2

31
6

文字

分享

2
31
6

百倍於哈伯觀測能力,大小尺度通通包辦!——NASA 的下一個旗艦級「羅曼太空望遠鏡」

EASY天文地科小站_96
・2021/01/14 ・3606字 ・閱讀時間約 7 分鐘 ・SR值 507 ・六年級

  • 文/林彥興(EASY天文地科團隊總編輯,就讀清大理學院學士班)

「一個哈伯不夠用,那你有試過來一百個嗎?」

哈伯太空望遠鏡可說是世上最著名的科學儀器之一。在它 1990 年升空的這三十年中,拍攝了無數令人嘆為觀止的宇宙奇景。然而,隨著時光流逝,垂垂老矣的哈伯剩下的時日恐怕已經不多。

倘若再次出現嚴重故障,可能就得和這座傳奇的天文望遠鏡永遠告別。好在,哈伯並非後繼無人,在今 (2021) 年十月韋伯太空望遠鏡升空之後,NASA 的下一個旗艦級太空望遠鏡,將以相仿的體型,卻百倍於哈伯的觀測能力幫助天文學家更深入了解宇宙的奧秘。它就是「南希.葛莉絲.羅曼太空望遠鏡 Nancy Grace Roman Space Telescope 」。

南希.葛莉絲.羅曼太空望遠鏡 Nancy Grace Roman Space Telescope。圖/Wikimedia common

誰是羅曼?人稱哈伯之母的天文學家

在介紹望遠鏡之前,讓我們先來看看羅曼究竟是誰,居然偉大到讓 NASA 以她的名字命名下一代的旗艦級望遠鏡。

南希.葛莉絲.羅曼 (1925-2018) 是著名的美國天文學家。在二十世紀前葉,科學界中的性別不平等遠比現在嚴重。但她仍然努力撐過他人的冷眼與勸退,選擇攻讀天文並在取得博士學位後,在恆星分類、星團運動等領域貢獻卓越。

-----廣告,請繼續往下閱讀-----

1959年,羅曼到 NASA 任職,並從此長年擔任 NASA 的首席天文學家。在她任職的時代,太空科技才剛剛起步,人們對太空望遠鏡的概念也相當陌生。但羅曼憑著她的遠見,參與、主持了許多 1960 與 1970 年代 NASA 的太空望遠鏡計畫,並四處為這些計畫籌措資金,為現代太空望遠鏡的蓬勃發展打下基礎。

同時,她也推動 NASA 將觀測到的資料開放給全世界使用,最終讓天文界開放資料的文化延續至今。她對 NASA 太空望遠鏡計畫的卓越貢獻,最終讓她獲得「哈伯之母」的美譽。

1972 年的羅曼博士,攝於 NASA 哥達德太空中心。圖/NASA

我要一個打一百個!羅曼的超廣視野

在被命名為羅曼太空望遠鏡之前,這個望遠鏡計畫名為「廣域紅外巡天望遠鏡
WFIRST 」
。顧名思義,這是一台觀測可見光與近紅外線,用於進行廣域巡天——也就是觀測大範圍天空——的望遠鏡。預計將在 2020 年代中期發射,與蓋亞、韋伯等前輩一起運行於日地第二拉格朗日點。

在望遠鏡的構造上,羅曼與哈伯太空望遠鏡相當類似,都使用一面直徑 2.4 公尺的主鏡。但得益於三十年來的科技進步,同樣是 2.4 公尺的主鏡,性能卻大不相同。

首先,利用先進的新式材料,羅曼的主鏡重量僅有哈伯的兩成,約 186 公斤重。再者,為了增加鏡片的反射率,一般的望遠鏡都會在鏡片的表面鍍上一層高反射率的金屬。比如哈伯太空望遠鏡的鏡片表面,就鍍上了一層約 850 奈米厚的鋁。但鋁雖然能夠很好的反射可見光與紫外光,對紅外線的反射率卻不夠理想。因此作為一個觀測近紅外線為主的望遠鏡,羅曼的主鏡片表面鍍上了厚度 400 奈米的銀,讓它能夠更好反射來自宇宙深處的黯淡紅外線。

-----廣告,請繼續往下閱讀-----
2020 年中完成製造的主鏡。圖/L3 Harris Technologies

但單純只是反射還不夠,想要得到清晰的影像,就得精確的讓光線聚焦到正確的位置。因此,望遠鏡需要非常精密的拋光。羅曼的主鏡在拋光完成後,鏡片表面的平均起伏僅有 1.2 奈米。這有多平整呢?如果我們將鏡片放大到跟地球一樣,那它表面的起伏將僅有 6 毫米高!

最後,當光線經過一連串複雜的鏡片聚焦之後,將匯聚到羅曼的相機—— 3 億像素的「廣域儀器 Wide Field Instrument 」上,轉化為影像資料後送回地球讓天文學家分析。在這一整套光學系統的合作下,羅曼太空望遠鏡保有與哈伯相同解析度的情況下,擁有視野一百倍以上的超廣視野!

羅曼太空望遠鏡的超廣視野。圖/NASA

視野超大,然後咧?

誒不過話說回來,視野廣大有什麼用呢?

望遠鏡不是要讓我們去看更暗、更小的東西用的嗎?視野變大了,解析度卻沒有提升,這樣真的算是有進步嗎?

當然有囉!

在大家的印象中,天文學家好像總拿著望遠鏡,鉅細靡遺的觀察、研究某個天體。這當然是其中一種重要的方式,但並不是天文研究的全貌。其實在真正的天文物理研究中,很多天文學家想知道的並不是特定天體的特性(比如仙女座銀河有幾根懸臂、有多少顆恆星),而是藉由大量普查宇宙中該種天體的基本性質,然後在海量的資料中尋找擁有科學價值的寶藏。

-----廣告,請繼續往下閱讀-----

覺得這像有字天書嗎?沒關係,我們舉個比較親民的例子。

如果你今天想知道新課綱對孩子們的學習成效如何,你會怎麼做呢?也許你可以找幾個孩子出來談談,仔細地問問他們對新課綱的想法。就像那些鉅細靡遺的研究特定目標的天文學家一樣;但你也可以用更宏觀的方式,比如看看他們全體的考試成績或補習花費,來了解新課綱的影響。

同理,對宇宙學家與星系天文學家來說,羅曼太空望遠鏡的廣大視野,讓他們可以在相同的時間內拍攝更廣的天空,或是在對同一片天空拍攝更久的時間,以看見更暗的天體。

當羅曼升空之後,將會拍攝早期宇宙中數以百萬計的大量星系與超新星,並對其中一部份進行更詳盡的光譜分析,藉由觀測這些星系的紅移、位置分佈、形狀、亮度、大小⋯⋯等等資訊,可以回推出宇宙膨脹歷史(與暗能量有關)、星際間暗物質的分佈(利用重力透鏡效應)、尋找早期宇宙中的特殊星系、甚至是幫忙測量本星系群之中的恆星移動。

天文學家將利用羅曼拍攝大量的星系影像進行分析,了解暗能量、暗物質與星系演
化。圖/NASA

另一方面,系外行星學家也對它充滿期待。羅曼太空望遠鏡將藉由兩種方式來偵測系外行星:

一個是藉由「微重力透鏡 Microlensing 」效應。當一顆恆星通過一個背景光源時,恆星的質量會扭曲周圍的時空並匯聚後方的光源,使得背景光源看起來像在短時間內快速的變亮、然後又恢復原狀,而且亮度變化的曲線有相當明顯的特徵。而如果這顆恆星旁邊有行星環繞,那行星的質量也將對亮度曲線造成影響。天文學家就能藉由分析亮度的變化曲線,來探測系外行星的存在。

-----廣告,請繼續往下閱讀-----
微重力透鏡效應的示意圖。圖片/NASA

第二個重點,羅曼將攜帶最先進的日冕儀 (CGI),直接拍攝系外行星與原行星盤。

甚麼是日冕儀呢?顧名思義,它最早是為了研究太陽的日冕而發明的儀器。由於平常的太陽實在太亮,使得旁邊相對黯淡的日冕相當難以觀測,因此科學家發明了日冕儀,藉由複雜的光學系統,遮擋住視野中心來自太陽的強光,才能好好的拍攝、研究黯淡的日冕。

而系外行星的探測中,由於系外行星本身又小又暗、又非常靠近明亮的母恆星,想要直接拍攝到他們,就像要你直視著汽車頭燈,然後尋找頭燈旁的蚊子一樣困難。因此,天文學家必須借助日冕儀的力量才能夠直接拍攝到它們。

哈伯太空望遠鏡 STIS 儀器的日冕儀拍攝的北落師門。藉由遮住中心恆星的強光,才能拍攝北落師門四周複雜的塵埃結構。圖/NASA

而羅曼搭載的光譜儀,將更進一步利用各種特殊的光學元件,以及類似調適光學技術中採用的可變形鏡片,利用破壞性干涉來消除主恆星的光線,讓我們能看到主恆星旁 邊,比恆星暗數百萬倍的系外行星。並進一步研究它們的光譜,看看他們溫度多高、 是由甚麼組成、讓我們更加了解這些外星世界。 

結語:值得期待的未來

作為韋伯之後的下一款大型光學太空望遠鏡,天文學大尺度與小尺度的問題羅曼通通包辦。它將能夠以哈伯等級的解析度,拍攝廣大宇宙中數以百萬計中的星系來研究宇宙學與星系演化;同時,它搭載的新一代日冕儀將能讓我們更清楚的直接拍攝系外行星。羅曼太空望遠鏡將產出哪些令人驚艷的資料?又將如何協助我們揭開宇宙的神秘面紗?就讓我們拭目以待吧!

-----廣告,請繼續往下閱讀-----

參考資料

  1. STSCI, Roman. Nancy Grace Roman Space Telescope
  2. Roman Space Telescope NASA 官網. Roman Space Telescope/NASA
  3. 主鏡製造商 Nancy Grace Roman Space Telescope 
  4. Roman Lecture Series
  5. 初稿:【時事新聞】羅曼太空望遠鏡的鍍銀主鏡
文章難易度
所有討論 2
EASY天文地科小站_96
23 篇文章 ・ 1444 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

5
2

文字

分享

0
5
2
歐幾里得望遠鏡開工——目標是尋找暗物質證據!一起從科學家的角度欣賞這片夢幻光景!
PanSci_96
・2024/01/27 ・6276字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

14 億歐元天文望遠鏡拍出的照片,你看過了嗎?你看到現在這些照片,揭開了宇宙過去與現在、空間與時間所交織的祕密嗎?

今年 11 月 7 日,位在 L2 拉格朗日點的歐幾里得望遠鏡,終於傳回來它升空後的第一批照片。這 5 張照片不只展示了望遠鏡的強大性能,更讓我們窺見過去無法看到的,宇宙深處的幽美與奧秘。就讓我們一起透過這些獨特的照片,來一場探索宇宙的奇異之旅吧!

歐幾里得望遠鏡有什麼厲害之處?

今年 7 月 1 號升空的歐幾里得望遠鏡,任務是觀察宇宙大尺度結構,來研究暗物質與暗能量在宇宙中的分布與性質,讓我們進一步了解自己身處的這個宇宙。

去年七月,接棒哈伯望遠鏡任務的詹姆斯.韋伯太空望遠鏡,傳回來了升空後的第一批相片,每張照片都美的震撼人心,也帶著我們從全新的視角,眺望遙遠的系外行星、恆星、星雲與早期宇宙。當時,我們製作了一集節目,和大家分享這批照片背後的重要意義。我們也提到,每個望遠鏡在完成校準以後,都會發布一批「開光照」,向外界傳達望遠鏡已經可以順利運作的好消息,同時也讓大家了解這台新望遠鏡身上,背負了哪些重要的使命與任務。

-----廣告,請繼續往下閱讀-----

而這次,新升空的歐幾里得望遠鏡也終於完成校正,傳回來不同於韋伯望遠鏡,從另一個視角看宇宙的開光照。先讓我們來了解一下歐幾里得望遠鏡。它的觀測波段是可見光到近紅外線波段,目標是觀測大範圍、不同遠近的宇宙天體。預計在 6 年的服役期間,建立完整清晰的宇宙 3D 立體圖像。只是,剛退役的哈伯太空望遠鏡,主要任務就是可見光波段的研究,去年剛任務正式開始的韋伯太空望遠鏡,則是紅外線波段的佼佼者。那歐幾里得望遠鏡有什麼突破之處嗎?這座花費 14 億歐元的望遠鏡當然有它獨到之處,它強大的地方在於,可以在更短時間內獲得更高解析度的照片,同時拍攝更大範圍的宇宙。比如哈伯太空望遠鏡需要好幾天觀測的天體,歐幾里得望遠鏡一個小時就可以搞定,而且解析度更高。

歐幾里得太空望遠鏡。圖/wikimedia

其實看它們的任務目標就能很快理解,現在在天空上的韋伯和歐幾里得,雖然有部分任務重疊。但韋伯更著重在尋找系外行星與觀察星系、恆星系統的演化。歐幾里得呢,則是將視野放大到整個宇宙,希望了解暗物質、暗能量在整個宇宙間扮演的角色。所以比起韋伯太空望遠鏡著重在拍攝小範圍、高解析度的天體照片,歐幾里得望遠鏡一開始的設計,就是要在短時間內掃描更大片的宇宙。因此,歐幾里得望遠鏡也確實成為建立宇宙 3D 立體圖像的最佳望遠鏡,定期的大範圍掃描天空,讓我們能一窺宇宙隨時間的演化動態。

那麼,就讓我們來欣賞歐幾里得望遠鏡的第一批照片吧!

歐幾里得望遠鏡第一批照片公開!

第一張照片,像是在宇宙這張巨大的黑布上,撒下大小珍珠。它是一張距離地球 2.4 億光年,英仙座星系團的影像照。

-----廣告,請繼續往下閱讀-----

宇宙中有許多星系團,英仙座星系團就是其中之一,裡面包含超過 1000 個星系,是宇宙中最大的結構之一。除此之外,這張照片不僅清楚拍下了星系團,如果將照片放大來看,還會發現背景中有許多過去難以看到的星系,數量超過 10 萬個,最遠的甚至達 100 億光年。為什麼第一批照片要選擇拍攝星系團呢?因為研究星系團能幫助我們了解宇宙大尺度結構,進一步推算暗物質與暗能量的比例。

宇宙中的星系分佈其實是不均勻的,有些地方有許多星系,有些區域則幾乎沒有。整個宇宙中天體的分布看起來就像是一張巨網。可是,為什麼宇宙的大尺度結構是網狀的呢?天文學家認為宇宙大爆炸之後,物質在宇宙中的分佈會有些微的不均勻。當宇宙逐漸冷卻,氣體物質密度較高的地方會因為重力吸引而塌縮。但因為溫度很高,高溫產生的巨大壓力又讓氣體團反彈回來,就像擠壓一個壓力球一樣。來回震盪的過程中氣體會像聲波朝四面八方傳遞出去,稱為重子聲學振盪(BAO,baryon acoustic oscillations)。最後整個宇宙就像下毛毛雨時的池塘,形成由許多漣漪交織的網狀結構,波腹的地方氣體密度較高,變成星系高度聚集的區域,我們稱為星系團。其他地方氣體密度低,形成的星系數量較少,就像是宇宙間的孔洞。

而根據宇宙學家計算,要形成星系團、宇宙網(cosmic web)這類的宇宙大尺度結構,只靠已知物質提供的重力是不夠的,很可能還有許多我們還不了解的物質參與其中,也就是暗物質。這張照片不僅能幫助科學家研究宇宙大尺度結構,更彰顯歐幾里得望遠鏡的重要任務之一,就是幫助科學家深入了解暗物質的分佈與本質。

第二張照片是螺旋星系 IC342,離地球只有 1100 萬光年,算是離地球很近的星系,但由於它被明亮的銀河系盤面擋住了,觀測的難度非常高。歐幾里得望遠鏡利用近紅外線儀器穿透塵埃進行觀察,並移除許多銀河系中的恆星光芒,最後才形成這張極高解析度的照片,展現了它觀測隱藏星系的實力。

-----廣告,請繼續往下閱讀-----
IC342。圖/Judy Schmidt

這個螺旋星系在天空中的大小相當於一個滿月那麼大,要一次觀測這樣大範圍的天空,同時保有超高解析度,目前只有歐幾里得望遠鏡才辦得到。由於螺旋星系 IC342 和銀河系很像,觀察它的演化有助於科學家理解銀河系的形成過程。未來歐幾里得望遠鏡也會觀測更多隱藏星系和遙遠的天體,繪製出它們的 3D 分佈圖。

第三張照片是不規則星系 NGC 6822。雖然跟 IC342、銀河系一樣也是星系,但形狀不是螺旋而是不規則的。

透過光譜分析,我們知道這個星系中的重元素含量很低。重元素是透過大質量恆星核融合所產生的,重元素含量少表示星系裡的恆星才剛形成,也就是一個很早期、相對年輕的星系。科學家認為,在宇宙早期星系剛開始演化時,大部分的星系就長得像這樣,質量小、形狀也不太規則。之後這些小星系會因為重力吸引其他星系,彼此相撞、融合成更大的星系,逐漸產生旋轉的結構,形成像銀河系這樣的大質量螺旋星系。所以藉由觀測這些早期星系,可以幫助科學家了解星系的形成過程。

另外,照片中一顆顆藍色的圓形區域,是球狀星團。球狀星團中的星星都是由同一團氣體產生,是宇宙最早形成的天體之一,有些甚至比星系本身還早。透過觀測這些球狀星團的運動,能協助我們更了解這個星系的形成史。

-----廣告,請繼續往下閱讀-----

球狀星團大部分分佈在星系的外圍,以很慢的速度繞行星系,可能要好幾年才能觀察到要它們的運動。那科學家要怎麼知道這些星團是如何移動的呢?凡走過必留下痕跡,其中一種方式就是觀察到它們與星系本身互動所留下的痕跡。在歐幾里得望遠鏡傳回來的第四張照片中,就呈現了這些細節。第四張照片是球狀星團 NGC 6397,一個繞行銀河系的球狀星團。

當星團經過星系中的高密度區域,比如暗物質集中區、旋臂或星系盤面,星團中的星星會受到不同強度的重力吸引,使得星星彼此遠離,這個力量稱為潮汐力。顧名思義與潮汐的產生是相同的原理,由於地球各處受到太陽與月亮的重力總和不相同,在重力較強的地方海水受拉伸而漲潮,重力較弱的地方就會退潮。同樣道理,球狀星團在靠近星系中心的一側受重力較強,遠離星系的一側則較弱,球狀星團因而被拉伸,形成一條由星星組成的尾巴,稱為潮汐尾。

透過觀測潮汐尾,就可以了解球狀星團,乃至星系的演化過程。如果沒有潮汐尾,也可能代表有暗物質暈阻止外層恆星逃脫,能幫助我們進一步了解暗物質在星系當中的分佈。但要瞭解潮汐尾的形成過程,必須有星團中每顆星星的移動資料,也就是需要同時進行大範圍、短時間、高精度的觀測。而歐幾里得望遠鏡的優勢此時就能充分發揮,它可以一次拍攝整個球狀星團,而且只須一小時就可以得到這張高解析度的照片,連裡面的很暗的星星也看的一清二楚。只要每隔一段時間拍攝一張照片,就可以製作成動畫,了解星團中星體的運動軌跡。

最後,我們來介紹最後一張照片。它看起來最為夢幻,猶如一張宇宙中以繁星點綴的絲綢。它是距離地球約 1375 光年的馬頭星雲,也是離我們最近,正在形成新生恆星的區域。在星雲的上方(照片之外),有一顆明亮的恆星:獵戶座 sigma 星,這顆星輻射出的紫外光激發了位在馬頭後方的星雲,形成明亮、宛若薄紗的區域。組成馬頭的暗星雲氣體則因為溫度較低,只有些微的熱輻射,形成較為黯淡的前景,並稍微遮掩背後的明亮星雲。前後星雲層層堆疊,就像一幅宇宙給我們的水彩畫。更進一步,藉由歐幾里得望遠鏡高解析度的照片,科學家得以從中看到更多類木星、棕矮星、嬰兒恆星等,協助科學家了解星雲中的恆星形成過程。

-----廣告,請繼續往下閱讀-----
圖/wikimedia

對了,在我們介紹韋伯望遠鏡時有提到過,這些宇宙照通常不是它可見光波段下,真正我們肉眼所見的樣貌。而是選定特定波長後透過顏色校正,甚至將不同波段的照片疊合,才得到的結果。也就是說,選則不同的電磁波波段,或是採取不同的調色方式,得到的照片都會有不同風味。

所以如果你覺得這張淡麗的馬頭星雲不滿意,也有這張,特別強化氫元素的紅色光譜與氧元素藍色光譜後,成為一張猶如滅世風格,帶有點詭譎濾鏡的另一種美照,是不是跟剛才的氛圍完全不一樣呢?

馬頭星雲。圖/wikimedia

順帶一提,對我來說,一樣是星雲照片,韋伯望遠鏡校色出來的照片還是覺得比較好看。例如之前介紹過的,韋伯望遠鏡開光照之一的船底座星雲。還有原本是望遠鏡大前輩哈伯代表作,後來韋伯又重新翻拍的創世之柱,都更令人讚嘆不已,對比與彩度都高上許多,給人一種正在仰望廣闊宇宙的壯烈感。

韋伯望遠鏡所拍攝的船底座星雲。圖/wikimedia
創生之柱,左哈伯、右韋伯。圖/PanSci YouTube

我們更了解這個宇宙了嗎?

我們對於宇宙的瞭解還太少,目前宇宙中的已知物質,包括元素週期表上的所有原子,根據計算只佔宇宙質能的 5%,剩下的估計都是暗物質與和能量。

-----廣告,請繼續往下閱讀-----

但宇宙的奧秘就像一張複雜的拼圖,每拼上一小塊,都會給我們一些線索,猜測周圍的拼圖可能會是什麼。當拼的夠多,我們終有一天能得知宇宙整體的圖畫長什麼樣貌。恆星形成、星系演化方式、暗物質、暗能量等等,都各自是一塊塊重要的拼圖,唯有了解它們才能逐步得知暗物質與暗能量的奧秘。

舉例來說,暗物質所提供的重力在星系形成中扮演重要角色,目前最被科學界接受的冷暗物質(cold dark matter)模型,假設暗物質是由質量很大的粒子所組成,透過重力吸引聚集成許多小塊,小塊暗物質再彼此融合成更大的暗物質團塊,質量足夠大的團塊就可以吸引夠多的氣體,形成早期星系,之後再彼此融合成為更大的螺旋或橢圓星系。但透過數值模擬,科學家發現這個模型有些問題。理論上來說應該要有數百到數千個小衛星星系,繞行像銀河系這麼大的螺旋星系旋轉。但是天文學家實際上只觀測到約十個小星系繞行銀河系,這是著名的衛星遺失問題(Missing satellite problem)。

因此科學家又提出更多暗物質模型,比如與冷暗物質相對的熱暗物質(warm dark matter)模型,可以透過熱運動所產生的壓力抵銷重力,使得小暗物質團塊變得不穩定,從而解釋為何小星系的數量這麼少。除了熱暗物質以外,還有眾多的暗物質模型。但要證明哪個模型是正確的,就需要更多觀測數據與星系演化的模擬結果進行比較,才能得到答案。

不過看過歐幾里得望遠鏡傳回來的第一批照片,並了解其中代表的重要意義,就能充分感受到我們離解開這個謎團又更近了一步。還沒完,預計於 2027 年升空的羅曼太空望遠鏡(Nancy Grace Roman Space Telescope),與歐幾里得望遠鏡相同,都肩負研究暗能量與暗物質的重要任務。兩座望遠鏡將一同一個從可見光,一個從紅外線波段觀察大範圍宇宙,期待能為科學家帶來寶貴的數據,解開這盤旋好幾十年的謎團。

-----廣告,請繼續往下閱讀-----

最後問問大家,在這批照片中,你最喜歡的是哪一張呢?

  1. 英仙座星系團,大尺度的宇宙圖像,原來長這樣。
  2. 螺旋星系 IC342,我們的鄰居竟然這麼漂亮,這麼具有螺旋力。
  3. 馬頭星雲,有層次感的星雲照,真的令人目不暇給。
  4. 更多你喜歡的照片,或希望我們來介紹的天文照片,分享給我們吧!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

討論功能關閉中。

PanSci_96
1219 篇文章 ・ 2200 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

15
7

文字

分享

0
15
7
太空種電?不受天氣影響的發電廠登場,人類將迎來能源自由?
PanSci_96
・2023/08/12 ・4585字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

要核能、綠能、還是天然氣?大家不用吵了,因為讓我隆重介紹,宇宙太陽能準備登場,地球將進入能源自由,人類文明將邁入下一個時代!

雖然只是邁入第一步,但我沒有在開玩笑,美國、日本、歐盟、英國都陸續展開宇宙太陽能計畫,預計在太空中布下大量太陽能板,將取之不盡的能量,不分晝夜、不分天氣地將能量源源不絕的傳回地球。而且第一階段的測試,已經在宇宙中測試成功了!

宇宙太陽能真的可行嗎?我們離能源自由,還有多遠?

為什麼要去太空中進行太陽能發電?地面太陽能的困境

台灣要選擇哪種能源配比,各方論點各有道理。而同樣的問題,不只是台灣,對世界各國來說都是爭論不休的議題。面對這樣的困境,竟然有人提議往太空探索,去太空中進行大規模太陽能發電,並將能量傳回地球,成為宇宙太陽能電廠,一舉解決所有能源問題。可是就算不去太空,在地面上的太陽能近年來成長迅速,安裝量和產量都持續增加,為什麼非得跑到太空中去做一樣的事呢?

-----廣告,請繼續往下閱讀-----

雖然太陽能板的設置成本近年來降低很多,能不能穩定發電卻要看老天臉色,而且需要的佔地面積廣大。世界上只有少數幅員廣大,日照充足的國家可以打造 GW 等級的太陽能發電廠,像是印度,中國,以及中東地區。許多地方例如台灣,多以民間業者小規模發展為主,很難建設大規模的太陽能發電廠,如果要大規模使用農地、魚塭、屋頂種電,也有許多問題等待解決。

不過只要把太陽能搬到外太空,就可以大喊:「解開束縛、重生吧!太陽能,我還你原型!」

首先,太空中可以接收到更多的陽光。由於太空中沒有夜晚,所以軌道上的衛星幾乎可以 24 小時暴露在陽光之下。此外,太空中的陽光不會像地面上的冬天或傍晚,有傾斜入射的問題。太陽能板可以隨時指向太陽的方向,和太陽光的方向保持垂直,接受百分之百的陽光照射。根據計算,同一塊太陽能板放在太空中可以接受到的陽光量至少是地表的三倍以上。

地球上陽光傾斜入射的問題示意圖。圖/PanSci YouTube

另外,地球的大氣其實幫我們阻隔了許多陽光,保護地表上的我們不會被瞬間曬傷。就算是晴朗無雲的日子,大氣層還是會散射掉許多的陽光。太空中的太陽輻射比地表強上不少,大約多了 40% 左右。

-----廣告,請繼續往下閱讀-----

綜合前面所說的,只要把現有的光電材料放到衛星軌道上,就可以輕鬆獲得約四倍的發電量。此外還不需要任何占地,不會對環境生態帶來負面影響。

太空種出的電要怎麼運回地球?

你可能會好奇,在太空中收穫這麼多太陽能,要怎麼運回地球給大家使用呢?難道要存在電池裡再回收嗎?科幻大師艾西莫夫早在 1941 年就想過這個問題了。在他的短篇小說《理性》中,各個太空站會再收集太陽能之後,用微波光束將能量傳送至不同行星,也就是遠距無線傳輸能量。

雖然這種技術在當時屬於科幻情節,但現在的我們知道這樣的技術在原理上可能辦到的。在我們介紹無線獵能手環那集,我們有提到電磁波傳遞能量的問題,就是能量會以波源為中心向外發散,並且能量隨著距離快速衰減。想要高效率傳輸能量,如果不想接條線,就必須使用指向性的波源,將能源都集中到一點。

現在,我們使用多個天線組成陣列,並調整他們的相位,讓各個天線發出的微波產生干涉,形成筆直前進的單方向微波束,將能量精準發射到遠處的一個點。除此之外,因為選擇的電磁波頻段是微波,就像手機訊號可以穿過牆壁到你的手機一樣,特定頻率的微波也能穿透大氣層或雲層的阻擋。即使地球上的我們是下雨天,宇宙太陽能仍能透過微波將能量傳至地表,大幅降低天氣造成的影響。

-----廣告,請繼續往下閱讀-----

所以,只要把所有太陽能板發射到地球同步軌道上,讓它們在軌道中展開,組裝成大還要更大,邊長長達數公里的超大太陽能板。這樣空中太陽能發電廠就會一直維持在天空中的某一點,地面的我們,只要蓋個微波接收站就可以了。當然要將所有設備發射到地球同步軌道上所費不貲,較可行的做法是先用火箭將衛星射入高度較低的低地球軌道中,再利用衛星本身的離子噴射等方式把自己慢慢推到地球同步軌道。

太空太陽能發電廠概念圖。圖/Space.com

這個主意,在 1968 年工程師 Peter Glaser 就在 Science 期刊上提出,還向美國政府申請了專利。當時,美國能源局和 NASA 也覺得這個概念挺「有趣」的,針對宇宙太陽能做了一系列的調查並提出了正式的可行性報告。不過當時各方面的技術未成熟,無法進行測試。最重要的是,要把一整個太陽能發電廠射到太空,實在要花太多錢,產出的電根本就不敷成本。

好消息是,太空運輸成本近年來已經降低很多。SpaceX 的獵鷹九號火箭將每公斤物質運到低地球軌道的成本,只需要約三千美元,是過去使用太空梭運載的二十分之一。這讓宇宙太陽能的可能性,從僅只於科幻,搖身一變成為潛力無窮的未來能源。

宇宙太陽能離我們有多遠?

從美國、英國、歐盟到日本,都已經放話要加入這場全新的太空能源競賽。領跑者之一是日本的太空機構,宇宙航空研究開發機構 JAXA,預計在 2025 年前後展開從太空向地面送電的實驗,並在 2030 年左右開始試運轉宇宙太陽能機組,是有生之年就能看到的成果!

-----廣告,請繼續往下閱讀-----
從宇宙航空研究開發機構 JAXA,預計在 2025 年前後展開從太空向地面送電的實驗,並在 2030 年左右開始試運轉宇宙太陽能機組。圖/PanSci YouTube

這個時程也不是信口開河,日本在 1980 年代左右便開啟了宇宙太陽能計畫。經過數十年的規劃與研發, JAXA 已在 2015 年進行地面測試,成功將電能傳輸到 55 公尺外的接收天線,驗證遠距傳輸能量的可行性。這個實驗相當重要,因為在發射成本的問題解決之後,宇宙太陽能要面對的下一個難題,就是如何有效地從外太空軌道遠距送電。雖然我們已經知道可以透過干涉的方法,讓微波束直線前進,但實際運作時,還是會有一個很小的發散角,不會完全平行。

JAXA 已在 2015 年進行地面測試,成功將電能傳輸到 55 公尺外的接收天線,驗證遠距傳輸能量的可行性。圖/PanSci YouTube

失之毫釐。差之千里。地球同步軌道離地表可是有三萬六千公里,小小的發散角到地面就會嚴重發散,地面的接收天線尺寸也不可能無限擴張。這任務的難度差不多等於要從操場的一端用雷射筆打到另一端的蚊子,非常困難。JAXA 的天線雖然目前還未達到需要的準度,但是發散角已經能控制在 0.15 度左右,足以從較低的低地球軌道傳輸能量回地球,做初步的測試。

從還處在規劃階段的日本,瞬間移動到地球的另一端,美國的研究團隊,在這個月已經宣布取得重大突破。加州理工學院的宇宙太陽能計畫在今年初,成功讓一個小型測試模組,乘著 SpaceX 的獵鷹 9 號前進低地球軌道,進行太空中的實際測試。這個小型模組包含三個小實驗。第一個實驗是測試宇宙太陽能板的結構、封裝、以及展開並組裝的程序。第二個實驗則是要在 32 種不同的光電材料中,找出哪種在太空中效果最好。第三則是要測試微波傳輸能量在太空中的可行性。

測試宇宙太陽能板的結構、封裝、以及展開並組裝的程序。圖/caltech.edu

就在今年的 6 月 1 號,團隊宣布他們設計的可彎曲天線陣列,在太空中成功傳送能量到三十公分外的接收天線,點亮了 LED 燈。雖然距離只有短短的 30 公分,但是整個實驗暴露在外太空的環境中進行,證明他們的設計可以承受最嚴苛的環境條件。做為測試,他們也嘗試讓天線發射能量到遠在地球表面,大學實驗室的屋頂上。並且,還真的被他們量測到了數值。儘管規模不大,但這是宇宙太陽能第一次的軌道測試,結果相當振奮人心。

-----廣告,請繼續往下閱讀-----
可彎曲天線陣列。圖/PanSci YouTube
右方為可彎曲天線陣列(發射端),左邊為接收端的 LED 燈泡。圖/caltech.edu

如此看來,技術的發展似乎相當樂觀。可是要用於民生發電,成本是很大的重點。宇宙太陽能真的符合經濟效益嗎?或是我們該把資源留給其他選項呢?

宇宙發電廠符合經濟效益嗎?

根據美國能源情報署 EIA 的資料,1GW 發電容量的發電廠,傳統燃煤發電廠的初期建設成本,大約是一千億台幣,核電廠大約是兩千億台幣。那宇宙太陽能呢?每 1kW 的發電需要二十公斤的材料,1GW 就需要兩萬公噸。目前 SpaceX 獵鷹重型火箭運送每公斤材料進入軌道,需要三萬台幣。也就是說,光是將設備全部送上太空的運輸成本,就需要六千億的驚人花費。再加上太陽能板與相關設備的建置成本,以地面型太陽能發電廠為參考的話,大概還要多花500億台幣。而 JAXA 方面的預估,打造第一座 1GW 宇宙太陽能至少需要一兆兩千億日圓,雖然比我們用獵鷹重型火箭預估的還要低,但仍是一筆龐大費用。

各種發電方式的成本與性能表現。圖/美國能源情報署 EIA

那宇宙太陽能真的只是將鈔票往太空撒,空有理想的計畫嗎?當然不是,有兩個讓科學家不放棄的理由——首先是未來建造成本一定會下修。太空的發射成本相比 50 年前,已經少了兩個零,在 SpaceX 的發展下,還在持續地快速減少。另一方面,太陽能材料的輕量化工程也持續在進行,每 kW 發電重量只有十公斤或以下的太陽能材料已經不是虛構。新式的太陽能材料,我們未來也會陸續介紹。這兩個因素加乘在一起,一兆兩千億日圓的成本,很有機會在幾年內就減少為十分之一或更少。

發射火箭的成本逐年降低。圖/futuretimeline.net

更重要的是,宇宙太陽能一但建置完成,就會成為可做為基載能源的再生能源,減少對石化燃料的依賴。甚至因為主要設備都在太空,地面只需要建設接收站,可能將解決許多偏遠地區的能源問題,一舉改變全世界的能源型態。而且與許多八字還沒一撇的發電方式相比,宇宙太陽能已經算是距離現實很接近的選項,也難怪各個國家紛紛搶著要發展這塊領域。不過雖說是永續能源,還是有許多方面值得深入研究。例如要把幾萬公噸的材料射到軌道中,需要排放多少的火箭廢氣?一但規模化,這些巨大的宇宙太陽能板是否會成為小行星的標靶,或在一次的太陽風暴過後,讓軌道中堆滿太空垃圾?

-----廣告,請繼續往下閱讀-----

宇宙太陽能究竟能不能成為可靠的新興未來能源,從想都不敢想,到開始精算成本,相信我們很快就會知道答案。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1219 篇文章 ・ 2200 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

12
3

文字

分享

1
12
3
思考的極限:宇宙創造出「空間」與「時間」? ——宇宙觀的發展史(下篇)|20 世紀後
賴昭正_96
・2023/05/17 ・6928字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

空間與時間都根本不存在:它們只是分別用來說明物體間之相對位置與事件間之前後秩序的「語言」而已。沒有物體就沒有空間的必要;沒有事件就沒有時間的必要。
——賴昭正(不可能得到諾貝爾獎的科普作者)

宇宙在十六世紀以前一直被認為是宗教與哲學的範圍。圖/Envato Elements

宇宙的起源、歷史、與結構,在十六世紀以前,一直以人及地球為中心,被認為是屬於宗教與哲學的範圍。1543 年,哥白尼(Nicolaus Copernicus)粉粹了地球為宇宙中心的幻想;約百年後,伽利略(Galileo Galilei)改進了望遠鏡,並將其鏡頭轉向天空,開啟了觀測天文(observational astronomy)之門,並大力支持哥白尼之地球繞日的理論。

慢慢地,科學家不再須要依靠信仰來解決、而是利用科學儀器去「看」宇宙像什麼樣子及如何演化。又再約百年後,牛頓(Isaac Newton)用萬有引力及距離平方反比定律,解釋了一系列以前不相關的天上人間現象,並且可以計算出行星繞太陽的週期,使得天文學正如其它科學訓練一樣,不再是信仰的爭論,而是證據與理論的問題。

當天文學家了解到了人不可能是宇宙的中心時,科學家再沒有任何理由認為我們所處在的地方在宇宙中佔了一個很獨特的地位;同樣地,也沒理由認為我們所處在的時刻是個很特殊的時刻——稱為「宇宙學原理(Cosmology principle)」。顯然地,宇宙應該永遠就是那樣地存在,它沒有開始,也不會有終結。

膨脹的宇宙

如果星星可以自由移動,那麼宇宙還是不是靜態?圖/Envato Elaments

牛頓的力學統領了三百多年的物理學及天文學發展,直到 1905-1915 年間,愛因斯坦(Albert Einstein, 1897-1955)相繼地發表了狹義相對論及廣義相對論後才被修正。

-----廣告,請繼續往下閱讀-----

愛因斯坦發表了他的重力場方程式後,當然也在思考著宇宙的問題;但卻發現他場方程式的解不可能是一個靜態的宇宙!為了符合當時的宇宙觀,二十世紀近代物理學革命先鋒的愛因斯坦竟然屈服於「共識」,修改其方程式來取得靜態解。

事實上早在 1718 年,英國天文學家哈雷(Edmond Halley,1656-1742)就發現了三顆明亮的恆星不再處於古代觀測所確定的位置,嚴重地質疑恆星固定位置的假設。而如果星星可以像正常的物理物體一樣地自由移動,那麼宇宙是不是靜態呢?

1922 年至 1924 年間,俄國數學家佛里曼(Alexander Friedmann,1888-1925)假設宇宙中物體的分佈是均勻(宇宙學原理),解廣義相對論場方程式,發現這些物質在空間的分佈只有三種可能:
從開始的一點,空間隨著時間增大而

  1. 慢慢趨近到一個定值;
  2. 永遠繼續膨脹增大;
  3. 膨脹一段時間後開始收縮。
圖/作者提供

1927 年,比利時魯汶天主教大學(Catholic University of Louvain)教授勒梅特(Georges Lemaître,1894-1966,麻省理工學院物理博士)神父也獨立地發現了佛里曼解;但因他對其物理意義比較感興趣,從中預測了真實的星系宇宙膨脹,得出距離我們越遠的星群後退速率應越快、但沒有人在意的革命性結論——愛因斯坦接受了他的數學,但拒絕了他的物理解釋。

-----廣告,請繼續往下閱讀-----

1929 年,美國天文學家哈柏(Edwin Hubble,1889-1953)分析了一些從遙遠星群傳來之光譜的測量結果,發現其頻率很有系統地往頻率較低之紅色位移(red shift),其位移值隨星球離我們之距離的增加而加大。顯然地,遙遠星群是依一定的規則在遠離我們:距離我們越遠,後退速率越快——稱為「哈柏—勒梅特定律」(Hubble-Lemaître law)。

這無可避免的結論是:宇宙正處於一膨脹狀態!此一完全出乎意外的發現,改變了宇宙論這一研究的整個面貌!可惜在哈柏去世前,天文學顯然還是被認為是屬於宗教與哲學的範圍,因此他從未得到諾貝爾獎。

宇宙的開始

一個膨脹的宇宙是一個在改變的宇宙,因此應該具有生命的歷史。1931 年,勒梅特開始追溯宇宙的足跡,得出了他所謂的「原始原子假說」(primeval atom),在《自然》雜誌上發表了一篇 457 字的短文謂:

「如果我們回到過去,我們必須找到越來越少的量子,直到我們發現宇宙的所有能量都包含在幾個——甚或是一個獨特的——量子中。……,如果世界始於一個單一的量子,那麼空間和時間的概念在開始時完全沒有任何意義。……,我們可以以一個獨特原子的形式設想宇宙的開始,其原子量是宇宙的總質量。」

-----廣告,請繼續往下閱讀-----

無神論宇宙學家霍伊爾(Fred Hoyle,1915-2001)因為不相信「原始原子假說」,在 1949 年諷刺地稱它為「大霹靂」(big bang),沒想到這一名詞竟然廣為科學家所接受的,稱勒梅特的宇宙觀為「大霹靂宇宙論」。

1979 年 12 月,麻省理工學院古士(Alan Guth,1947-)教授突然心血來潮,懷疑他的研究——超冷(supercooled)的希格斯場(Higgs field)——或許也適用於宇宙論。

美國理論物理學、宇宙學家 Alan Harvey Guth 亦是暴脹模型的創立者。圖/維基百科

古士的研究顯示,如果當初宇宙充滿了稱為急脹子(inflaton)的希格斯場,則在慢慢膨脹而冷卻下來時,這急脹子可能被困在一能量不為零的非常不穩定之超冷狀態。此狀態的急脹子因具負內壓,可以提供非常強大的排斥力,促成瞬間非常巨大的膨脹(「大霹靂」的原因)。

但因此一狀態非常不穩定,因此急脹只維持了大約 10-35 秒之久;但在這期間宇宙膨脹率隨著時間而急速加快的!在此之後,宇宙的膨脹率才因重力的關係又恢復到其越來越小的正常狀態!

-----廣告,請繼續往下閱讀-----

此一巨大迅速加速膨脹不但能解釋為何現今的宇宙是如此地均勻;它甚至還告訴了我們現今我們所觀測到的宇宙,事實上只是整個宇宙中非常小的一部份!這正又說明了為什麼我們現今觀測到的宇宙是平的——正如大球表面上的一個小面積看起來是平的一樣。此一偶然發現,一下子解決了宇宙大霹靂論的三大謎題(詳見愛因斯坦的最大錯誤——宇宙論常數)!在大約 10-35 秒後,此一大霹靂才停止,急脹子才放出其多餘的超冷能量,產生我們現今所看到的一般物質與能量。

科學家稱此一改良的大霹靂宇宙論為「急脹宇宙論」(inflationary cosmology),原來之大霹靂宇宙論為「標準大霹靂宇宙論」(standard cosmological Big Bang model)。

宇宙沒有邊緣

一個以獨特原子「大霹靂」出來的時空當然應該是有界限的,有界限的時空當然應該是有邊緣的。可是如果有邊緣,那應該有很獨特的中心點,這不違反了「宇宙學原理」嗎?還有,邊緣的外面是什麼?如果是空間,那應該是「大霹靂」造出來的,應該是宇宙的一部分,所以宇宙應該是沒有邊緣的。

沒有邊緣的宇宙不一定必須是無限大的:愛因斯坦 1917 年提出的宇宙就是一個沒有邊界的有限宇宙:生活在二度球面上的怪人,它們生活的球面是有限的,但卻沒有邊界。球面不平,故可以彎回形成一個封閉的無邊緣空間;但如果宇宙的幾何是平的,不能彎回來,那麼宇宙便應該是無限大的,沒有邊緣的;儘管如此,宇宙的膨脹還是在繼續製造空間的,所以空間隨著時間變成「更無限大」。

-----廣告,請繼續往下閱讀-----
圖/作者提供

時空的膨脹

我們對「膨脹」的了解都是置身事外、隔岸觀火的:像看正在膨脹的氣球,只見其體積越來越大。但是宇宙只有一個,我們不可能置身事外;而如果宇宙是無限大的,則不管我們在哪裡,都會覺得我們正處於膨脹中心點,正像球面上的任何一點,發現其它各點離我們之速率與其距離成正比(這正是哈柏的發現)。

還有,隔岸觀火讓我們可以看到氣球外的膨脹空間,我們可以量得在膨脹時氣球上任何一點對地球的「運動」速度;但如果我們置身正在膨脹的宇宙中,當然看不到宇宙外的膨脹空間。

不,等一等,宇宙是無限的,它怎麼還有「外面」讓它膨脹呢?當然沒有!所以現在的物理學家認為空間像氣球的表面一樣,是膨脹——不是運動——「製造」出來的!兩個物體的空間距離因膨脹——不是相對運動——而加大。

萊布尼茲(Gottfried Leibniz,1646-1716)終於戰勝了牛頓:沒有物質的地方就沒有空間,空間根本不存在,空間只是用說明物體之間的相對位置的「語言」而已。所以哈柏所測到的遙遠星群有系統地離開我們,並不是因為星群「運動」的結果——星群並沒有在牛頓之「絕對空間」中運動。

-----廣告,請繼續往下閱讀-----

如果空間是被製造出來的想法很難接受,相信時間就容易瞭解多了!想一想:「現在」根本沒有「明天」,「明天」是在明天的「現在」才出現的,所以「明天」是製造出來的;「時間」是在膨脹,往現在不存在之「明天」膨脹;「現在」與「明天」之間沒有界限,所以時間應該沒有邊緣;沒有邊緣就沒有邊緣外是啥的問題!

而沒有邊緣、又是「我的青春小鳥一去不回來」(註一)的時間不應是無限大嗎……,所以宇宙的膨脹事實上不止製造了空間,同時也製造了時間!

西漢(公元前 202 年-公元 8 年)《淮南子》的首篇《原道訓》謂上下四方為之「宇」,古往今來為之「宙」;這句話闡明了「宇」就是空間,「宙」就是時間;宇宙就是時空,宇宙歷史就是製造時空的歷史!

宇宙歷史就是製造時空的歷史!圖/Envato Elements

宇宙年齡與黑暗夜空

如果時間是因為大霹靂而製造出來的,那現在的宇宙到底都老了?精確測量的「遙遠星系的速度及其距離比」(稱為「哈柏常數」)估計現在的宇宙年齡為 138 ± 10 億年。

-----廣告,請繼續往下閱讀-----

2013 年,歐洲航天局的普朗克太空望遠鏡繪製了一張詳細的宇宙微波背景溫度之波動圖,估計宇宙的年齡為 138.2 ± 0.5 億年。去年 3 月 30 日,由約翰霍普金斯大學韋爾奇(Brian Welch)博士領導的一群天文學家宣布發現了有史以來最遠和最早的恆星:一個在 129 億年前(大霹靂之後 9 億年時)發出的光點。

哈柏對星系系統性紅外移的發現終於讓我們解決了牛頓之無限宇宙論與宗教之有限宇宙論間的衝突。

起初人們認為僅紅移效應就足以解釋為什麼夜晚的天空是黑暗的:來自遙遠星系中恆星的光會被紅移到可見光範圍之外的長波長。然而,現在共識是,宇宙的有限年齡是一個更重要的影響。即使宇宙在空間上是無限的,但由於光速及重力傳播速有限,來自遙遠星系的光子或重力根本還沒有足夠時間抵達到地球。

如果現在宇宙的年齡是 138 億年,那麼我們將感覺不到距離地球 138 億光年外的光或重力,而認為宇宙是有限的。我們稱這個半徑 138 億光年的球面內宇宙為「可觀測宇宙」(observable universe)。在這個宇宙視界內的星數大約 2 萬億個,太少了,無法使夜空明亮或將地球撕裂。

還有,如果牛頓當時知道宇宙是在膨脹,他根本不需要一種「無限而永恆」的神力來防止星雲被拉到一起。

獵戶座大星雲揭示了恆星與行星系統的形成過程。圖/維基百科

思想的貧乏

如果時空是大霹靂製造出來的,那在這之前根本沒有時空!沒有時空?那這大霹靂在什麼「地方」發生的?又為了解釋如果爆炸有中心點,那便違反了「宇宙學原理」,有些理論天文學家甚至提出大霹靂是「到處」同時發生的!可是「到處」不是空間嗎?……這不正是「先有雞還是先有蛋」的矛盾問題嗎?

儘管哲學家盧梭(Jean-Jacques Rousseau, 1712-1778)認為:「現實的世界是有止境的,幻想的世界則是無垠的」,但在寫這一節時,筆者還是一個頭兩個大!

紐約州立大學石溪分校的天體物理學家舒特兒(Paul Sutter)在去年 2 月 25 號的宇宙之外有什麼東西嗎?一篇文章結尾說:「如果這一切聽起來複雜而令人困惑,請不要擔心。……,這就是現代宇宙學的力量之一:它(數學)使我們能夠研究難以想像的事物。」

恐怕我們所能做的就是接受這些悖論並努力去適應它,就像前面提到之萬有引力,當初不是被認為是「魔法、神秘、非科學」嗎?但現在已經沒有人懷疑這種力之存在了。同樣地,近代的物理(相對論、量子力學)裡不也是充滿了很多違反我們日常生活邏輯的奇怪觀點嗎?

宇宙又再次加速膨脹

1998 年加州大學伯克萊分校(University of California, Berkeley)的波米特兒(Saul Perlmutter)及澳洲國立大學(Australia National University)的思密特(Brian Schmidt)相繼宣佈超級新星 la 型的數據顯示,在大霹靂後的 70 億年,宇宙的膨脹率又再次加速了!約翰霍普斯金大學(Johns Hopkins University)的雷斯(Adam Riess)於 2006 年再次肯定了這些觀查結果。

此一發現再次重寫了人類對宇宙演化的看法,因此諾貝爾獎委員會將 2011 年的物理獎發給這三位科學家。

真是一波剛平,一波又起!好不容易物理學家總算了解了大霹靂的原因,在它之後宇宙的膨脹因為萬有引力的關係應該逐漸慢下來,怎麼現在它的膨脹又加速了?牛頓重力只有相吸的作用,因此要解釋此一加速膨脹,看來只有求助於愛因斯坦那修改方程式內之「宇宙論常數」(cosmological constant)了。

不錯,波米特兒及思密特思考著:在大霹靂(急脹)後,宇宙靠大霹靂時的衝力(物理學上稱為慣性)而繼續膨脹,但因萬有引力的關係,膨脹速率將越來越慢;可是如果真有愛因斯坦的宇宙論常數,則因其排斥強度不會隨宇宙膨脹而降低(萬有引力則會因宇宙膨脹而降低),它總有一天它會強過萬有引力,使宇宙的膨脹率由減速再次變成加速!這一天顯然就發生在他們所發現之大霹靂後約 70 億年時!

可是愛因斯坦的宇宙論常數是啥東西呢?沒有人知道,但一定不是普通的物質,否則早就應該被發現了——因此科學家稱它為「暗能量」(dark energy)。物理學家及天文學家正努力地在尋找此一充滿了宇宙、及必須具有負內壓的怪物。

宇宙膨脹的藝術構想圖。 圖/維基百科

結論

今日大部分的天文學家都認為宇宙是平的(佛里曼解 1),是在膨脹、沒有界限、無限大的。黑洞及重力波的相繼發現鞏固了廣義相對論在現今宇宙研究的理論地位。我們現在所看到的宇宙只是整個宇宙之一小部分而已;138 億年前離我們最遠那些星群因為宇宙加速膨脹的關係,事實上現在都已經離我們 460 億光年了(因為不是運動造成的,它們可以以大於光速的速度遠離我們)。

很難想像一個沒有邊緣、無限大的空間是什麼樣子?在那裡又如何能不停地製造出空間來?……,這些無法理解的「矛盾」邏輯或許正是羅素(Bertrand Russel,1872-1970)所說的「認為事物必須有一個開始(邊緣、大小、結束、……)的想法,實際上是由於我們思想的貧乏」?或普朗克(Max Planck,1858-1947)所說的:「科學無法解開自然界的終極奧秘,因為歸根結底,我們自己是我們試圖解開的謎團的一部分」?

這使筆者想到:人工智慧是人類製造出來的,它能像我們一樣創造出牛頓力學、相對論、量子力學嗎[註2]?甚或超越人類創造出一個沒有「矛盾」的宇宙觀嗎?

筆者在「日常生活範式的轉變:從紙筆到 AI」一文裡最後提到:或許筆者下篇文章已經不是自己寫的了。讀者認為本文是人工智慧代寫的嗎?為什麼?

註解

  1. 黃駱賓:《青春舞曲》
  2. 筆者覺得不可能,因為筆者認為創造是屬於靈感和直覺的非理性活動,無法表達的;愛因斯坦曾謂:「我很少用語言思考。(雖然)一個想法出現了,我可能會嘗試用文字來表達它」。當我們無意識地思考時,邏輯及演繹推理就被拋在腦後;愛因斯坦曾謂:「我從來沒有通過理性思考的過程做出任何發現」。
    人工智慧有能夠有靈感、直覺、或無意識的思考嗎?還有,科學上不少大發現都是意外的,例如注意到胰臟被割除之狗,小便過的地板上蒼蠅特別多而發現了胰島素,忘了收拾細菌培養皿就去度假而發現了盤尼西林,錯誤的假設發現了量子統計力學等等。人工智慧如何「學習」或碰到這種運氣呢?

延伸閱讀

  1. 賴昭正:《我愛科學》(華騰文化有限公司,2017 年 12 月出版):「量子統計的先鋒——波思」(科學月刊,1971 年 4 月號),「牛頓的水桶」(科學月刊,2011 年 8 月號),「愛因斯坦的最大錯誤——宇宙論常數」(科學月刊,2011 年 12 月號) ,「暗物體與暗能量」(科學月刊,2014 年 6 月號),「愛因斯坦其實沒那麼神?」(泛科學,2016/03/16)。
  2. 50年的追尋-宇宙之演化(科學月刊,2019 年 8 月號)。
  3. 宇宙是靜態還是在膨脹?又是誰先發現宇宙微波背景輻射?(泛科學,2022/04/22) 。
  4. 從圓周率與無理數,談數學也有其無法理解、不精確、和不確定性(泛科學,2019/06/03)。
  5. 賴昭正譯(P.C.W. Davies 原著):《近代宇宙觀中的空間與時間》(新竹國興出版社,1981 年 8 月出版)。
所有討論 1
賴昭正_96
42 篇文章 ・ 51 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。