的探測中,由於系外行星本身又小又暗、又非常靠近明亮的母恆星,想要直接拍攝到他們,就像要你直視著汽車頭燈,然後尋找頭燈旁的蚊子一樣困難。因此,天文學家必須借助日冕儀的力量才能夠直接拍攝到它們。

哈伯太空望遠鏡 STIS 儀器的日冕儀拍攝的北落師門。藉由遮住中心恆星的強光,才能拍攝北落師門四周複雜的塵埃結構。圖/NASA

而羅曼搭載的光譜儀,將更進一步利用各種特殊的光學元件,以及類似調適光學技術中採用的可變形鏡片,利用破壞性干涉來消除主恆星的光線,讓我們能看到主恆星旁 邊,比恆星暗數百萬倍的系外行星。並進一步研究它們的光譜,看看他們溫度多高、 是由甚麼組成、讓我們更加了解這些外星世界。 

結語:值得期待的未來

作為韋伯之後的下一款大型光學太空望遠鏡,天文學大尺度與小尺度的問題羅曼通通包辦。它將能夠以哈伯等級的解析度,拍攝廣大宇宙中數以百萬計中的星系來研究宇宙學與星系演化;同時,它搭載的新一代日冕儀將能讓我們更清楚的直接拍攝系外行星。羅曼太空望遠鏡將產出哪些令人驚艷的資料?又將如何協助我們揭開宇宙的神秘面紗?就讓我們拭目以待吧!

-----廣告,請繼續往下閱讀-----
  1. STSCI, Roman. Nancy Grace Roman Space Telescope
  2. Roman Space Telescope NASA 官網. Roman Space Telescope/NASA
  3. 主鏡製造商 Nancy Grace Roman Space Telescope 
  4. Roman Lecture Series
  5. 初稿:【時事新聞】羅曼太空望遠鏡的鍍銀主鏡
-----廣告,請繼續往下閱讀-----
所有討論 2
EASY天文地科小站_96
23 篇文章 ・ 1578 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事