2

31
6

文字

分享

2
31
6

百倍於哈伯觀測能力,大小尺度通通包辦!——NASA 的下一個旗艦級「羅曼太空望遠鏡」

EASY天文地科小站_96
・2021/01/14 ・3606字 ・閱讀時間約 7 分鐘 ・SR值 507 ・六年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/林彥興(EASY天文地科團隊總編輯,就讀清大理學院學士班)

「一個哈伯不夠用,那你有試過來一百個嗎?」

哈伯太空望遠鏡可說是世上最著名的科學儀器之一。在它 1990 年升空的這三十年中,拍攝了無數令人嘆為觀止的宇宙奇景。然而,隨著時光流逝,垂垂老矣的哈伯剩下的時日恐怕已經不多。

倘若再次出現嚴重故障,可能就得和這座傳奇的天文望遠鏡永遠告別。好在,哈伯並非後繼無人,在今 (2021) 年十月韋伯太空望遠鏡升空之後,NASA 的下一個旗艦級太空望遠鏡,將以相仿的體型,卻百倍於哈伯的觀測能力幫助天文學家更深入了解宇宙的奧秘。它就是「南希.葛莉絲.羅曼太空望遠鏡 Nancy Grace Roman Space Telescope 」。

南希.葛莉絲.羅曼太空望遠鏡 Nancy Grace Roman Space Telescope。圖/Wikimedia common

誰是羅曼?人稱哈伯之母的天文學家

在介紹望遠鏡之前,讓我們先來看看羅曼究竟是誰,居然偉大到讓 NASA 以她的名字命名下一代的旗艦級望遠鏡。

南希.葛莉絲.羅曼 (1925-2018) 是著名的美國天文學家。在二十世紀前葉,科學界中的性別不平等遠比現在嚴重。但她仍然努力撐過他人的冷眼與勸退,選擇攻讀天文並在取得博士學位後,在恆星分類、星團運動等領域貢獻卓越。

1959年,羅曼到 NASA 任職,並從此長年擔任 NASA 的首席天文學家。在她任職的時代,太空科技才剛剛起步,人們對太空望遠鏡的概念也相當陌生。但羅曼憑著她的遠見,參與、主持了許多 1960 與 1970 年代 NASA 的太空望遠鏡計畫,並四處為這些計畫籌措資金,為現代太空望遠鏡的蓬勃發展打下基礎。

同時,她也推動 NASA 將觀測到的資料開放給全世界使用,最終讓天文界開放資料的文化延續至今。她對 NASA 太空望遠鏡計畫的卓越貢獻,最終讓她獲得「哈伯之母」的美譽。

1972 年的羅曼博士,攝於 NASA 哥達德太空中心。圖/NASA

我要一個打一百個!羅曼的超廣視野

在被命名為羅曼太空望遠鏡之前,這個望遠鏡計畫名為「廣域紅外巡天望遠鏡
WFIRST 」
。顧名思義,這是一台觀測可見光與近紅外線,用於進行廣域巡天——也就是觀測大範圍天空——的望遠鏡。預計將在 2020 年代中期發射,與蓋亞、韋伯等前輩一起運行於日地第二拉格朗日點。

在望遠鏡的構造上,羅曼與哈伯太空望遠鏡相當類似,都使用一面直徑 2.4 公尺的主鏡。但得益於三十年來的科技進步,同樣是 2.4 公尺的主鏡,性能卻大不相同。

首先,利用先進的新式材料,羅曼的主鏡重量僅有哈伯的兩成,約 186 公斤重。再者,為了增加鏡片的反射率,一般的望遠鏡都會在鏡片的表面鍍上一層高反射率的金屬。比如哈伯太空望遠鏡的鏡片表面,就鍍上了一層約 850 奈米厚的鋁。但鋁雖然能夠很好的反射可見光與紫外光,對紅外線的反射率卻不夠理想。因此作為一個觀測近紅外線為主的望遠鏡,羅曼的主鏡片表面鍍上了厚度 400 奈米的銀,讓它能夠更好反射來自宇宙深處的黯淡紅外線。

2020 年中完成製造的主鏡。圖/L3 Harris Technologies

但單純只是反射還不夠,想要得到清晰的影像,就得精確的讓光線聚焦到正確的位置。因此,望遠鏡需要非常精密的拋光。羅曼的主鏡在拋光完成後,鏡片表面的平均起伏僅有 1.2 奈米。這有多平整呢?如果我們將鏡片放大到跟地球一樣,那它表面的起伏將僅有 6 毫米高!

最後,當光線經過一連串複雜的鏡片聚焦之後,將匯聚到羅曼的相機—— 3 億像素的「廣域儀器 Wide Field Instrument 」上,轉化為影像資料後送回地球讓天文學家分析。在這一整套光學系統的合作下,羅曼太空望遠鏡保有與哈伯相同解析度的情況下,擁有視野一百倍以上的超廣視野!

羅曼太空望遠鏡的超廣視野。圖/NASA

視野超大,然後咧?

誒不過話說回來,視野廣大有什麼用呢?

望遠鏡不是要讓我們去看更暗、更小的東西用的嗎?視野變大了,解析度卻沒有提升,這樣真的算是有進步嗎?

當然有囉!

在大家的印象中,天文學家好像總拿著望遠鏡,鉅細靡遺的觀察、研究某個天體。這當然是其中一種重要的方式,但並不是天文研究的全貌。其實在真正的天文物理研究中,很多天文學家想知道的並不是特定天體的特性(比如仙女座銀河有幾根懸臂、有多少顆恆星),而是藉由大量普查宇宙中該種天體的基本性質,然後在海量的資料中尋找擁有科學價值的寶藏。

覺得這像有字天書嗎?沒關係,我們舉個比較親民的例子。

如果你今天想知道新課綱對孩子們的學習成效如何,你會怎麼做呢?也許你可以找幾個孩子出來談談,仔細地問問他們對新課綱的想法。就像那些鉅細靡遺的研究特定目標的天文學家一樣;但你也可以用更宏觀的方式,比如看看他們全體的考試成績或補習花費,來了解新課綱的影響。

同理,對宇宙學家與星系天文學家來說,羅曼太空望遠鏡的廣大視野,讓他們可以在相同的時間內拍攝更廣的天空,或是在對同一片天空拍攝更久的時間,以看見更暗的天體。

當羅曼升空之後,將會拍攝早期宇宙中數以百萬計的大量星系與超新星,並對其中一部份進行更詳盡的光譜分析,藉由觀測這些星系的紅移、位置分佈、形狀、亮度、大小⋯⋯等等資訊,可以回推出宇宙膨脹歷史(與暗能量有關)、星際間暗物質的分佈(利用重力透鏡效應)、尋找早期宇宙中的特殊星系、甚至是幫忙測量本星系群之中的恆星移動。

天文學家將利用羅曼拍攝大量的星系影像進行分析,了解暗能量、暗物質與星系演
化。圖/NASA

另一方面,系外行星學家也對它充滿期待。羅曼太空望遠鏡將藉由兩種方式來偵測系外行星:

一個是藉由「微重力透鏡 Microlensing 」效應。當一顆恆星通過一個背景光源時,恆星的質量會扭曲周圍的時空並匯聚後方的光源,使得背景光源看起來像在短時間內快速的變亮、然後又恢復原狀,而且亮度變化的曲線有相當明顯的特徵。而如果這顆恆星旁邊有行星環繞,那行星的質量也將對亮度曲線造成影響。天文學家就能藉由分析亮度的變化曲線,來探測系外行星的存在。

微重力透鏡效應的示意圖。圖片/NASA

第二個重點,羅曼將攜帶最先進的日冕儀 (CGI),直接拍攝系外行星與原行星盤。

甚麼是日冕儀呢?顧名思義,它最早是為了研究太陽的日冕而發明的儀器。由於平常的太陽實在太亮,使得旁邊相對黯淡的日冕相當難以觀測,因此科學家發明了日冕儀,藉由複雜的光學系統,遮擋住視野中心來自太陽的強光,才能好好的拍攝、研究黯淡的日冕。

而系外行星的探測中,由於系外行星本身又小又暗、又非常靠近明亮的母恆星,想要直接拍攝到他們,就像要你直視著汽車頭燈,然後尋找頭燈旁的蚊子一樣困難。因此,天文學家必須借助日冕儀的力量才能夠直接拍攝到它們。

哈伯太空望遠鏡 STIS 儀器的日冕儀拍攝的北落師門。藉由遮住中心恆星的強光,才能拍攝北落師門四周複雜的塵埃結構。圖/NASA

而羅曼搭載的光譜儀,將更進一步利用各種特殊的光學元件,以及類似調適光學技術中採用的可變形鏡片,利用破壞性干涉來消除主恆星的光線,讓我們能看到主恆星旁 邊,比恆星暗數百萬倍的系外行星。並進一步研究它們的光譜,看看他們溫度多高、 是由甚麼組成、讓我們更加了解這些外星世界。 

結語:值得期待的未來

作為韋伯之後的下一款大型光學太空望遠鏡,天文學大尺度與小尺度的問題羅曼通通包辦。它將能夠以哈伯等級的解析度,拍攝廣大宇宙中數以百萬計中的星系來研究宇宙學與星系演化;同時,它搭載的新一代日冕儀將能讓我們更清楚的直接拍攝系外行星。羅曼太空望遠鏡將產出哪些令人驚艷的資料?又將如何協助我們揭開宇宙的神秘面紗?就讓我們拭目以待吧!

參考資料

  1. STSCI, Roman. Nancy Grace Roman Space Telescope
  2. Roman Space Telescope NASA 官網. Roman Space Telescope/NASA
  3. 主鏡製造商 Nancy Grace Roman Space Telescope 
  4. Roman Lecture Series
  5. 初稿:【時事新聞】羅曼太空望遠鏡的鍍銀主鏡
文章難易度
所有討論 2
EASY天文地科小站_96
21 篇文章 ・ 767 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

1

133
3

文字

分享

1
133
3
AI 是理科「主場」? AI 也可以成為文科人的助力!
研之有物│中央研究院_96
・2022/08/13 ・5646字 ・閱讀時間約 11 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/田偲妤
  • 美術設計/蔡宛潔

AI 的誕生,文理缺一不可

人工智慧(Artificial Intelligence,簡稱 AI)在 21 世紀的今日已大量運用在生活當中,近期掀起熱議的聊天機器人 LaMDA、特斯拉自駕系統、AI 算圖生成藝術品等,都是 AI 技術的應用。多數 AI 的研發秉持改善人類生活的人文思維,除了仰賴工程師的先進技術,更需要人文社會領域人才的加入。

中央研究院「研之有物」專訪院內人文社會科學研究中心蔡宗翰研究員,帶大家釐清什麼是 AI?文科人與工程師合作時,需具備什麼基本 AI 知識?AI 如何應用在人文社會領域的工作當中?

中央研究院人文社會科學研究中心蔡宗翰研究員。圖/研之有物

詩詞大對決:人與 AI 誰獲勝?

一場緊張刺激的詩詞對決在線上展開!人類代表是有「AI 界李白」稱號的蔡宗翰研究員,AI 代表則是能秒速成詩的北京清華九歌寫詩機器人,兩位以「人工智慧」、「類神經」為命題創作七言絕句,猜猜看以下兩首詩各是誰的創作?你比較喜歡哪一首詩呢?

猜猜哪首詩是 AI 做的?哪首詩是人類做的?圖/研之有物

答案揭曉!A 詩是蔡宗翰研究員的創作,B 詩是寫詩機器人的創作。細細賞讀可發覺,A 詩的內容充滿巧思,為了符合格律,將「類神經」改成「類審經」;詩中的「福落天赦」是「天赦福落」的倒裝,多念幾次會發現,原來是 Google 開發的機器學習開源軟體庫「Tensor Flow」的音譯;而「拍拓曲」則是 Facebook 開發的機器學習庫「Pytorch」的音譯,整首詩創意十足,充滿令人會心一笑的魅力!

相較之下,B 詩雖然有將「人工」兩字穿插引用在詩中,但整體內容並沒有呼應命題,只是在詩的既有框架內排列字句。這場人機詩詞對決明顯由人類獲勝!

由此可見,當前的 AI 缺乏創作所需的感受力與想像力,無法做出超越預先設定的創意行為。然而,在不久的將來,AI 是否會逐漸產生情感,演變成電影《A.I. 人工智慧》中渴望人類關愛的機器人?

AI 其實沒有想像中聰明?

近期有一則新聞「AI 有情感像 8 歲孩童?Google 工程師爆驚人對話遭停職」,讓 AI 是否已發展出「自我意識」再度成為眾人議論的焦點。蔡宗翰研究員表示:「當前的 AI 還是要看過資料、或是看過怎麼判讀資料,經過對應問題與答案的訓練才能夠運作。換而言之,AI 無法超越程式,做它沒看過的事情,更無法替人類主宰一切!

會產生 AI 可能發展出情感、甚至主宰人類命運的傳言,多半是因為我們對 AI 的訓練流程認識不足,也缺乏實際使用 AI 工具的經驗,因而對其懷抱戒慎恐懼的心態。這種狀況特別容易發生在文科人身上,更延伸到文科人與理科人的合作溝通上,因不了解彼此領域而產生誤會與衝突。如果文科人可以對 AI 的研發與應用有基本認識,不僅能讓跨領域的合作更加順利,還能在工作中應用 AI 解決許多棘手問題。

「職場上常遇到的狀況是,由於文科人不了解 AI 的訓練流程,因此對 AI 產生錯誤的期待,認為辛苦標注的上千筆資料,應該下個月就能看到成果,結果還是錯誤百出,準確率卡在 60、70% 而已。如果工程師又不肯解釋清楚,兩方就會陷入僵局,導致合作無疾而終。」蔡宗翰研究員分享多年的觀察與建議:

如果文科人了解基本的 AI 訓練流程,並在每個訓練階段協助分析:錯誤偏向哪些面向?AI 是否看過這方面資料?文科人就可以補充缺少的資料,讓 AI 再進行更完善的訓練。

史上最認真的學生:AI

認識 AI 的第一步,我們先從分辨什麼是 AI 做起。現在的數位工具五花八門,究竟什麼才是 AI 的應用?真正的 AI 有什麼樣的特徵?

基本上,有「預測」功能的才是 AI,你無法得知每次 AI 會做出什麼判斷。如果只是整合資料後視覺化呈現,而且人類手工操作就辦得到,那就不是 AI。

數位化到 AI 自動化作業的進程與舉例。圖/研之有物

蔡宗翰研究員以今日常見的語音辨識系統為例,大家可以試著對 Siri、Line 或 Google 上的語音辨識系統講一句話,你會發現自己無法事先知曉將產生什麼文字或回應,結果可能正是你想要的、也可能牛頭不對馬嘴。此現象點出 AI 與一般數位工具最明顯的不同:AI 無法百分之百正確!

因此,AI 的運作需建立在不斷訓練、測試與調整的基礎上,盡量維持 80、90% 的準確率。在整個製程中最重要的就是訓練階段,工程師彷彿化身老師,必須設計一套學習方法,提供有助學習的豐富教材。而 AI 則是史上最認真的學生,可以穩定、一字不漏、日以繼夜地學習所有課程。

AI 的學習方法主要分為「非監督式學習」、「監督式學習」。非監督式學習是將大批資料提供給 AI,讓其根據工程師所定義的資料相似度算法,逐漸學會將相似資料分在同一堆,再由人類檢視並標注每堆資料對應的類別,進而產生監督式學習所需的訓練資料。而監督式學習則是將大批「資料」和「答案」提供給 AI,讓其逐漸學會將任意資料對應到正確答案。

圖/研之有物

學習到一定階段後,工程師會出試題,測試 AI 的學習狀況,如果成績只有 60、70 分,AI 會針對答錯的地方調整自己的觀念,而工程師也應該與專門領域專家一起討論,想想是否需補充什麼教材,讓 AI 的準確率可以再往上提升。

就算 AI 最後通過測試、可以正式上場工作,也可能因為時事與技術的推陳出新,導致準確率下降。這時,AI 就要定時進修,針對使用者回報的錯誤進行修正,不斷補充新的學習內容,讓自己可以跟得上最新趨勢。

在了解 AI 的基本特徵與訓練流程後,蔡宗翰研究員建議:文科人可以看一些視覺化的操作影片,加深對訓練過程的認識,並實際參與檢視與標注資料的過程。現在網路上也有很多 playground,可以讓初學者練習怎麼訓練 AI,有了上述基本概念與實務經驗,就可以跟工程師溝通無礙了。

AI 能騙過人類,全靠「自然語言處理」

AI 的應用領域相當廣泛,而蔡宗翰研究員專精的是「自然語言處理」。問起當初想投入該領域的原因,他充滿自信地回答:因為自然語言處理是「AI 皇冠上的明珠」!這顆明珠開創 AI 發展的諸多可能性,可以快速讀過並分類所有資料,整理出能快速檢索的結構化內容,也可以如同真人般與人類溝通。

著名的「圖靈測試」(Turing Test)便證明了自然語言處理如何在 AI 智力提升上扮演關鍵角色。1950 年代,傳奇電腦科學家艾倫・圖靈(Alan Turing)設計了一個實驗,用來測試 AI 能否表現出與人類相當的智力水準。首先實驗者將 AI 架設好,並派一個人操作終端機,再找一個第三者來進行對話,判斷從終端機傳入的訊息是來自 AI 或真人,如果第三者無法判斷,代表 AI 通過測試。

圖靈測試:AI(A)與真人(B)同時傳訊息給第三者(C),如果 C 分不出訊息來自 A 或 B,代表 AI 通過實驗。圖/研之有物

換而言之,AI 必須擁有一定的智力,才可能成功騙過人類,讓人類不覺得自己在跟機器對話,而這有賴自然語言處理技術的精進。目前蔡宗翰的研究團隊有將自然語言處理應用在:人文研究文本分析、新聞真偽查核,更嘗試以合成語料訓練臺灣人專用的 AI 語言模型。

讓 AI 替你查資料,追溯文本的起源

目前幾乎所有正史、許多地方志都已經數位化,而大量數位化的經典更被主動分享到「Chinese Text Project」平台,讓 AI 自然語言處理有豐富的文本資料可以分析,包含一字不漏地快速閱讀大量文本,進一步畫出重點、分門別類、比較相似之處等功能,既節省整理文本的時間,更能橫跨大範圍的文本、時間、空間,擴展研究的多元可能性。

例如我們想了解經典傳說《白蛇傳》是怎麼形成的?就可以應用 AI 進行文本溯源。白蛇傳的故事起源於北宋,由鎮江、杭州一帶的說書人所創作,著有話本《西湖三塔記》流傳後世。直至明代馮夢龍的《警世通言》二十八卷〈白娘子永鎮雷峰塔〉,才讓流傳 600 年的故事大體成型。

我們可以透過「命名實體辨識技術」標記文本中的人名、地名、時間、職業、動植物等關鍵故事元素,接著用這批標記好的語料來訓練 BERT 等序列標注模型,以便將「文本向量化」,進而找出給定段落與其他文本的相似之處。

經過多種文本的比較之後發現,白蛇傳的原型可追溯自印度教的那伽蛇族故事,傳說那伽龍王的三女兒轉化成佛、輔佐觀世音,或許與白蛇誤食舍利成精的概念有所關連,推測印度神話應該是跟著海上絲路傳進鎮江與杭州等通商口岸。此外,故事的雛型可能早從唐代便開始醞釀,晚唐傳奇《博異志》便記載了白蛇化身美女誘惑男子的故事,而法海和尚、金山寺等關鍵人物與景點皆真實存在,金山寺最初就是由唐宣宗時期的高僧法海所建。

白蛇傳中鎮壓白娘子的雷峰塔。最早為五代吳越王錢俶於 972 年建造,北宋宣和二年(1120 年)曾因戰亂倒塌,大致為故事雛形到元素齊全的時期。照片中雷峰塔為 21 世紀重建。圖/Wikimedia

在 AI 的協助之下,我們得以跨時空比較不同文本,了解說書人如何結合印度神話、唐代傳奇、在地的真人真事,創作出流傳千年的白蛇傳經典。

最困難的挑戰:AI 如何判斷假新聞

除了應用在人文研究文本分析,AI 也可以查核新聞真偽,這對假新聞氾濫的當代社會是一大福音,但對 AI 來說可能是最困難的挑戰!蔡宗翰研究員指出 AI 的弱點:

如果是答案和數據很清楚的問題,就比較好訓練 AI。如果問題很複雜、變數很多,對 AI 來說就會很困難!

困難點在於新聞資訊的對錯會變動,可能這個時空是對的,另一個時空卻是錯的。雖然坊間有一些以「監督式學習」、「文本分類法」訓練出的假新聞分類器,可輸入當前的新聞讓機器去判讀真假,但過一段時間可能會失準,因為新的資訊源源不絕出現。而且道高一尺、魔高一丈,當 AI 好不容易能分辨出假新聞,製造假新聞的人就會破解偵測,創造出 AI 沒看過的新模式,讓先前的努力功虧一簣。

因此,現在多應用「事實查核法」,原理是讓 AI 模仿人類查核事實的過程,尋找權威資料庫中有無類似的陳述,可用來支持新聞上描述的事件、主張與說法。目前英國劍橋大學為主的學者群、Facebook 與 Amazon 等業界研究人員已組成 FEVEROUS 團隊,致力於建立英文事實查核法模型所能運用的資源,並透過舉辦國際競賽,廣邀全球學者專家投入研究。

蔡宗翰教授團隊 2021 年參加 FEVEROUS 競賽勇奪全球第三、學術團隊第一後,也與合作夥伴事實查核中心及資策會討論,正著手建立中文事實查核法模型所需資源。預期在不久的將來,AI 就能幫讀者標出新聞中所有說法的資料來源,節省讀者查證新聞真偽的時間。

AI 的無限可能:專屬於你的療癒「杯麵」

想像與 AI 共存的未來,蔡宗翰研究員驚嘆於 AI 的學習能力,只要提供夠好、夠多的資料,幾乎都可以訓練到讓人驚訝的地步!圖/研之有物

AI 的未來充滿無限可能,不僅可以成為分類與查證資料的得力助手,還能照護並撫慰人類的心靈,這對邁入高齡化社會的臺灣來說格外重要!許多青壯年陷入三明治人(上有老、下有小要照顧)的困境,期待有像動畫《大英雄天團》的「杯麵」(Baymax)機器人出現,幫忙分擔家務、照顧家人,在身心勞累時給你一個溫暖的擁抱。

機器人陪伴高齡者已是現在進行式,新加坡南洋理工大學 Gauri Tulsulkar 教授等學者於 2021 年發表了一項部署在長照機構的機器人實驗。這名外表與人類相似的機器人叫「娜丁」(Nadine),由感知、處理、互動等三層架構組成,可以透過麥克風、3D和網路鏡頭感知用戶特徵、所處環境,並將上述資訊發送到處理層。處理層會依據感知層提供的資訊,連結該用戶先前與娜丁互動的記憶,讓互動層可以進行適當的對話、變化臉部表情、用手勢做出反應。

長照機構的高齡住戶多數因身心因素、長期缺乏聊天對象,或對陌生事物感到不安,常選擇靜默不語,需要照護者主動引導。因此,娜丁內建了注視追蹤模型,當偵測到住戶已長時間處於被動狀態,就會自動發起話題。

實驗發現,在娜丁進駐長照機構一段時間後,住戶有一半的天數會去找她互動,而娜丁偵測到的住戶情緒多為微笑和中性,其中有 8 位認知障礙住戶的溝通能力與心理狀態有明顯改善。

照護機器人娜丁的運作架構。圖/研之有物

至於未來的改進方向,研究團隊認為「語音辨識系統」仍有很大的改進空間,需要讓機器人能配合老年人緩慢且停頓較長的語速,音量也要能讓重聽者可以清楚聽見,並加強對方言與多語混雜的理解能力。

臺灣如要發展出能順暢溝通的機器人,首要任務就是要開發一套臺灣人專用的 AI 語言模型,包含華語、臺語、客語、原住民語及混合以上兩種語言的理解引擎。這需花費大量人力與經費蒐集各種語料、發展預訓練模型,期待政府能整合學界與業界的力量,降低各行各業導入 AI 相關語言服務的門檻。

或許 AI 無法發展出情感,但卻可以成為人類大腦的延伸,協助我們節省處理資料的時間,更可以心平氣和地回應人們的身心需求。與 AI 共存的未來即將來臨,如何讓自己的行事邏輯跟上 AI 時代,讓 AI 成為自己的助力,是值得你我關注的課題。

延伸閱讀

文章難易度
所有討論 1
研之有物│中央研究院_96
254 篇文章 ・ 2221 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

6
2

文字

分享

0
6
2
出來單挑啊!同樣都是鼎鼎大名的太空望遠鏡,哈伯與韋伯到底誰比較強?
htlee
・2022/09/21 ・2029字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

最近,韋伯太空望遠鏡發布首批科學影像,終於看到敲碗好久的結果——韋伯拍到了人類從未見過的許多東西!有人說,韋伯是哈伯的繼任者,但不知道大家是否好奇過,哈伯和韋伯到底誰比較強?

哈伯望遠鏡和韋伯望遠鏡之戰,正式開打!

這個問題有點難回答,因為兩部望遠鏡都是當代科技的結晶。哈伯是 1990 年升空的王者,韋伯是 30 年後科技進步下的產物,我試著用客觀的方式來比較這兩部太空望遠鏡。

哈伯觀測可見光,韋伯觀測紅外光

哈伯的主鏡直徑是 2.4 公尺,韋伯則是 6.5 公尺,韋伯的主鏡直徑比哈伯大 2.7 倍,這也是大家最常比較的部分。可是,如果主鏡大就比較厲害,那麼夏威夷大島上的凱克 10 公尺望遠鏡,不就比哈伯和韋伯更強?

哈伯的主鏡直徑是 2.4 公尺(左),韋伯的則是 6.5 公尺(右)。圖/維基百科

哈伯與韋伯觀測的波段不同,用途也不一樣。哈伯主要觀測的波段在可見光,可見光是指人類眼睛可以看見的光或顏色範圍,也就是紅、橙、黃、綠、藍、靛和紫。從紅光到紫光,光的波長由長到短,紅光的波長大約是 0.62–0.74 微米(1 微米=0.001 公釐),紫光的範圍則是 0.38–0.45 微米。

紅外光是指比紅光波長更長的光,也就是波長比 0.7 微米更長,這是韋伯望遠鏡主要觀測宇宙的波段。

哈伯和韋伯太空望遠鏡觀測的波段,一個在可見光,另一個在紅外光,所以在功用上本來就不一樣,如果要比較的話就要小心,不然就像拿橘子跟蘋果相比,拿不同的東西做比較顯得很突兀。

誰看得比較清楚?來比一比解析度吧!

哈伯與韋伯可以拿來做比較的是解析度,解析度的值(角秒)愈低,表示能看到天體愈細微的部分,解析度跟主鏡直徑和觀測的波長有關。望遠鏡主鏡愈大,解析度愈好;另外也跟觀測的波長成正比。

解析度的計算公式。

以下兩張影像分別是史匹哲太空望遠鏡(Spitzer Space Telescope)和韋伯拍的天空中同一區域紅外光影像,拍攝的紅外波長也差不多(史匹哲:8 微米,韋伯 7.7 微米),不過兩幅影像的解析度卻差很多,韋伯的影像中可以看到更多的細節,史匹哲則好像糊成一團。

史匹哲與韋伯望遠鏡的影像解析度比較,顯然韋伯的影像解析度高很多。圖/NASA

當觀測的波長一樣時,解析度跟觀測望遠鏡的主鏡直徑成反比。史匹哲的主鏡是 0.85 公尺,所以韋伯的解析力是史匹哲的 6.5/0.85=7.8 倍!主鏡的大小直接反應在解析度上,韋伯與史匹哲在解析度上高下立判!

解析度除了跟主鏡的直徑成反比,也跟觀測的波長成正比。所以同一面主鏡觀測天體,用愈短的波長觀測解析度愈好。下圖是史匹哲望遠鏡觀測 M81 星系的結果,同樣 0.85 公尺的主鏡觀測,隨著觀測波長的增加,解析度變差。

史匹哲望遠鏡拍攝的 M81 星系,拍攝的波段是 24(上)、70(中)、160 微米(下),拍攝的波段愈長,解析度愈差。圖/NASA

答案揭曉——哈伯的解析度略勝一籌!

前面提到解析度跟主鏡直徑與觀測波長的關係有一個重要前提,主鏡必須研磨到完美、光滑,也就是主鏡上不能出現高低起伏。如果主鏡不完美,像遊樂場裡的哈哈鏡,不能聚焦成像,解析度自然不好。

波長愈短對鏡面的要求愈高。哈伯太空望遠鏡的鏡面對 0.5 微米波長更長的光是完美的,比 0.5 微米波長更短的光波則呈現不完美,韋伯望遠鏡的主鏡則是對 2 微米更長的波長是光滑的。(光學上,物理學家的說法是哈伯和韋伯分別在 0.5 和 2 微米達到繞射極限。)

哈伯和韋伯望遠鏡最佳解析度分別在 0.5 微米和 2 微米,根據前面的解析度公式,哈伯在 0.5 微米的解析度是 0.05 角秒,而韋伯在 2 微米的解析度是 0.08 角秒,結論是哈伯的解析度比韋伯稍微好一點!也就是哈伯老當益壯,一點也不比韋伯差。

史蒂芬五重星系,哈伯(左)與韋伯(右)拍攝的影像,從解析度來看,兩部太空望遠鏡不相上下。圖/NASA

從哈伯到韋伯,有如長江後浪推前浪

天文學家從 1990 年開始,透過哈伯望遠鏡研究宇宙,這三十年來科學家已經把哈伯的功能發揮到極致,我們對宇宙的了解很多都來自哈伯的觀測。不過這三十年的努力也讓天文學家發現哈伯不足的地方,科學家知道關鍵在紅外線觀測能力。前一代的紅外望遠鏡史匹哲無法達到需求,天文學家只能殷殷期盼韋伯。

韋伯首批公布的影像中,幾乎都是哈伯曾經拍過的天體,從科學上來說,比較可見光和紅外影像資料可以對目標天體更多了解,不過我認為這應該是韋伯對哈伯致敬的方式,感謝哈伯三十多年的貢獻!

韋伯站在巨人的肩膀上,必定能看得更暗、更遠!

htlee
19 篇文章 ・ 8 位粉絲
屋頂上的天文學家-李昫岱,中央大學天文所博士,曾經於中央研究院天文所和美國伊利諾大學厄巴納-香檳分校從事研究工作。著有《噢!原來如此 有趣的天文學》、《天文很有事》,翻譯多本國家地理書籍和特刊。 目前在國立中正大學教授「漫遊宇宙101個天體」和「星空探索」兩門通識課。天文跟其他語文一樣,有自己的文法和結構,唯一的不同是天文寫在天上!現在的工作是用科學、藝術和文化的角度,解讀、翻譯和傳授這本無字天書,期望透過淺顯易懂的方式介紹天文的美好!

0

3
1

文字

分享

0
3
1
哈伯也懂漂移?3D-DASH:哈伯太空望遠鏡最大的近紅外巡天計畫
Tiger Hsiao_96
・2022/07/10 ・2933字 ・閱讀時間約 6 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

若問當前軌道上最強的可見光太空望遠鏡是誰,那當然非哈伯太空望遠鏡莫屬。身處太空的它有著直徑 2.4 公尺的主鏡,可以在不受大氣層干擾的情況下,清晰地拍攝遙遠且黯淡的天體。然而,哈伯望遠鏡並非全能,雖然它在解析度(angular resolution)和靈敏度(sensitivity)上都無人能及,但也有不擅長的領域 ── 它的視野相當小。

哈伯太空望遠鏡。圖/NASA

即使是哈伯裝備的所有相機中視野最大的「先進巡天相機(ACS)」,其視野也只有 202 角秒 x 202 角秒而已,相當於滿月的 1.5%,或是一個十元硬幣在約 25 公尺外的大小。可以想見,想要用這麼小的視野拍攝廣大的區域,是相當緩慢而沒有效率的事。

直到最近幾年,天文學家發明了稱作「Drift And SHift (DASH)」的新型觀測模式,可以在不改變哈伯硬體設備的前提下,大大增加哈伯在近紅外線波段的拍攝效率。利用這項技術,來自多倫多大學的團隊展開名為 3D-DASH 的大型紅外線巡天計畫,其拍攝的天空範圍,是前一個紀錄保持人「CANDELS」的七倍之多。

不斷選擇「引導星」的傳統觀測模式

想了解為什麼 DASH 技術可以大大提升哈伯的觀測效率,就要先從哈伯原本是怎麼觀測的開始談起。

不知道大家有沒有在黑夜中拍照的經驗呢?在低亮度的環境中,相機總需要比較長的時間進行曝光,才能拍出清楚的照片。而如果你在曝光的過程中不小心移動了相機,那拍出來的照片就會糊成一團。同理,由於天文學家想要拍攝的目標,大多是極其遙遠且黯淡的天體,所以天文觀測時單張照片的曝光時間,往往動輒數百秒以上。因此,專業天文望遠鏡常會配備「導星(Guiding)」系統,以確保望遠鏡能在數百秒的時間內,都精準的指向同一個位置。

導星的原理很簡單,就是在望遠鏡和相機觀測的同時,同時用另一套相機監測視野中星星的位置。一旦發現畫面中恆星的位置有任何小小的移動,導星系統就會命令望遠鏡調整指向(pointing),即時把誤差修正回來。在哈伯望遠鏡上,這個負責導星的相機叫作「精細導星感測器(FGS)」。而這個用來幫望遠鏡「導航」的星星,就被稱為「引導星(guide star)」。

哈伯在進行拍攝時,需要找一顆導星來隨時校正方向。圖/GIPHY

一般來說,在哈伯望遠鏡每指向一個新的目標,都需要先花費一段約十分鐘的時間選擇引導星,然後才能進行科學拍攝。然而,由於哈伯的軌道週期僅有 97 分鐘左右,因此在一次軌道中,哈伯基本上只能拍攝一或兩個固定的天區,不然就會有大量的觀測時間被浪費在尋找引導星的過程中。如此一來,天文學家若想透過哈伯來拍攝 800 個不同指向,就需要花費 800 次的軌道繞行時間才能結束這項任務。

花費很多時間有什麼問題呢?哈伯望遠鏡的觀測,是由美國「太空望遠鏡科學研究所(STScI)」向全世界天文學家公開徵求觀測企劃之後,再從中挑選出最具科學效益的企劃後實施。一個耗時 800 個軌道週期的觀測,很難在競爭激烈的觀測計劃書中脫穎而出。

但如果,天文學家真的很需要用哈伯進行大面積的巡天,該怎麼辦呢?

提升效率的新方法

如前述,一般來說哈伯每指向一個新目標,都需要花費十分鐘來進行捕捉引導星。但換個角度想,如果把導星功能關掉,不就可以省下這些時間了嗎?

計画通り!圖/GIPHY

還真是沒錯,哈伯的設計的確是可以關掉導星系統,利用其中的陀螺儀來進行控制。但陀螺儀的能提供的穩定性終究不如導星系統,一旦曝光時間過長,望遠鏡的微小移動還是會造成最後曝光出來的星星像塗抹花生醬一樣糊成一片,這樣的影像是很難用於科學分析的。

開導星耗時間,不開導星又沒辦法長曝,該怎麼辦呢?

這時就輪到「Drift And SHift(DASH)」技術出場了!DASH 的核心概念很簡單:

  • 為了省時,我們就關掉導星。
  • 關導星不能長曝,那我們就拍很多短曝光時間的照片,降低每張照片的模糊程度,再把它們對齊之後疊起來。

以 3D-DASH 計劃來說,關掉導星會讓哈伯的指向以每秒 0.001 至 0.002 角秒的速度緩緩飄移。因此天文學家將每張照片的曝光時間壓縮到 25 秒以下,讓星點在畫面中的移動不超過一個像素(WFC-3 的像素大小為 0.129 角秒)。利用這樣的技術,天文學家就能在哈伯的一次軌道週期中,拍攝八個不同的指向,把觀測效率提升了八倍!

3D-DASH 的觀測天區和其他觀測計畫天區大小、深度(最暗可拍到的天體星等)的比對圖。圖/arxiv

拍這些照片有什麼用?3D-DASH 的科學意義

3D-DASH 計畫的觀測資料最近已於網路上公開,不過這龐大的資料量,觀測團隊以及其他科學家們還需要更多時間進行分析。不過,在公布這個計劃的論文中,團隊已經提出了一些值得分析的科學問題。

舉例來說,天文學家認為如今多數的橢圓星系(elliptical galaxy)們,都是由較小的星系合併而來。因此尋找合併中的星系,並測量它們的各項物理性質,是研究星系演化歷史的重要方法。但很多時候,地面望遠鏡可以大略看到一個光點可能是兩或多個相鄰的天體組成,卻沒有足夠的解析度可以研究它們的細節。但有了 3D-DASH 的資料,天文學家就可以清楚的看到星系們合併的細節,並研究其中細微的結構以及測量更多複雜的物理量。

合併中的星系們。圖/NASA

不過這種大範圍的巡天計畫也不是完美的。為了拍攝廣大的天區,每個天區分配到的平均觀測時間就會比較少,因此比起 CANDELS 等前輩們,3D-DASH 只能看到相對亮的星系們。雖然如此,3D-DASH 這種相對廣而淺的觀測,不僅可以提供更大量的星系樣本,幫助天文學家使用強大的統計方法進行分析;也可以讓天文學家先大概了解這片天區裡有些什麼,如果發現了有趣的目標,就可以使用哈伯或韋伯等其它強大的望遠鏡們進行更深入的觀測!

3D-DASH 的所涵蓋的天區,以及其超高的解析度。圖/arxiv

參考資料

延伸閱讀