文/范賢娟|任職於清大育成中心,台北天文館刊物《台北星空》特約採訪。
亞利桑納大學史都華天文臺(Steward Observatory at the University of Arizona)的蘇玉玲研究員是天文館許多人的好朋友。她現在常年在美國,我們利用她回國參加研討會的空檔前去訪問,蘇博士稱自己很幸運,一直在喜歡的領域做研究,綜合不同來源的資訊來探討未知的事情,有許多有趣的發現,她覺得研究的樂趣就在這裡。
天文啟蒙在大學
把時間提早到她中學的時候,當時她對天文並沒有特別的印象,只以為那是種嗜好,不曉得那也可以是一門學問。她中學比較喜歡戶外科學,對生物的興趣可能還大一點,但在大學的時候她覺得物理是個基礎,有了這項基礎,將來想研究或走向應用都很容易。進入中央大學物理系還有天文方面的課可供選讀,她當時修了蔡文祥老師的「天文觀測」之後就開始對天文產生興趣。她覺得蔡老師的課啟發很多人對天文的興趣,她一想到就萬分感謝。
在這門課以及接下來其他的天文課當中,蘇博士了解到天文也是一種研究,跟物理很像。物理如果做實驗就要有實驗室去蒐集數據,理論就是電腦模擬;天文也是,做實驗就是觀測。蘇博士唸碩士的時候則跟陳文屏老師,研究恆星形成,因為陳老師當時剛從國外回來,有很多新的想法,他還會跟學生分享研究的點滴,這些讓人覺得天文學家的生活很精采,還常常有機會去不同地方開會、觀測,而那些天文臺又是在視野最好的地方,海拔很高、夜晚很暗,這些對蘇博士來說很有吸引力。
英文能力有限,天文能力無窮
不過碩士念完想出國的時候申請學校最重要的是看英文,她的托福和 GRE 都考不好,不過還好之前加拿大卡爾加里(Calgary)大學物理與天文系郭新教授來臺灣的時候對蘇博士有深刻的印象,因此他願意提供獎學金,讓蘇博士過去跟著他學習。
郭教授的研究是恆星演化末期的狀態,包括行星狀星雲與漸進巨星分支(Asymptotic Giant Branch, AGB stars)。之前恆星形成的時候周圍的原生行星盤(protoplanetary disks)還沒形成行星,有很多灰塵。而行星狀星雲與 AGB 星雖是不同階段,但周圍也有很多灰塵,有些會形成盤面,因此還是有許多現象可以比擬。而這個階段的觀察和之前比較大的差異在於此時都來自哈伯太空望遠鏡,不需要自己去觀測,而是寫計畫去申請。
等到蘇博士畢業之後,還有兩個研究議題需要時間完成,因此有一位共同合作的研究員提供經費讓蘇博士過去做博士後研究,在一年中完成了預定的兩項研究。接下來找工作的時候,她同時申請了許多不同的研究單位也曾回中央大學面試,結果亞利桑納大學提供了一個機會,此時仔細看才發現那兒是用史匹哲太空望遠鏡(Spitzer Space Telescope)的資料,主要是中紅外線( 5 ~ 25 或 40 微米)與遠紅外線( 25 或 40 ~ 200 或 300 微米)。這和蘇博士原本擅長的可見光( 400 ~ 700 奈米)、近紅外線(波長 0.75 ~ 1.4 微米)資料很不一樣。
轉換研究領域
亞利桑納大學表示,願意給蘇博士機會是看重她的研究能力,相信她可以很快學會處理這方面的資料。倒是蘇博士自己不大有把握,要去嗎?此時老闆分享自己的求學與工作的差異,原來他過去學的是 γ 射線(波長短於 0.02 奈米)的觀測,那不是差更多嗎?他以自己經驗鼓勵蘇博士不要被自己的過去所限制,既然他們願意給你機會,如果你又有興趣就應該去試試看。所以蘇博士接受那裡的工作,從 2001 年開始重新學習處理遠紅外線與中紅外線的資料,同時也把自己過去所學的知識連結過來,尋找有趣的題目。
蘇博士剛開始在那邊幾年,史匹哲望遠鏡的準備工作已經接近尾聲,但對她而言有機會接觸到儀器還是很新鮮的事情,讓她看到科學家與工程師光是就儀器的各方面設計及測試都有很多計畫及討論,才深刻了解到太空任務很不簡單,有很多前置作業要處理。尤其這個計劃從構想開始是三十多年前,這些年來許多前輩一起訂定執行這個計劃,設定每個階段的查核點,確定預期目標都能達成才會繼續下階段的事情,讓人見識到這些人嚴謹、務實的一面。
也就是有這樣的態度,美國的太空計劃成功機率才會比較高。拿登陸火星來說,蘇聯、日本至今都沒成功,歐洲雖然有衛星在軌道上繞行,但是登陸失敗。美國則有三分之二的成功機率,說起來是各國最高的。有人覺得美國運氣好,但這也要靠嚴謹務實的態度才能維持較好的成功率。
參與太空任務及轉換研究領域
蘇博士參加這個研究團隊,不久望遠鏡就由三角洲二號火箭( Delta 2 )載上太空,當時同事都去佛羅里達看火箭升空,整個活動就像一場宴會一樣,每個人既高興又緊張,高興的是自己花心血測試的儀器終於要上太空觀測,緊張的是後續還要做許多檢查:確定望遠鏡能達到預期的高度、太陽能板可以順利打開、儀器在發射的時候沒有損壞……。此外紅外線望遠鏡還要等鏡面和儀器降溫,這差不多要等一個多月才能達到穩定。史匹哲望遠鏡跟在地球後面一起公轉繞太陽,因此它不受地球晝夜的影響,而要有個遮蔽器幫它擋太陽光,因此在公轉軌道上有固定的觀察角度範圍,就像地球在特定季節只能觀察到特別星座一樣。
蘇博士覺得自己很幸運,沒想到亞歷桑納大學給了她機會,讓她接觸到中、遠紅外線,接觸到儀器測試、太空任務這方面的事情,此時,研究主題也跟著轉變,進入「碎屑盤」( debris disks )。
過去她碩士的研究針對行星盤,這是行星正在形成時的盤;碎屑盤則是行星已經形成時的情況。前者主要是氣體,灰塵僅有大約 1% ,這是在行星形成前的時候就已經形成。因為角動量守恆,所以物質會形成一個盤面,在中間的原始恆星會藉由吸進盤面上的物質而變大,此時盤面上的物質有部分也會結合在一起而行成微行星( planetsimals ,大約是 1-10 公里左右)。等到恆星形成開始自行發亮之後就會有熱輻射把周遭的物質清掉,所以原始那個前行星盤就會沒了。微行星是形成類木行星與類地行星的基本素材,這些微行星如果沒有成為行星,此時會經過碰撞之後又從大變小。在這過程中類木行星的引力會在其中扮演一個催化碰撞的機制,提高它們碰撞的機率,當這些碎屑很多,形成一個盤面,就是碎屑盤。
小行星帶即是我們太陽系的一個碎屑盤,在地球上看到的黃道光(zodiacal light),就是小行星帶的灰塵反射太陽光。如果換用紅外線部分觀測的話,除了反射光之外因為灰塵也會吸收太陽光產生熱,因此自己會發出紅外線部分的光,這反而會很亮。太陽系的另一個碎屑盤是古柏帶天體,由於那邊的溫度較低,距離較遠,所以不容易觀測,但理論上那兒也是一個碎屑盤。
碎屑盤─擁有解開太陽系形成與演化秘密的天體
碎屑盤是不斷演化的,剛開始會有很多微行星,碰撞的機會較大,產生很多灰塵碎屑,在紅外線比較亮。但之後許多小的灰塵被太陽或恆星的光壓吹到外面去,灰塵會減少,因此就不會那麼亮,地球上還能看到黃道光是因為那距離我們近;至於古柏帶的溫度低,比較亮的部分屬於遠紅外線,再加上距離遠,我們並不容易觀測到那裡的訊息,只是早先航海家太空船出去的時候經過那邊所蒐集的訊息,知道那兒有灰塵,不過當時的資訊很有限。況且太陽系的碎屑盤已經經過 45 億年的演化,很多早期重要演化的證據都已經不存在,所以要研究太陽系碎屑盤詳細演化的過程就只能看別不同年紀的恆星。蘇博士目前的工作就是觀察其他恆星的碎屑盤。
碎屑盤因為表面積大,同時比較強的波段在紅外線部分,而恆星比較強的波段是在可見光部分,因此只要選對波段,其實是容易觀測的,甚至會比一小點的行星還容易觀測。蘇博士就從觀測到的灰塵分佈去猜想,什麼樣的行星組合,會給這樣的灰塵分佈。
比如說我們的太陽系構造是太陽在中心,然後是類地行星、小行星帶、類木行星、古柏帶天體,這邊有兩個碎屑盤,中間隔著類木行星。小行星帶 (~3 AU)和古柏帶天體 (~30 AU) 有很大的空缺。如果我們看到外面的碎屑盤如果有兩個,那我們可以猜它們中心的空缺可能也跟太陽系一樣有幾顆類木行星。
基於紅外線的巡天計畫調查發現,靠近我們的恆星大約有 20% 有碎屑盤。這些多數都是類似庫伯帶型的盤面,距離恆星較遠、較冷而且有較大的表面積。
科學家相信受限於現行探測器的靈敏度,這個數字應該只是一個下限,說不定實際情況比例會更高。至於類似小行星帶的盤面,由於比較靠近恆星主體及較小表面積,其存在性多半由間接證據推論,就史匹哲望遠鏡的解析度無法直接區分出來太陽系外的小行星帶與庫伯帶。
蘇博士就藉由另一個較新的太空望遠鏡—赫歇爾(Herschel)去觀察織女星與北落師門(Fomalhaut)是否有上面理論所預期到的內外兩個碎屑盤。觀察結果恰如預期,兩個系統的內盤都是 10 天文單位左右,外盤則是 100 天文單位左右,比例為 1:10 。因為這兩顆均為較早期的恆星,因此會更有效率地加熱碎屑盤當中的灰塵,所以與類似太陽型態恆星相同溫度的灰塵距離恆星較遠。
蘇博士覺得比較有趣的一個研究,是 2009 年加拿大天文學家馬若士(Christian Marois)發現 HR8799 這顆恆星有 3 顆類木行星在旁邊環繞(稍後又確認還要再加一顆)。根據過去紅外天文衛星(InfraRed Astronomical Satellite, IRAS)的觀測,那顆恆星週圍有個盤面,但當時的解析力不夠,看不出是兩個。蘇博士看到那兒有三顆行星被找出來,馬上就申請史匹哲天文望遠鏡的觀測,果然分析出預期的兩個盤面。更棒的是,那幾顆行星的軌道就在這兩個盤面的間隔當中,讓碎屑盤的理論獲得更好的支持。
蘇博士認為,太陽系外的碎屑盤研究與原生行星盤、太陽系的研究有很密切的關係。好的研究者不必僅聚焦在自己的領域,反而應該廣泛地吸收相關領域的知識,這種跨領域的結合能夠讓學者更有創造力,有機會構思出獨特的新發現。
這是個資訊探索的時代,天文研究也是一樣。有很多大型計畫(例如哈伯、史匹哲與赫歇爾等太空望遠鏡或其他的巡天計畫)累積了很多觀測典藏,並且保存很好。在天文的觀測過程中,這些單位會保留給當初申請計畫的科學家一段時間,之後就完全對外公開,因此其他天文學家稍後可以接觸這些資料。
有的計畫,例如哈伯或者費米( γ 線太空望遠鏡)甚至還提供研究經費來鼓勵大家使用這些公開的典藏數據。蘇博士使用的織女星觀測資料就是已經存在的赫歇爾典藏資料,她並且強調雖然史匹哲與赫歇爾太空望遠鏡已經不再取得新的觀測,但是仍有很多典藏資料等待天文學家去分析。
蘇博士給年輕人的建議是:當一個人資源有限無法申請到自己的觀測計畫,可以考慮從這些公開資料庫典藏中選一個你最喜歡的去深耕,只要有好的想法以及聰明的分析方式,你有可能會看到之前研究者並未看到的新發現。
這邊有一些給初入門的天文典藏資料研究者的一些資料可以參考:
- 賓州大學天文與天文物理研究所的入門介紹 http://www2.astro.psu.edu/~kluhman/guide.html
- 天文資料庫及目錄 http://www.astro.caltech.edu/~pls/astronomy/archives.html
- http://www.nao.ac.jp/IAU/Com5/MajorADCs.html
太空望遠鏡小檔案
史匹哲太空望遠鏡(Spitzer Space Telescope)
史匹哲望遠鏡屬於NASA的四個重要的太空天文臺之一,另外三個分別是:哈伯太空望遠鏡、康普敦γ射線觀測站(Compton gamma-ray Observatory)、錢卓X射線太空望遠鏡(Chadra X-ray Observatory)。史匹哲這名稱是為了紀念史匹哲爵士(Lyman Spitzer, Jr. 1914-1997)。他是20世紀一位偉大的天文學家,主要貢獻在於恆星動力學、電漿物理、核融合、太空天文學等領域。他是最早提出應該把大型望遠鏡放到太空去的人,在他的努力下催生了哈伯太空望遠鏡。他提出的年代在1946年,這時候人造衛星還沒升空(1957年才有第一顆人造衛星),甚至連美國太空航空總署(NASA)都還沒誕生,但史匹哲非常有遠見地認為只有太空望遠鏡才能避開大氣的干擾,看到全部波段、更清晰的影像。當時那篇論文名為〈外太空天文臺對天文的幫助〉(Astronomical Advantages of an Extra-Terrestrial Observatory)詳列了各式各樣的理由,而他在接下來的五十年則努力將此構想實現。
史匹哲望遠鏡與地球一樣繞著太陽公轉,落在地球後方。圖/http://commons.wikimedia.org/
史匹哲在 1997 年以 82 歲高齡過世,他在當天還跟普林斯頓的同事討論分析哈伯太空望遠鏡拍攝到的影像,這是他從 1946 年就夢想的儀器,他為它辛勤奉獻多年,甚至到最後一天還在為它工作,真所謂鞠躬盡瘁,死而後已,而這也留下可貴的遺產給後人。
2003 年 8 月 NASA 再度發射一個新的太空望遠鏡,上面有三個儀器,觀察波段從近紅外線、中紅外線到遠紅外線,此外它並非環繞地球,而是繞著太陽公轉,而它的公轉半徑略大於地球,因此會落在地球後面,預計在多年後地球會從後面趕上。為了紀念史匹哲在太空望遠鏡的遠見,因此這個新的太空望遠鏡即以他為名。
史匹哲太空望遠鏡需在極冷低溫下運作,大約是攝氏零下 270 度左右,在遠紅外線部分還要靠液態氦去降溫,因此當時帶了 360 公升的液態氦出去,當這些用量耗盡,遠紅外線的工作就停了,現在僅能做近紅外線與中紅外線的觀測。
史匹哲太空望遠鏡可以看透灰塵深處更多的訊息,因此對於深埋於灰塵中的胎兒恆星、星系中心、正在形成的行星系統、無法啟動內部核反應的棕矮星、系外行星、巨大分子雲、有機分子等,都有良好的探測能力。
工作人員正在組裝史匹哲望遠鏡。 圖/http://www.spitzer.caltech.edu/
赫歇爾太空望遠鏡(Herschel Space Observatory)
這是由歐洲太空總署(European Space Agency)與美國太空總署合作,在 2009 年發射的紅外線望遠鏡,主鏡為一個 3.5 公尺的面鏡,觀察的波段是遠紅外線與次毫米波(55-672微米),這樣的設計有助於觀察到宇宙中最遙遠、最冷峻物體所散發出的長波輻射。該望遠鏡升空後是安放在 L2 日地拉格朗日點(L2 Lagrangian Point)上,那是在地球背對太陽那一面的平衡點上,距離地球 150 萬公里,且繞日週期會跟地球一樣,因此易於天文觀測。
拉格朗日點是在日地力學系統中有五個點到太陽和到地球的引力一樣,L2是在地球背對太陽那一側。 圖/http://sci.esa.int/herschel/
赫歇爾的名稱是為了紀念英國天文學家赫歇爾,他發現了紅外線的存在,也是歷史上第一個發現了天王星的人。
赫歇爾望遠鏡的儀器需要液態氦才能冷卻,因此僅有 7000 小時可以觀測。它在 2013 年 4 月 29 日已經耗盡冷媒,停止工作。
藝術家筆下的赫歇爾太空望遠鏡。 圖/http://sci.esa.int/herschel/
韋伯太空望遠鏡(James Webb Space Telescope)
韋伯太空望遠鏡也是一個由歐洲太空總署和美國太空總署的合作計畫,其太空位置也選在日地系統中的 L2 。韋伯太空望遠鏡的構造更大,主鏡直徑達 6.5 公尺,是由 18 塊六角形的鏡片組裝而成,觀測波段設定在近紅外線與中紅外線,預定在 2018 年升空,這將是未來十年中在太空唯一的紅外線望遠鏡。而其命名是為了紀念美國太空總署第二任署長詹姆士韋伯,在他任內執行了阿波羅登月計畫,把美國太空總署從一個組織鬆散的單位,變成一個有組織、有紀律、可以用尖端科技達成人類太空夢想的一個單位。韋伯太空望遠鏡偵測搜尋宇宙中最微弱的紅外線訊息,希望能看到宇宙開天闢底以來的第一道光、研究星系的形成、探索恆星與行星的形成,甚至找尋生命的起源。
藝術家根據規畫所繪製韋伯太空望遠鏡的外觀。 圖/http://jwst.nasa.gov/
哈伯太空望遠鏡與韋伯太空望遠鏡,二者主鏡的比較。 圖/http://jwst.nasa.gov/
本文轉載台北天文館之網路天文館網站,《台北星空》第 65 期。