Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

手機變身數位顯微鏡 !

Scimage
・2014/01/05 ・1312字 ・閱讀時間約 2 分鐘 ・SR值 488 ・五年級

要看到並記錄微小尺度下的物體或是生物對一般人來說並不簡單,雖然顯微鏡使用的歷史已久,然而一般的顯微鏡雖然可觀察,但是體積龐大且不容易做數位的記錄,如果有小台方便使用的顯微鏡,可以隨身攜帶隨時記錄,會是很多學生與很多對自然有興趣朋友的好幫手。

一直以來有一類的USB顯微鏡可以做到這樣的功能,然而其必須連接電腦使用與較高的價位,使得用途很受限。最近在網站 instructables上介紹了怎麼利用生活材料做簡易的的手機顯微鏡,$10 Smartphone to digital microscope conversion! 主要想法是因為目前的手機像機的品質都相當好,如果能善用手機可以作為手邊很好的研究工具。其主要設計是利用雷射筆的鏡頭做為近拍鏡與利用螺絲調節的平台高低做為載物台來進行。

然而使用雷射筆鏡片的顯微鏡轉接台有著球面像差,放大倍率不大,照明不均勻與載物臺不穩定等缺點。 這些缺點如果能夠加以改進將會是很好的工具。因為這樣,所以scimage 設計了一款新的手機顯微鏡,主要改善了鏡頭與光源的設計,使用鏡片組做為鏡頭,加裝光擴散片改善照明均勻性與利用一些機械設計增加結構穩定性,使得成像品質能大幅改善。在外觀上也作了一些設計,讓攜帶與使用更方便。

因為這些改進,解析度與放大能力增加為原始設計的兩倍,也因為這些新的的設計使得顯微鏡用來可以看如血球細胞大小的物體,或是水族箱中的小微生物們,在應用層面上增加了很多可能性。經由科學影像的朋友們的贊助,首批製做了60多台,組件材料加工好後送到贊助的朋友手上,讓贊助製作的朋友自己完成整體的組裝,一來可以對小顯微鏡更熟悉,一來也可以DIY做出屬於自己的儀器! 組好的成品圖如下,應該是非常有質感。(感謝Tina Lee 提供自己組裝好的成品圖)

-----廣告,請繼續往下閱讀-----
1476267_10202086727943018_1524593168_n
成品圖
1157512_10202086728263026_1209911231_n
與iPhone 合體使用

這台手機用的顯微鏡理論上的光學解析度為約1 um,不過目前沒有手機能發揮到這極限,所以目前解析度的好壞依照手機的畫素而定。以下影片是用手機看小蘋果螺寶寶的影片與看細胞切片的成果,應該已經非常足夠一般朋友使用,如果要看其他水中浮游的小生物們也非常足夠。

這是科學影像第一次製作儀器,雖然不是全新設計,不過相信所做的新設計讓這樣的裝置變得解析度更好,也更實用與方便攜帶,希望能讓更多朋友自己看到有趣的微觀世界。之後如果有朋友也想索取這款顯微鏡,人數夠會再繼續製作,這台小顯微鏡的討論在FB “科學maker“社團裡進行,有興趣想使用的朋友歡迎先加入~

(目前開放登記中!   請先加入FB “科學maker“社團了解物品使用情況再於”科學maker“中登記~)

1536622_10202552435442950_736063717_n
蚜蟲~ Stéphane Liu提供 🙂
1463371_688813447819842_657418154_n
大鼠神經細胞切片
1466198_688813587819828_1051612354_n
大鼠肝細胞切片
1470046_688813661153154_973807396_n
大鼠子宮肌肉細胞切片
-----廣告,請繼續往下閱讀-----
文章難易度
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
19 世紀的微觀之眼:顯微繪圖師韋斯特
顯微觀點_96
・2024/12/12 ・6365字 ・閱讀時間約 13 分鐘

本文轉載自顯微觀點

Fourty Three Single Cellular And Multi Cellular Animals. Colour Wood Engraving By E. Evans After T. West

攝影之前的顯微傳播

在顯微鏡已是博物學家必備工具的 19 世紀中葉,銀版攝影技術才剛發明不久,結合兩者的顯微攝影(photomicrograph)隨之邁出第一步。但顯微攝影直到 19 世紀末才真正普及化、以客觀與速度成為自然科學研究的技術。

在此之前,由繪圖師在顯微鏡前臨摹描繪是顯微影像 200 年來的記錄與傳播方法,從休閒式的顯微圖鑑,到科學界的分類學文獻,都有賴精細可信的顯微繪圖。當時的分類學家或解剖學家經常培養出顯微繪圖能力,但與顯微繪圖師分工可以提升效率與美學。儘管有投影描繪器(camera lucida)可作為素描輔助,每個顯微繪圖師的筆觸還是會呈現鮮明的技巧與個人風格差異。

韋斯特(Tuffen West)是維多利亞時代最為人稱道的顯微繪圖師之一,職業生涯長達四十年,以精美版畫將成千上萬種生物型態傳達讀者眼前。他的顯微繪圖可見於醫學、動植物與微生物的科學著作與期刊,並在後世被評論為藝術品,盛年時往往受到最負盛名的博物學家與科普作家雇用。同時,他也是積極的博物學家和顯微技術推廣者。

-----廣告,請繼續往下閱讀-----

失去聽力 放大視覺

1823 年,韋斯特出生於英格蘭約克郡。父親是個熱衷化學實驗的藥師,在不列顛科學促進會 ( British Association for Advancements of Science ) 位居要職。韋斯特從小就展現對自然與博物學的興趣,他一面按照父親的安排習醫,一面維持蒐集動植物標本的愛好,他 19 歲時發表的鳥類比較解剖學論文贏得了一筆可觀的獎金。

韋斯特 22 歲那年,他的醫學生涯戛然而止。他在父親的化學實驗室遭遇爆炸,幾乎完全失聰,失去行醫的基本能力。但他繼續使用顯微鏡觀察樣本,並開始練習版畫技術;在 25 歲時完成第一幅署名的版畫,並在 27 歲受女王學院雇用,為矽藻進行一系列顯微繪圖。

石版印刷:科普浪潮的技術基礎

Half Hours With The Microscope Coutresy Of Nih
韋斯特兄弟為 《顯微鏡前的半小時》 繪製的自然樣本顯微版畫。 Coutresy of NIH National Library of Medicine

韋斯特的弟弟威廉(William West)是在倫敦執業的版畫家及印刷匠,曾為達爾文繪製《物種起源》第一版的物種樹狀圖(也是該版唯一的圖片)。兄弟兩人經常合作為醫學著作繪畫製版,通常是韋斯特繪畫,威廉製版。儘管最後韋斯特的科學繪圖作品豐碩許多,但他最初的版畫技術很可能是由威廉傳授。

這對兄弟對版畫內容的志趣可能不同,但對美學有著共同的堅持。他們經常在作品下方註明,使用彩色平版印刷(Chromolithography)技術,而非新穎的技術競爭對手—石板淡彩畫(Lithotint)。

-----廣告,請繼續往下閱讀-----

1796 年發明的石版印刷,在新世紀成為廣受歐洲各國歡迎的大量圖片複製技術,科學刊物中的印刷版畫,無不經過「繪圖、製版、印刷」三道工序。其中製版的工藝關乎圖畫如何呈現在出版物上,對美感與技術的需求不下於繪製原圖。

19 世紀早期流行的彩色平版印刷中,每一種顏色需要一塊獨立的石板,每一塊石板的圖案必須精準對齊,以繁複的工藝堆疊出豐富亮眼的色澤。而石板淡彩畫每一幅圖畫則只需一塊石板,效率高、成本低,但能表現的顏色有限。韋斯特兄弟堅持較費工夫,色彩美感更為豐厚的彩色平版印刷。

醫學與公衛潮流中嶄露頭角

韋斯特在解剖學繪圖成名的一系列作品也源自其家族成員,他的連襟、口腔醫學之父哈欽森(J. Hutchinson)。哈欽森出版的眾多創新醫學著作包含壁蝨、梅毒、豬囊蟲感染病徵的顯微圖像,都由韋斯特兄弟繪製。他們持續為哈欽森創立的新希德南協會(New Sydenham Society)出版物作畫,合作直到威廉過世。

透過著重翻譯歐陸醫學文獻的新希德南協會,韋斯特兄弟得以觀察、繪製當時嶄新的顯微解剖構造。例如,荷蘭精神疾病與癲癇研究奠基者:施洛德范德柯克(J. Schroeder van der Kolk)涵蓋脊髓到延腦的解剖學報告。韋斯特兄弟的工藝描繪出繁複寫實的神經細胞、腦葉解剖圖,將歐陸最新醫學知識帶到英國讀者眼前。

-----廣告,請繼續往下閱讀-----
Brain Wests
韋斯特兄弟為新西德南協會繪製、印刷的腦部解剖圖,這是從腦部下方觀察的角度。Courtesy of P. Paisley

韋斯特的生涯起步階段深受 19 世紀英國的重大瘟疫與食安議題影響。他曾參與公衛先驅哈索爾(A. H. Hassall)的病源調查任務,在 1855 年倫敦霍亂疫情後,出版檢驗市內民生用水的《各處水質顯微檢驗》。

水質檢驗報告中生動的微生物繪圖,皆由繪圖師前輩米勒(H. Miller)作畫,韋斯特製版。透過精細均衡的版畫成品和大眾對水質的關注,韋斯特奠定了技術細膩的名聲。

後來,哈索爾以《刺胳針》期刊曝光當時常見的食品摻假惡行時,持續與小有名氣的韋斯特合作繪圖,以寫實顯微圖像向大眾呈現來自倫敦四處商販的食品樣本。

直到食品摻假報告集結成冊,哈索爾才在序言說明,他多年前的醫學成名作《人體的顯微解剖:疾病與健康》也包含許多韋斯特的畫作,那是韋斯特參與的第一個科學顯微繪圖作品,合作期間哈索爾還讓初出茅廬的韋斯特住在自己家裡,在充沛的支援下工作。可惜的是,哈索爾的主要著作中,多數顯微繪圖都沒有畫家署名,因此無法判斷哪些繪圖是由韋斯特繪圖或製版。

-----廣告,請繼續往下閱讀-----
Serpentine Water Hyde Park小圖
哈索爾、米勒、韋斯特合作的倫敦水質研究版畫:Serpentine Water of Hyde Park. Courtesy of Wellcome Collection.

畫筆風靡大洋兩岸

醫學領域以外,韋斯特也用鮮明精密的畫風描繪博物學圖像。史密斯(W. Smith)所著《不列顛矽藻概要》裡面層次豐富、色彩飽滿的顯微繪圖,使韋斯特作品在博物學家、科普讀者間一時洛陽紙貴。

韋斯特因此受到海洋生物學先驅、水族館創始人葛斯(P. H. Gosse)邀請,合作出版科普讀物。身為博物學家的葛斯具備出眾的顯微繪畫技能,甚至比 19 世紀末聞名歐洲的博物學兼繪畫家海克爾(E. Haeckel)更具聲望。受到葛斯邀請繪圖,表示韋斯特已躋身當時最傑出的顯微繪圖師行列。

葛斯的著作《顯微鏡前的夜晚》 是當年大西洋兩岸最受歡迎的科普著作。書中以創造論解釋生物型態多樣性的宗教觀念、鮮明多樣的生物插圖廣受歐美讀者歡迎。韋斯特與著名的解剖學家兼科學畫家福特(G. H. Ford)合作為本書繪圖,但兩人都沒有署名,難以分辨書中精湛的繪圖分屬哪位作者。

Lead Technologies Inc. V1.01
葛斯本人是畫工出色的科普作家,但他仍雇用韋斯特為其著作繪畫。圖為葛斯在《不列顛海葵與珊瑚》中自行繪製的 5 種海葵。Courtesy of Wikimedia

韋斯特也曾為當時最熱門科普作家伍德(J. G. Wood)巨著《博物學》作畫。伍德的作品包含從藻類、草履蟲到寵物犬等生物萬象,他的文字和韋斯特的繪圖深刻影響讀者對生物多樣性與人類起源的想像。當時知名文學家如馬克.吐溫和柯南.道爾都曾在小說中引用伍德的科普內容。

-----廣告,請繼續往下閱讀-----

離開顯微鏡,韋斯特的巨觀博物學繪圖依然出色,尤其是針對節肢動物。蛛形動物學開拓者,布萊克沃(J. Blackwall)的《不列顛與愛爾蘭蜘蛛史》、維多利亞時代罕見的女性昆蟲學家史戴維利(E.F. Staveley)的《不列顛蜘蛛》都由韋斯特繪製版畫。栩栩如生的細節、緊密的版面,彰顯了韋斯特博物學繪圖的特色。

韋斯特受雇進行顯微繪圖時,通常由博物學家郵寄為他特製的顯微玻片,讓他自行細細觀察、從容描繪。令人好奇的是,韋斯特的蜘蛛博物學版畫上,總是註明 ”sc. ad nat.” 表示他觀察自然樣本(after nature)進行描繪,而非臨摹他人作品。或許,這些蜘蛛也是由郵差送到韋斯特手上的。

Blackwall Spiders
韋斯特兄弟為布萊克沃所著圖鑑繪製的蜘蛛版畫,從針對眼睛、足部的細節可見當時顯微鏡觀察實體樣本的能力。Image source: Bee, L., Oxford et al.

圖文交織,拓展微觀

除了陸地生物,韋斯特為專書、期刊描繪的主題包括有孔蟲、單細胞動物、從海葵到鯨豚等海洋生物,栩栩如生的彩色圖畫拓展了大眾對博物學的興趣。

其中一群可能受彩色圖畫吸引而親近博物學的目標讀者,就是維多利亞時代的中上階層女性。她們雖曾受高等教育、具備社會地位與經濟資本,卻無法加入學會,也罕有機會研究自然、從事博物學相關職位。

-----廣告,請繼續往下閱讀-----

例如,倫敦雅典娜俱樂部(The Athenaeum Club),這個以希臘女神為名、服從英國女王的組織,在19世紀初成立時,已經是科學、藝文、法政菁英紳士踴躍參與的知性俱樂部,卻直到2002年才開放女性成為會員。當年俱樂部中的動物學家如瓊斯(T. R. Jones)就強調利用「女性感興趣的」的自然題材、韋斯特栩栩如生的繪圖來吸引維多利亞時代女性讀者。

在林奈學會記錄中,韋斯特謙稱自己是顯微繪圖師,博物學只是業餘愛好。但是他在顯微技術推廣的成果,遠遠超出單純繪圖師的工作範疇。

韋斯特曾推出一系列的顯微知識專欄文章,分享自己的研究心得。1860年代在《休閒科學》(Recreative Science)上著重於他早期對矽藻的蒐集與觀察。1880至1890年代的〈顯微鏡前的一小時〉〈顯微鏡前的30分鐘〉(專欄命名顯然是模仿暢銷書《顯微鏡前的半小時》)則大幅擴展,包含微生物、種子、昆蟲器官的顯微素描以及顯微鏡操作技巧等。

經常以郵件接收顯微樣本的韋斯特在 1875 年成為「郵政顯微協會」(Postal Microscopical Society)主席。該組織建立各地顯微愛好者交流樣本與知識的平台,並在月刊上評析會員們郵寄分享的最新玻片。韋斯特對樣本的縝密觀察與評論,是當時會員們最為珍視的回饋。

-----廣告,請繼續往下閱讀-----
Tongues And Other Microscopic Parts Of Snails. Colour Wood Engraving By E. Evans After T. West After W. F. Maples
韋斯特依據博物學家梅波(W. Maples)原畫繪製而成的蝸牛口器顯微木板畫,後交由埃凡斯印刷。由此可見當時博物學繪圖的多層分工。

全能的科學傳播者

推廣顯微知識的行動中,韋斯特不僅從事評析或繪圖。在他參與的兩本暢銷科普讀物《顯微鏡前的半小時》《顯微鏡下的常見物體》中,他負責篩選樣本、精工製圖,科普作家再以這些顯微繪圖為核心寫作。韋斯特的選樣和繪圖決定了整本書的走向。

《顯微鏡前的半小時》文字作者蘭卡斯特(E. Lankester)在第二版序文中,感謝韋斯特精采的顯微版畫,搭配「作者」的後續著述介紹,在市場上大受歡迎。蘭卡斯特認為韋斯特佔據首要功勞。

與科普作家伍德合著《顯微鏡下的常見物體》時,韋斯特不僅擔任挑選顯微樣本、繪製版畫(此步驟決定了後續文字的走向),也負責印刷的校樣,責任比文字作者更加吃重。此書獲得讀者們熱愛,持續再版直到20世紀。

主導了兩本堪稱史上最受歡迎的顯微科普書,韋斯特卻不曾以作者名義出版專書。他曾在科學期刊發表數篇博物學論文,涵蓋植物、昆蟲、矽藻的顯微構造,採樣與觀察、寫作與繪圖都由他一手包辦。

Half Hours With The Microscope Coutresy Of Nih 2
韋斯特為《顯微鏡前的半小時》所繪的植物博物學版畫。Courtesy of NIH National Library of Medicine

據佚名資料,蒼蠅足部型態的比較形態學研究是韋斯特最得意之作。韋斯特在 1860 年代發表的矽藻博物學與蒼蠅足部論文,在西元 2020 年後依然有科學家引用。

在《顯微鏡下的常見物體》的出版過程中位居要角的韋斯特,在初版書名頁與印刷者並列,重要性僅次於作者伍德。但隨著版本演進,在 1949 年的再版中,韋斯特的名字已完全消失了。

同樣熱銷的科普圖書《顯微鏡前的半小時》出版歷程中,韋斯特也遭逢一樣的命運。儘管文字作者蘭卡斯特曾表示韋斯特的貢獻最為重要,但是他的名字卻在 1876 年及其後的各版本付之闕如,此時韋斯特的顯微繪圖與科學寫作工作也幾乎停擺。

空白與堅持

韋斯特在 1864 年前後,以及整個 1870 年代都遭遇生產力低落的問題,問世的畫作與文章寥寥無幾。直到 1882 年後,韋斯特才穩定地為期刊作畫並刊載科普專欄,但再也沒有產出研究論文或專書版畫。

創作死寂的階段,正是韋斯特頻繁進出精神療養院的歲月。他的症狀缺少明確醫療記錄,但研究者認為,頻繁的住院符合躁鬱症的週期特徵。

1862 年起,壯年的韋斯特病況不斷起伏,不時住院。即使到他退休後,依然無法逃脫精神症狀的折磨,1879 到 1883 年間,花甲之年的韋斯特在精神療養院裡度過了 31 個月。從首次入院到 1891 年過世,他在療養院居住的時間總和超過 60 個月。

韋斯特在逝世前 6 年寄信給林奈學會,表示自己受困於健康狀況,無法進行科學活動,只能滿懷遺憾地自請退出。

在文明劇烈變遷的 19 世紀後半葉,不少知名藝術家深受精神症狀所苦。梵谷(V. van Gogh)、孟克(E. Munch)和韋斯特的同胞,愛貓畫家韋恩(L. Wain)。這些藝術家的精神症狀影響繪畫風格,但並未阻止他們繼續創作,甚至成就他們名留青史的傑作。

可惜的是,定位自己為「顯微藝術家」(microscopic artist)而非傳統藝術家的韋斯特,沒能找到精神失調與繪畫結合的創作出口。

Image
韋斯特 1886 出版文章搭配的繪圖,品質與早年作品頗有落差。Courtesy of Dolan J. R.

繪圖與研究的生產力遠非韋斯特失去的最重要事物,他在即將成為醫師時失去聽力;他在新婚三年後(1860年)不幸喪妻,並在不久後開始進出精神療養院;在 1875 年,他青春期的兒子離開人世。

造化弄人的是,韋斯特分別在喪妻與喪子的年份,獲選為林奈學會成員與郵政顯微協會主席。遭遇精神疾病之後,他的科學繪圖產量從未恢復,但也不曾放棄推廣顯微科學,直到 1891 年逝世前,他仍在持續整理、刊登過去的顯微素描與筆記。

玻片之後的隱形人

58 歲就自稱退休的韋斯特留下不到 1000 件署名作品,沒有水彩畫展、自畫像的紀錄。以當時顯微版畫行情來看,韋斯特很難平衡他的家庭開支,但他留下 500 英鎊的遺產,表示他的報酬可能高出其他顯微繪圖師甚多,或者他還有許多未署名的畫作在維多利亞時代流傳。

如同韋斯特的貢獻在解剖學教科書出版多年後才被哈索爾公布,或是在科普暢銷書的再版生命中逐漸湮沒,功勞被忽略似乎是維多利亞時代顯微繪圖師的常態。隨著科技演進,顯微繪圖這個職業在 20 世紀初不可避免地被顯微攝影取代。

從 19 世紀的博物學到現代學術工作,在科學上得到信賴、美學上得到讚賞的顯微影像,都由許多人的技術與心力交織而成。當精彩的顯微影像映入眼簾,不妨也看看研究主持者之外,還有哪些猶如現代顯微繪圖師的影像技術人員隱藏在這幅微觀風景之後。

Image 1
韋斯特最得意的博物學論文中,關於矽藻和蒼蠅足部構造的繪圖。Courtesy of Dolan J. R.

參考資料

  • Dolan, J. R. (2021). Tuffen West FLS, FRMS (1823-1891): artist of the microscopic, naturalist, and populiser of microscopy. Arts et sciences5(1).
  • Paisley, P (2015).The Tuffen you probably missed, and some you’ve never seen. microscopy-uk.org
  • Paisley, P (2016). More Tuffen you possibly didn’t notice. microscopy-uk.org

查看原始文章

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
0

文字

分享

0
2
0
從 3G 到 6G:行動通信的進化之路
數感實驗室_96
・2024/06/20 ・825字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

摩斯發明電報和貝爾發明電話,這些似乎是上古時代的科技,其實都發生在過去兩百年內。而手機,作為近五十年來的產物,又經歷了怎樣的演變呢?

讓我們來探討行動通信是如何從 3G 發展到 6G 的。

1989 年,一張名為《The Great Radio Controversy》的搖滾專輯發布,迅速走紅,登上告示牌熱門榜。雖然專輯的歌詞與通信無關,但它的名字「偉大的無線電爭議」確實讓人聯想到無線通信的歷史。而這張專輯的樂團名為 Tesla,沒錯,這正是向那位傳奇的天才科學家特斯拉致敬。特斯拉對無線通信的貢獻可謂奠基石般的重要,而從 3G 到 6G,行動通信技術又經歷了哪些突破和變革呢?讓我們一起深入了解。

-----廣告,請繼續往下閱讀-----

行動通信的歷史雖然只有短短幾十年,但其中包含的豐富內容實在說不完。從精彩的發明故事到商業競爭,再到行動通信所帶來的社會變革,每一個環節都值得深入探討。而在這集影片中,我們僅僅觸及了冰山一角。

下一集將深入探討 WiMAX 那成功的哥哥——Wi-Fi,也就是大家熟悉的無線區域網路技術。讓我們繼續探索這些改變世界的科技!

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/