0

0
0

文字

分享

0
0
0

從可見光到紅外線,蘇玉玲博士的天文探索之路

臺北天文館_96
・2017/03/10 ・6240字 ・閱讀時間約 13 分鐘 ・SR值 499 ・六年級

-----廣告,請繼續往下閱讀-----

文/范賢娟|任職於清大育成中心,台北天文館刊物《台北星空》特約採訪。

始終將研究當作樂趣的蘇玉玲博士,感謝所有幫助過她的人,也非常珍惜自己的幸運。圖/網路天文館

亞利桑納大學史都華天文臺(Steward Observatory at the University of Arizona)的蘇玉玲研究員是天文館許多人的好朋友。她現在常年在美國,我們利用她回國參加研討會的空檔前去訪問,蘇博士稱自己很幸運,一直在喜歡的領域做研究,綜合不同來源的資訊來探討未知的事情,有許多有趣的發現,她覺得研究的樂趣就在這裡。

天文啟蒙在大學

把時間提早到她中學的時候,當時她對天文並沒有特別的印象,只以為那是種嗜好,不曉得那也可以是一門學問。她中學比較喜歡戶外科學,對生物的興趣可能還大一點,但在大學的時候她覺得物理是個基礎,有了這項基礎,將來想研究或走向應用都很容易。進入中央大學物理系還有天文方面的課可供選讀,她當時修了蔡文祥老師的「天文觀測」之後就開始對天文產生興趣。她覺得蔡老師的課啟發很多人對天文的興趣,她一想到就萬分感謝。

在這門課以及接下來其他的天文課當中,蘇博士了解到天文也是一種研究,跟物理很像。物理如果做實驗就要有實驗室去蒐集數據,理論就是電腦模擬;天文也是,做實驗就是觀測。蘇博士唸碩士的時候則跟陳文屏老師,研究恆星形成,因為陳老師當時剛從國外回來,有很多新的想法,他還會跟學生分享研究的點滴,這些讓人覺得天文學家的生活很精采,還常常有機會去不同地方開會、觀測,而那些天文臺又是在視野最好的地方,海拔很高、夜晚很暗,這些對蘇博士來說很有吸引力。

-----廣告,請繼續往下閱讀-----

英文能力有限,天文能力無窮

不過碩士念完想出國的時候申請學校最重要的是看英文,她的托福和 GRE 都考不好,不過還好之前加拿大卡爾加里(Calgary)大學物理與天文系郭新教授來臺灣的時候對蘇博士有深刻的印象,因此他願意提供獎學金,讓蘇博士過去跟著他學習。

郭教授的研究是恆星演化末期的狀態,包括行星狀星雲與漸進巨星分支(Asymptotic Giant Branch, AGB stars)。之前恆星形成的時候周圍的原生行星盤(protoplanetary disks)還沒形成行星,有很多灰塵。而行星狀星雲與 AGB 星雖是不同階段,但周圍也有很多灰塵,有些會形成盤面,因此還是有許多現象可以比擬。而這個階段的觀察和之前比較大的差異在於此時都來自哈伯太空望遠鏡,不需要自己去觀測,而是寫計畫去申請。

等到蘇博士畢業之後,還有兩個研究議題需要時間完成,因此有一位共同合作的研究員提供經費讓蘇博士過去做博士後研究,在一年中完成了預定的兩項研究。接下來找工作的時候,她同時申請了許多不同的研究單位也曾回中央大學面試,結果亞利桑納大學提供了一個機會,此時仔細看才發現那兒是用史匹哲太空望遠鏡(Spitzer Space Telescope)的資料,主要是中紅外線( 5 ~ 25 或 40 微米)與遠紅外線( 25 或 40 ~ 200 或 300 微米)。這和蘇博士原本擅長的可見光( 400 ~ 700 奈米)、近紅外線(波長 0.75 ~ 1.4 微米)資料很不一樣。

藝術家所繪,想像中史匹哲望遠鏡在外太空的英姿。 圖/NASA

轉換研究領域

亞利桑納大學表示,願意給蘇博士機會是看重她的研究能力,相信她可以很快學會處理這方面的資料。倒是蘇博士自己不大有把握,要去嗎?此時老闆分享自己的求學與工作的差異,原來他過去學的是 γ 射線(波長短於 0.02 奈米)的觀測,那不是差更多嗎?他以自己經驗鼓勵蘇博士不要被自己的過去所限制,既然他們願意給你機會,如果你又有興趣就應該去試試看。所以蘇博士接受那裡的工作,從 2001 年開始重新學習處理遠紅外線與中紅外線的資料,同時也把自己過去所學的知識連結過來,尋找有趣的題目。

-----廣告,請繼續往下閱讀-----

蘇博士剛開始在那邊幾年,史匹哲望遠鏡的準備工作已經接近尾聲,但對她而言有機會接觸到儀器還是很新鮮的事情,讓她看到科學家與工程師光是就儀器的各方面設計及測試都有很多計畫及討論,才深刻了解到太空任務很不簡單,有很多前置作業要處理。尤其這個計劃從構想開始是三十多年前,這些年來許多前輩一起訂定執行這個計劃,設定每個階段的查核點,確定預期目標都能達成才會繼續下階段的事情,讓人見識到這些人嚴謹、務實的一面。

也就是有這樣的態度,美國的太空計劃成功機率才會比較高。拿登陸火星來說,蘇聯、日本至今都沒成功,歐洲雖然有衛星在軌道上繞行,但是登陸失敗。美國則有三分之二的成功機率,說起來是各國最高的。有人覺得美國運氣好,但這也要靠嚴謹務實的態度才能維持較好的成功率。

參與太空任務及轉換研究領域

蘇博士參加這個研究團隊,不久望遠鏡就由三角洲二號火箭( Delta 2 )載上太空,當時同事都去佛羅里達看火箭升空,整個活動就像一場宴會一樣,每個人既高興又緊張,高興的是自己花心血測試的儀器終於要上太空觀測,緊張的是後續還要做許多檢查:確定望遠鏡能達到預期的高度、太陽能板可以順利打開、儀器在發射的時候沒有損壞……。此外紅外線望遠鏡還要等鏡面和儀器降溫,這差不多要等一個多月才能達到穩定。史匹哲望遠鏡跟在地球後面一起公轉繞太陽,因此它不受地球晝夜的影響,而要有個遮蔽器幫它擋太陽光,因此在公轉軌道上有固定的觀察角度範圍,就像地球在特定季節只能觀察到特別星座一樣。

蘇博士覺得自己很幸運,沒想到亞歷桑納大學給了她機會,讓她接觸到中、遠紅外線,接觸到儀器測試、太空任務這方面的事情,此時,研究主題也跟著轉變,進入「碎屑盤」( debris disks )。

-----廣告,請繼續往下閱讀-----

過去她碩士的研究針對行星盤,這是行星正在形成時的盤;碎屑盤則是行星已經形成時的情況。前者主要是氣體,灰塵僅有大約 1% ,這是在行星形成前的時候就已經形成。因為角動量守恆,所以物質會形成一個盤面,在中間的原始恆星會藉由吸進盤面上的物質而變大,此時盤面上的物質有部分也會結合在一起而行成微行星( planetsimals ,大約是 1-10 公里左右)。等到恆星形成開始自行發亮之後就會有熱輻射把周遭的物質清掉,所以原始那個前行星盤就會沒了。微行星是形成類木行星與類地行星的基本素材,這些微行星如果沒有成為行星,此時會經過碰撞之後又從大變小。在這過程中類木行星的引力會在其中扮演一個催化碰撞的機制,提高它們碰撞的機率,當這些碎屑很多,形成一個盤面,就是碎屑盤。

小行星帶即是我們太陽系的一個碎屑盤,在地球上看到的黃道光(zodiacal light),就是小行星帶的灰塵反射太陽光。如果換用紅外線部分觀測的話,除了反射光之外因為灰塵也會吸收太陽光產生熱,因此自己會發出紅外線部分的光,這反而會很亮。太陽系的另一個碎屑盤是古柏帶天體,由於那邊的溫度較低,距離較遠,所以不容易觀測,但理論上那兒也是一個碎屑盤。

碎屑盤─擁有解開太陽系形成與演化秘密的天體

碎屑盤是不斷演化的,剛開始會有很多微行星,碰撞的機會較大,產生很多灰塵碎屑,在紅外線比較亮。但之後許多小的灰塵被太陽或恆星的光壓吹到外面去,灰塵會減少,因此就不會那麼亮,地球上還能看到黃道光是因為那距離我們近;至於古柏帶的溫度低,比較亮的部分屬於遠紅外線,再加上距離遠,我們並不容易觀測到那裡的訊息,只是早先航海家太空船出去的時候經過那邊所蒐集的訊息,知道那兒有灰塵,不過當時的資訊很有限。況且太陽系的碎屑盤已經經過 45 億年的演化,很多早期重要演化的證據都已經不存在,所以要研究太陽系碎屑盤詳細演化的過程就只能看別不同年紀的恆星。蘇博士目前的工作就是觀察其他恆星的碎屑盤。

想像從織女星的小行星帶看織女星的情況。圖/http://www.spitzer.caltech.edu/

碎屑盤因為表面積大,同時比較強的波段在紅外線部分,而恆星比較強的波段是在可見光部分,因此只要選對波段,其實是容易觀測的,甚至會比一小點的行星還容易觀測。蘇博士就從觀測到的灰塵分佈去猜想,什麼樣的行星組合,會給這樣的灰塵分佈。

-----廣告,請繼續往下閱讀-----

比如說我們的太陽系構造是太陽在中心,然後是類地行星、小行星帶、類木行星、古柏帶天體,這邊有兩個碎屑盤,中間隔著類木行星。小行星帶 (~3 AU)和古柏帶天體 (~30 AU) 有很大的空缺。如果我們看到外面的碎屑盤如果有兩個,那我們可以猜它們中心的空缺可能也跟太陽系一樣有幾顆類木行星。

基於紅外線的巡天計畫調查發現,靠近我們的恆星大約有 20% 有碎屑盤。這些多數都是類似庫伯帶型的盤面,距離恆星較遠、較冷而且有較大的表面積。

科學家相信受限於現行探測器的靈敏度,這個數字應該只是一個下限,說不定實際情況比例會更高。至於類似小行星帶的盤面,由於比較靠近恆星主體及較小表面積,其存在性多半由間接證據推論,就史匹哲望遠鏡的解析度無法直接區分出來太陽系外的小行星帶與庫伯帶。

蘇博士就藉由另一個較新的太空望遠鏡—赫歇爾(Herschel)去觀察織女星與北落師門(Fomalhaut)是否有上面理論所預期到的內外兩個碎屑盤。觀察結果恰如預期,兩個系統的內盤都是 10 天文單位左右,外盤則是 100 天文單位左右,比例為 1:10 。因為這兩顆均為較早期的恆星,因此會更有效率地加熱碎屑盤當中的灰塵,所以與類似太陽型態恆星相同溫度的灰塵距離恆星較遠。

-----廣告,請繼續往下閱讀-----

蘇博士覺得比較有趣的一個研究,是 2009 年加拿大天文學家馬若士(Christian Marois)發現 HR8799 這顆恆星有 3 顆類木行星在旁邊環繞(稍後又確認還要再加一顆)。根據過去紅外天文衛星(InfraRed Astronomical Satellite, IRAS)的觀測,那顆恆星週圍有個盤面,但當時的解析力不夠,看不出是兩個。蘇博士看到那兒有三顆行星被找出來,馬上就申請史匹哲天文望遠鏡的觀測,果然分析出預期的兩個盤面。更棒的是,那幾顆行星的軌道就在這兩個盤面的間隔當中,讓碎屑盤的理論獲得更好的支持。

蘇博士認為,太陽系外的碎屑盤研究與原生行星盤、太陽系的研究有很密切的關係。好的研究者不必僅聚焦在自己的領域,反而應該廣泛地吸收相關領域的知識,這種跨領域的結合能夠讓學者更有創造力,有機會構思出獨特的新發現。

這是個資訊探索的時代,天文研究也是一樣。有很多大型計畫(例如哈伯、史匹哲與赫歇爾等太空望遠鏡或其他的巡天計畫)累積了很多觀測典藏,並且保存很好。在天文的觀測過程中,這些單位會保留給當初申請計畫的科學家一段時間,之後就完全對外公開,因此其他天文學家稍後可以接觸這些資料。

有的計畫,例如哈伯或者費米( γ 線太空望遠鏡)甚至還提供研究經費來鼓勵大家使用這些公開的典藏數據。蘇博士使用的織女星觀測資料就是已經存在的赫歇爾典藏資料,她並且強調雖然史匹哲與赫歇爾太空望遠鏡已經不再取得新的觀測,但是仍有很多典藏資料等待天文學家去分析。

-----廣告,請繼續往下閱讀-----

蘇博士給年輕人的建議是:當一個人資源有限無法申請到自己的觀測計畫,可以考慮從這些公開資料庫典藏中選一個你最喜歡的去深耕,只要有好的想法以及聰明的分析方式,你有可能會看到之前研究者並未看到的新發現。

這邊有一些給初入門的天文典藏資料研究者的一些資料可以參考:


太空望遠鏡小檔案

史匹哲太空望遠鏡(Spitzer Space Telescope)

史匹哲望遠鏡屬於NASA的四個重要的太空天文臺之一,另外三個分別是:哈伯太空望遠鏡、康普敦γ射線觀測站(Compton gamma-ray Observatory)、錢卓X射線太空望遠鏡(Chadra X-ray Observatory)。史匹哲這名稱是為了紀念史匹哲爵士(Lyman Spitzer, Jr. 1914-1997)。他是20世紀一位偉大的天文學家,主要貢獻在於恆星動力學、電漿物理、核融合、太空天文學等領域。他是最早提出應該把大型望遠鏡放到太空去的人,在他的努力下催生了哈伯太空望遠鏡。他提出的年代在1946年,這時候人造衛星還沒升空(1957年才有第一顆人造衛星),甚至連美國太空航空總署(NASA)都還沒誕生,但史匹哲非常有遠見地認為只有太空望遠鏡才能避開大氣的干擾,看到全部波段、更清晰的影像。當時那篇論文名為〈外太空天文臺對天文的幫助〉(Astronomical Advantages of an Extra-Terrestrial Observatory)詳列了各式各樣的理由,而他在接下來的五十年則努力將此構想實現。

史匹哲望遠鏡與地球一樣繞著太陽公轉,落在地球後方。圖/http://commons.wikimedia.org/

史匹哲在 1997 年以 82 歲高齡過世,他在當天還跟普林斯頓的同事討論分析哈伯太空望遠鏡拍攝到的影像,這是他從 1946 年就夢想的儀器,他為它辛勤奉獻多年,甚至到最後一天還在為它工作,真所謂鞠躬盡瘁,死而後已,而這也留下可貴的遺產給後人。

-----廣告,請繼續往下閱讀-----

2003 年 8 月 NASA 再度發射一個新的太空望遠鏡,上面有三個儀器,觀察波段從近紅外線、中紅外線到遠紅外線,此外它並非環繞地球,而是繞著太陽公轉,而它的公轉半徑略大於地球,因此會落在地球後面,預計在多年後地球會從後面趕上。為了紀念史匹哲在太空望遠鏡的遠見,因此這個新的太空望遠鏡即以他為名。

史匹哲太空望遠鏡需在極冷低溫下運作,大約是攝氏零下 270 度左右,在遠紅外線部分還要靠液態氦去降溫,因此當時帶了 360 公升的液態氦出去,當這些用量耗盡,遠紅外線的工作就停了,現在僅能做近紅外線與中紅外線的觀測。

史匹哲太空望遠鏡可以看透灰塵深處更多的訊息,因此對於深埋於灰塵中的胎兒恆星、星系中心、正在形成的行星系統、無法啟動內部核反應的棕矮星、系外行星、巨大分子雲、有機分子等,都有良好的探測能力。

工作人員正在組裝史匹哲望遠鏡。 圖/http://www.spitzer.caltech.edu/

赫歇爾太空望遠鏡(Herschel Space Observatory)

這是由歐洲太空總署(European Space Agency)與美國太空總署合作,在 2009 年發射的紅外線望遠鏡,主鏡為一個 3.5 公尺的面鏡,觀察的波段是遠紅外線與次毫米波(55-672微米),這樣的設計有助於觀察到宇宙中最遙遠、最冷峻物體所散發出的長波輻射。該望遠鏡升空後是安放在 L2 日地拉格朗日點(L2 Lagrangian Point)上,那是在地球背對太陽那一面的平衡點上,距離地球 150 萬公里,且繞日週期會跟地球一樣,因此易於天文觀測。

拉格朗日點是在日地力學系統中有五個點到太陽和到地球的引力一樣,L2是在地球背對太陽那一側。 圖/http://sci.esa.int/herschel/

赫歇爾的名稱是為了紀念英國天文學家赫歇爾,他發現了紅外線的存在,也是歷史上第一個發現了天王星的人。

赫歇爾望遠鏡的儀器需要液態氦才能冷卻,因此僅有 7000 小時可以觀測。它在 2013 年 4 月 29 日已經耗盡冷媒,停止工作。

藝術家筆下的赫歇爾太空望遠鏡。 圖/http://sci.esa.int/herschel/

韋伯太空望遠鏡(James Webb Space Telescope)

韋伯太空望遠鏡也是一個由歐洲太空總署和美國太空總署的合作計畫,其太空位置也選在日地系統中的 L2 。韋伯太空望遠鏡的構造更大,主鏡直徑達 6.5 公尺,是由 18 塊六角形的鏡片組裝而成,觀測波段設定在近紅外線與中紅外線,預定在 2018 年升空,這將是未來十年中在太空唯一的紅外線望遠鏡。而其命名是為了紀念美國太空總署第二任署長詹姆士韋伯,在他任內執行了阿波羅登月計畫,把美國太空總署從一個組織鬆散的單位,變成一個有組織、有紀律、可以用尖端科技達成人類太空夢想的一個單位。韋伯太空望遠鏡偵測搜尋宇宙中最微弱的紅外線訊息,希望能看到宇宙開天闢底以來的第一道光、研究星系的形成、探索恆星與行星的形成,甚至找尋生命的起源。

藝術家根據規畫所繪製韋伯太空望遠鏡的外觀。 圖/http://jwst.nasa.gov/

哈伯太空望遠鏡與韋伯太空望遠鏡,二者主鏡的比較。 圖/http://jwst.nasa.gov/


本文轉載台北天文館之網路天文館網站,《台北星空》第 65 期。

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 46 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

7
2

文字

分享

0
7
2
歐幾里得望遠鏡開工——目標是尋找暗物質證據!一起從科學家的角度欣賞這片夢幻光景!
PanSci_96
・2024/01/27 ・6276字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

14 億歐元天文望遠鏡拍出的照片,你看過了嗎?你看到現在這些照片,揭開了宇宙過去與現在、空間與時間所交織的祕密嗎?

今年 11 月 7 日,位在 L2 拉格朗日點的歐幾里得望遠鏡,終於傳回來它升空後的第一批照片。這 5 張照片不只展示了望遠鏡的強大性能,更讓我們窺見過去無法看到的,宇宙深處的幽美與奧秘。就讓我們一起透過這些獨特的照片,來一場探索宇宙的奇異之旅吧!

歐幾里得望遠鏡有什麼厲害之處?

今年 7 月 1 號升空的歐幾里得望遠鏡,任務是觀察宇宙大尺度結構,來研究暗物質與暗能量在宇宙中的分布與性質,讓我們進一步了解自己身處的這個宇宙。

去年七月,接棒哈伯望遠鏡任務的詹姆斯.韋伯太空望遠鏡,傳回來了升空後的第一批相片,每張照片都美的震撼人心,也帶著我們從全新的視角,眺望遙遠的系外行星、恆星、星雲與早期宇宙。當時,我們製作了一集節目,和大家分享這批照片背後的重要意義。我們也提到,每個望遠鏡在完成校準以後,都會發布一批「開光照」,向外界傳達望遠鏡已經可以順利運作的好消息,同時也讓大家了解這台新望遠鏡身上,背負了哪些重要的使命與任務。

-----廣告,請繼續往下閱讀-----

而這次,新升空的歐幾里得望遠鏡也終於完成校正,傳回來不同於韋伯望遠鏡,從另一個視角看宇宙的開光照。先讓我們來了解一下歐幾里得望遠鏡。它的觀測波段是可見光到近紅外線波段,目標是觀測大範圍、不同遠近的宇宙天體。預計在 6 年的服役期間,建立完整清晰的宇宙 3D 立體圖像。只是,剛退役的哈伯太空望遠鏡,主要任務就是可見光波段的研究,去年剛任務正式開始的韋伯太空望遠鏡,則是紅外線波段的佼佼者。那歐幾里得望遠鏡有什麼突破之處嗎?這座花費 14 億歐元的望遠鏡當然有它獨到之處,它強大的地方在於,可以在更短時間內獲得更高解析度的照片,同時拍攝更大範圍的宇宙。比如哈伯太空望遠鏡需要好幾天觀測的天體,歐幾里得望遠鏡一個小時就可以搞定,而且解析度更高。

歐幾里得太空望遠鏡。圖/wikimedia

其實看它們的任務目標就能很快理解,現在在天空上的韋伯和歐幾里得,雖然有部分任務重疊。但韋伯更著重在尋找系外行星與觀察星系、恆星系統的演化。歐幾里得呢,則是將視野放大到整個宇宙,希望了解暗物質、暗能量在整個宇宙間扮演的角色。所以比起韋伯太空望遠鏡著重在拍攝小範圍、高解析度的天體照片,歐幾里得望遠鏡一開始的設計,就是要在短時間內掃描更大片的宇宙。因此,歐幾里得望遠鏡也確實成為建立宇宙 3D 立體圖像的最佳望遠鏡,定期的大範圍掃描天空,讓我們能一窺宇宙隨時間的演化動態。

那麼,就讓我們來欣賞歐幾里得望遠鏡的第一批照片吧!

歐幾里得望遠鏡第一批照片公開!

第一張照片,像是在宇宙這張巨大的黑布上,撒下大小珍珠。它是一張距離地球 2.4 億光年,英仙座星系團的影像照。

-----廣告,請繼續往下閱讀-----

宇宙中有許多星系團,英仙座星系團就是其中之一,裡面包含超過 1000 個星系,是宇宙中最大的結構之一。除此之外,這張照片不僅清楚拍下了星系團,如果將照片放大來看,還會發現背景中有許多過去難以看到的星系,數量超過 10 萬個,最遠的甚至達 100 億光年。為什麼第一批照片要選擇拍攝星系團呢?因為研究星系團能幫助我們了解宇宙大尺度結構,進一步推算暗物質與暗能量的比例。

宇宙中的星系分佈其實是不均勻的,有些地方有許多星系,有些區域則幾乎沒有。整個宇宙中天體的分布看起來就像是一張巨網。可是,為什麼宇宙的大尺度結構是網狀的呢?天文學家認為宇宙大爆炸之後,物質在宇宙中的分佈會有些微的不均勻。當宇宙逐漸冷卻,氣體物質密度較高的地方會因為重力吸引而塌縮。但因為溫度很高,高溫產生的巨大壓力又讓氣體團反彈回來,就像擠壓一個壓力球一樣。來回震盪的過程中氣體會像聲波朝四面八方傳遞出去,稱為重子聲學振盪(BAO,baryon acoustic oscillations)。最後整個宇宙就像下毛毛雨時的池塘,形成由許多漣漪交織的網狀結構,波腹的地方氣體密度較高,變成星系高度聚集的區域,我們稱為星系團。其他地方氣體密度低,形成的星系數量較少,就像是宇宙間的孔洞。

而根據宇宙學家計算,要形成星系團、宇宙網(cosmic web)這類的宇宙大尺度結構,只靠已知物質提供的重力是不夠的,很可能還有許多我們還不了解的物質參與其中,也就是暗物質。這張照片不僅能幫助科學家研究宇宙大尺度結構,更彰顯歐幾里得望遠鏡的重要任務之一,就是幫助科學家深入了解暗物質的分佈與本質。

第二張照片是螺旋星系 IC342,離地球只有 1100 萬光年,算是離地球很近的星系,但由於它被明亮的銀河系盤面擋住了,觀測的難度非常高。歐幾里得望遠鏡利用近紅外線儀器穿透塵埃進行觀察,並移除許多銀河系中的恆星光芒,最後才形成這張極高解析度的照片,展現了它觀測隱藏星系的實力。

-----廣告,請繼續往下閱讀-----
IC342。圖/Judy Schmidt

這個螺旋星系在天空中的大小相當於一個滿月那麼大,要一次觀測這樣大範圍的天空,同時保有超高解析度,目前只有歐幾里得望遠鏡才辦得到。由於螺旋星系 IC342 和銀河系很像,觀察它的演化有助於科學家理解銀河系的形成過程。未來歐幾里得望遠鏡也會觀測更多隱藏星系和遙遠的天體,繪製出它們的 3D 分佈圖。

第三張照片是不規則星系 NGC 6822。雖然跟 IC342、銀河系一樣也是星系,但形狀不是螺旋而是不規則的。

透過光譜分析,我們知道這個星系中的重元素含量很低。重元素是透過大質量恆星核融合所產生的,重元素含量少表示星系裡的恆星才剛形成,也就是一個很早期、相對年輕的星系。科學家認為,在宇宙早期星系剛開始演化時,大部分的星系就長得像這樣,質量小、形狀也不太規則。之後這些小星系會因為重力吸引其他星系,彼此相撞、融合成更大的星系,逐漸產生旋轉的結構,形成像銀河系這樣的大質量螺旋星系。所以藉由觀測這些早期星系,可以幫助科學家了解星系的形成過程。

另外,照片中一顆顆藍色的圓形區域,是球狀星團。球狀星團中的星星都是由同一團氣體產生,是宇宙最早形成的天體之一,有些甚至比星系本身還早。透過觀測這些球狀星團的運動,能協助我們更了解這個星系的形成史。

-----廣告,請繼續往下閱讀-----

球狀星團大部分分佈在星系的外圍,以很慢的速度繞行星系,可能要好幾年才能觀察到要它們的運動。那科學家要怎麼知道這些星團是如何移動的呢?凡走過必留下痕跡,其中一種方式就是觀察到它們與星系本身互動所留下的痕跡。在歐幾里得望遠鏡傳回來的第四張照片中,就呈現了這些細節。第四張照片是球狀星團 NGC 6397,一個繞行銀河系的球狀星團。

當星團經過星系中的高密度區域,比如暗物質集中區、旋臂或星系盤面,星團中的星星會受到不同強度的重力吸引,使得星星彼此遠離,這個力量稱為潮汐力。顧名思義與潮汐的產生是相同的原理,由於地球各處受到太陽與月亮的重力總和不相同,在重力較強的地方海水受拉伸而漲潮,重力較弱的地方就會退潮。同樣道理,球狀星團在靠近星系中心的一側受重力較強,遠離星系的一側則較弱,球狀星團因而被拉伸,形成一條由星星組成的尾巴,稱為潮汐尾。

透過觀測潮汐尾,就可以了解球狀星團,乃至星系的演化過程。如果沒有潮汐尾,也可能代表有暗物質暈阻止外層恆星逃脫,能幫助我們進一步了解暗物質在星系當中的分佈。但要瞭解潮汐尾的形成過程,必須有星團中每顆星星的移動資料,也就是需要同時進行大範圍、短時間、高精度的觀測。而歐幾里得望遠鏡的優勢此時就能充分發揮,它可以一次拍攝整個球狀星團,而且只須一小時就可以得到這張高解析度的照片,連裡面的很暗的星星也看的一清二楚。只要每隔一段時間拍攝一張照片,就可以製作成動畫,了解星團中星體的運動軌跡。

最後,我們來介紹最後一張照片。它看起來最為夢幻,猶如一張宇宙中以繁星點綴的絲綢。它是距離地球約 1375 光年的馬頭星雲,也是離我們最近,正在形成新生恆星的區域。在星雲的上方(照片之外),有一顆明亮的恆星:獵戶座 sigma 星,這顆星輻射出的紫外光激發了位在馬頭後方的星雲,形成明亮、宛若薄紗的區域。組成馬頭的暗星雲氣體則因為溫度較低,只有些微的熱輻射,形成較為黯淡的前景,並稍微遮掩背後的明亮星雲。前後星雲層層堆疊,就像一幅宇宙給我們的水彩畫。更進一步,藉由歐幾里得望遠鏡高解析度的照片,科學家得以從中看到更多類木星、棕矮星、嬰兒恆星等,協助科學家了解星雲中的恆星形成過程。

-----廣告,請繼續往下閱讀-----
圖/wikimedia

對了,在我們介紹韋伯望遠鏡時有提到過,這些宇宙照通常不是它可見光波段下,真正我們肉眼所見的樣貌。而是選定特定波長後透過顏色校正,甚至將不同波段的照片疊合,才得到的結果。也就是說,選則不同的電磁波波段,或是採取不同的調色方式,得到的照片都會有不同風味。

所以如果你覺得這張淡麗的馬頭星雲不滿意,也有這張,特別強化氫元素的紅色光譜與氧元素藍色光譜後,成為一張猶如滅世風格,帶有點詭譎濾鏡的另一種美照,是不是跟剛才的氛圍完全不一樣呢?

馬頭星雲。圖/wikimedia

順帶一提,對我來說,一樣是星雲照片,韋伯望遠鏡校色出來的照片還是覺得比較好看。例如之前介紹過的,韋伯望遠鏡開光照之一的船底座星雲。還有原本是望遠鏡大前輩哈伯代表作,後來韋伯又重新翻拍的創世之柱,都更令人讚嘆不已,對比與彩度都高上許多,給人一種正在仰望廣闊宇宙的壯烈感。

韋伯望遠鏡所拍攝的船底座星雲。圖/wikimedia
創生之柱,左哈伯、右韋伯。圖/PanSci YouTube

我們更了解這個宇宙了嗎?

我們對於宇宙的瞭解還太少,目前宇宙中的已知物質,包括元素週期表上的所有原子,根據計算只佔宇宙質能的 5%,剩下的估計都是暗物質與和能量。

-----廣告,請繼續往下閱讀-----

但宇宙的奧秘就像一張複雜的拼圖,每拼上一小塊,都會給我們一些線索,猜測周圍的拼圖可能會是什麼。當拼的夠多,我們終有一天能得知宇宙整體的圖畫長什麼樣貌。恆星形成、星系演化方式、暗物質、暗能量等等,都各自是一塊塊重要的拼圖,唯有了解它們才能逐步得知暗物質與暗能量的奧秘。

舉例來說,暗物質所提供的重力在星系形成中扮演重要角色,目前最被科學界接受的冷暗物質(cold dark matter)模型,假設暗物質是由質量很大的粒子所組成,透過重力吸引聚集成許多小塊,小塊暗物質再彼此融合成更大的暗物質團塊,質量足夠大的團塊就可以吸引夠多的氣體,形成早期星系,之後再彼此融合成為更大的螺旋或橢圓星系。但透過數值模擬,科學家發現這個模型有些問題。理論上來說應該要有數百到數千個小衛星星系,繞行像銀河系這麼大的螺旋星系旋轉。但是天文學家實際上只觀測到約十個小星系繞行銀河系,這是著名的衛星遺失問題(Missing satellite problem)。

因此科學家又提出更多暗物質模型,比如與冷暗物質相對的熱暗物質(warm dark matter)模型,可以透過熱運動所產生的壓力抵銷重力,使得小暗物質團塊變得不穩定,從而解釋為何小星系的數量這麼少。除了熱暗物質以外,還有眾多的暗物質模型。但要證明哪個模型是正確的,就需要更多觀測數據與星系演化的模擬結果進行比較,才能得到答案。

不過看過歐幾里得望遠鏡傳回來的第一批照片,並了解其中代表的重要意義,就能充分感受到我們離解開這個謎團又更近了一步。還沒完,預計於 2027 年升空的羅曼太空望遠鏡(Nancy Grace Roman Space Telescope),與歐幾里得望遠鏡相同,都肩負研究暗能量與暗物質的重要任務。兩座望遠鏡將一同一個從可見光,一個從紅外線波段觀察大範圍宇宙,期待能為科學家帶來寶貴的數據,解開這盤旋好幾十年的謎團。

-----廣告,請繼續往下閱讀-----

最後問問大家,在這批照片中,你最喜歡的是哪一張呢?

  1. 英仙座星系團,大尺度的宇宙圖像,原來長這樣。
  2. 螺旋星系 IC342,我們的鄰居竟然這麼漂亮,這麼具有螺旋力。
  3. 馬頭星雲,有層次感的星雲照,真的令人目不暇給。
  4. 更多你喜歡的照片,或希望我們來介紹的天文照片,分享給我們吧!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。