0

0
0

文字

分享

0
0
0

粒線體的DNA可以交換?

葉綠舒
・2015/01/09 ・1326字 ・閱讀時間約 2 分鐘 ・SR值 568 ・九年級

從國中或是國小的生物開始,我們就知道粒線體是細胞的發電廠,有自己的DNA(下圖的4)位於內膜(inner membrane)所圍起來的空間(基質,稱為matrix)裡。

粒線體以二分裂法(fission)繁殖,但是在細胞中兩個(或更多)的粒線體也可以融合,形成長管狀的粒線體網絡(mitochondrial network)[1]。不過,不管是單獨的粒線體,或是粒線體網絡,大約很少有人想到:粒線體之間是否存在著DNA交換的問題?甚或是,細胞與細胞之間是否能交換粒線體DNA?

粒線體。圖片來源:wiki
粒線體。圖片來源:wiki

我們知道原核生物可以把體外的DNA吸收進來,成為自己的一部份,造成自己的性狀改變;這個過程稱為「轉型」(transformation),由Frederick Griffith在1928年於肺炎雙球菌(Streptococcus pneumoniae)的實驗裡觀察到。後來我們也知道,原核生物利用這個天賦來互通有無;尤其是在抗藥性基因。但是其他的DNA能交換嗎?對於細菌來說,還可以經過性毛(sex pili)來交換一部份的基因體DNA;就是這樣而已。

不過,在2015年1月發表於細胞代謝(Cell Metabolism)期刊上的一篇研究[2],足以讓我們重新想想「有規則就有例外」這句話。

紐西蘭的馬拉甘醫學研究所(Malaghan Institute of Medical Research)的研究團隊,在研究小鼠的乳癌時,意外地發現:癌症細胞在缺乏粒線體DNA的狀況下,可以從周圍健康的宿主細胞中獲取粒線體DNA。

圖片來源:Cell Metabolism
圖片來源:Cell Metabolism

研究團隊將沒有粒線體DNA的小鼠乳癌細胞,注入健康的小鼠體內。由於這些細胞缺乏粒線體DNA,造成粒線體功能極度不良,只能依靠醣解作用(glycolysis)來產生能量,理論上應該會長得很慢才是。

但是,大約在一個月以後,研究團隊不僅看到原先注入癌細胞的部位長出了癌症,也在血液以及肺部發現了乳癌細胞。原先他們以為,這些癌細胞學會了如何在沒有粒線體的狀況下存活;但是,當他們在同事的建議下,測定這些跑到血液以及肺部的乳癌細胞的粒線體DNA時,卻發現:這些癌細胞裡面,有粒線體DNA的存在。而且,連位在注入部位的癌細胞(原位癌),都發現了粒線體DNA的存在。獲取粒線體DNA,使得這些癌細胞重新獲得進行細胞呼吸作用的能力。

研究團隊發現,這些癌細胞進行細胞呼吸作用的能力,與他們的「轉移程度」(筆者不大確定這個詞)有相關:原位癌最少,其次是血液中的癌細胞;而轉移到肺部的癌細胞,進行細胞呼吸作用的能力最好(雖然還不及原來的細胞)。

這個發現,除了讓我們認識到,原來真核細胞也可以交換粒線體DNA之外,另外也讓我們了解,原來癌細胞可以經由健康的宿主細胞獲取DNA之後,重新獲得快速生長以及轉移的能力。當然,小鼠與人之間容或有差異,但如果人的癌細胞也經由類似的機制獲取轉移的能力,未來可以針對這個機制,研發新的抗癌藥物。

原刊轉載於作者部落格

參考文獻:

  1. Bob Buchanan, Wilhelm Gruissem, Russell Jones. 2002. Biochemistry & Molecular Biology of Plants. Wiley.
  2. An S. Tan, James W. Baty, Lan-Feng Dong, Ayenachew Bezawork-Geleta, Berwini Endaya, Jacob Goodwin, Martina Bajzikova, Jaromira Kovarova, Martin Peterka, Bing Yan, Elham Alizadeh Pesdar, Margarita Sobol, Anatolyj Filimonenko, Shani Stuart, Magdalena Vondrusova, Katarina Kluckova, Karishma Sachaphibulkij, Jakub Rohlena, Pavel Hozak, Jaroslav Truksa, David Eccles, Larisa M. Haupt, Lyn R. Griffiths, Jiri Neuzil, Michael V. Berridge. 2015.Mitochondrial Genome Acquisition Restores Respiratory Function and Tumorigenic Potential of Cancer Cells without Mitochondrial DNA. Cell Metabolism. 21(1):81–94.

相關標籤: DNA 粒線體
文章難易度
葉綠舒
262 篇文章 ・ 5 位粉絲
做人一定要讀書(主動學習),將來才會有出息。


1

4
2

文字

分享

1
4
2

什麼是「造父變星」?標準燭光如何幫助人類量測天體距離?——天文學中的距離(四)

CASE PRESS_96
・2021/10/22 ・3033字 ・閱讀時間約 6 分鐘
  • 撰文|許世穎

「造父」是周穆王的專屬司機,也是現在「趙」姓的始祖。以它為名的「造父變星」則是標準燭光的一種,讓我們可以量測外星系的距離。這幫助哈柏發現了宇宙膨脹,大大開拓了人們對宇宙的視野。然而發現這件事情的天文學家勒梅特卻沒有獲得她該有的榮譽。

宇宙中的距離指引:標準燭光

經過了三篇文章的鋪陳以後,我們終於要離開銀河系,開始量測銀河系以外的星系距離。在前作<天有多大?宇宙中的距離(3)—「人口普查」>中,介紹了距離和亮度的關係。想像一支燃燒中、正在發光的蠟燭。距離愈遠,發出來的光照射到的範圍就愈大,看起來就會愈暗。

我們把「所有發射出來的光」稱為「光度」,而用「亮度」來描述實際上看到的亮暗程度,而它們之間的關係就是平方反比。一旦我們知道一支蠟燭的光度,再搭配我們看到的亮度,很自然地就可以推算出這支蠟燭所在區域的距離。

舉例來說,我們可以在台北望遠鏡觀測金門上的某支路燈亮度。如果能夠找到到那支路燈的規格書,得知這支路燈的光度,就可以用亮度、光度來得到這支路燈的距離。如果英國倫敦也安裝了這支路燈,那我們也可以用一樣的方法來得知倫敦離我們有多遠。

我們把「知道光度的天體」稱為「標準燭光(Standard Candle)」。可是下一個問題馬上就來了:我們哪知道誰是標準燭光啊?經過許多的研究、推論、歸納、計算等方法,我們還是可以去「猜」出一些標準燭光的候選。接下來,我們就來實際認識一個最著名的標準燭光吧!

「造父」與「造父變星」

「造父」是中國的星官之一。傳說中,「造父」原本是五帝之一「顓頊」的後代。根據《史記‧本紀‧秦本紀》記載:造父很會駕車,因此當了西周天子周穆王的專屬司機。後來徐偃王叛亂,造父駕車載周穆王火速回城平亂。平亂後,周穆王把「趙城」(現在的中國山西省洪洞縣一帶)封給造父,而後造父就把他的姓氏就從本來地「嬴」改成了「趙」。因此,造父可是趙姓的始祖呢!(《史記‧本紀‧秦本紀》:造父以善御幸於周繆王……徐偃王作亂,造父為繆王御,長驅歸周,一日千里以救亂。繆王以趙城封造父,造父族由此為趙氏。)

圖一:危宿敦煌星圖。造父在最上方。圖片來源/參考資料 2

回到星官「造父」上。造父是「北方七宿」中「危宿」的一員(圖一),位於西洋星座中的「仙王座(Cepheus)」。一共有五顆恆星(造父一到造父五),清代的星表《儀象考成》又加了另外五顆(造父增一到造父增五)。[3]

英籍荷蘭裔天文學家約翰‧古德利克(John Goodricke,1764-1786)幼年因為發燒而失聰,也無法說話。1784 年古德利克(John Goodricke,1764-1786)發現「造父一」的光度會變化,代表它是一顆「變星(Variable)」。2 年後,年僅 22 歲的他就當選了英國皇家學會的會員。卻在 2 週後就就不幸因病去世。[4]

造父一這顆變星的星等在 3.48 至 4.73 間週期性地變化,變化週期大約是 5.36 天(圖二)。經由後人持續的觀測,發現了更多不同的變星。其中一群變星的性質(週期、光譜類型、質量……等)與造父一接近,因此將這一類變星統稱為「造父變星(Cepheid Variable)」。[5]

圖二:造父一的亮度變化圖。橫軸可以看成時間,縱軸可以看成亮度。圖片來源:ThomasK Vbg [5]

勒維特定律:週光關係

時間接著來到 1893 年,年僅 25 歲的亨麗埃塔‧勒維特(Henrietta Leavitt,1868-1921)她在哈佛大學天文台的工作。當時的哈佛天文台台長愛德華‧皮克林(Edward Pickering,1846-1919)為了減少人事開銷,將負責計算的男性職員換成了女性(當時的薪資只有男性的一半)。[6]

這些「哈佛計算員(Harvard computers)」(圖三)的工作就是將已經拍攝好的感光板拿來分析、計算、紀錄等。這些計算員們在狹小的空間中分析龐大的天文數據,然而薪資卻比當時一般文書工作來的低。以勒維特來說,她的薪資是時薪 0.3 美元。順帶一提,這相當於現在時薪 9 美元左右,約略是台灣最低時薪的 1.5 倍。[6][7][8]

圖三:哈佛計算員。左三為勒維特。圖片來源:參考資料 9

勒維特接到的目標是「變星」,工作就是量測、記錄那些感光板上變星的亮度 。她在麥哲倫星雲中標示了上千個變星,包含了 47 顆造父變星。從這些造父變星的數據中她注意到:這些造父變星的亮度變化週期與它們的平均亮度有關!愈亮的造父變星,變化的週期就愈久。麥哲倫星雲離地球的距離並不遠,可以利用視差法量測出距離。用距離把亮度還原成光度以後,就能得到一個「光度與週期」的關係(圖四),稱為「週光關係(Period-luminosity relation)」,又稱為「勒維特定律(Leavitt’s Law)」。藉由週光關係,搭配觀測到的造父變星變化週期,就能得知它的平均光度,能把它當作一支標準燭光![6][8][10]

圖四:造父變星的週光關係。縱軸為平均光度,橫軸是週期。光度愈大,週期就愈久。圖片來源:NASA [11]

從「造父變星」與「宇宙膨脹」

發現造父變星的週光關係的數年後,埃德溫‧哈柏(Edwin Hubble,1889-1953)就在 M31 仙女座大星系中也發現了造父變星(圖五)。數個世紀以來,人們普遍認為 M31 只是銀河系中的一個天體。但在哈柏觀測造父變星之後才發現, M31 的距離遠遠遠遠超出銀河系的大小,最終確認了 M31 是一個獨立於銀河系之外的星系,也更進一步開拓了人類對宇宙尺度的想像。後來哈柏利用造父變星,得到了愈來愈多、愈來愈遠的星系距離。發現距離我們愈遠的星系,就以愈快的速度遠離我們。從中得到了「宇宙膨脹」的結論。[10]

圖五:M31 仙女座大星系裡的造父變星亮度隨時間改變。圖片來源:NASA/ESA/STSci/AURA/Hubble Heritage Team [1]

造父變星作為量測銀河系外星系距離的重要工具,然而勒維特卻沒有獲得該有的榮耀與待遇。當時的週光關係甚至是時任天文台的台長自己掛名發表的,而勒維特只作為一個「負責準備工作」的角色出現在該論文的第一句話。哈柏自己曾數度表示勒維特應受頒諾貝爾獎。1925 年,諾貝爾獎的評選委員之一打算將她列入提名,才得知勒維特已經因為癌症逝世了三年,由於諾貝爾獎原則上不會頒給逝世的學者,勒維特再也無法獲得這個該屬於她的殊榮。[12]

本系列其它文章:

天有多大?宇宙中的距離(1)—從地球到太陽
天有多大?宇宙中的距離(2)—從太陽到鄰近恆星
天有多大?宇宙中的距離(3)—「人口普查」
天有多大?宇宙中的距離(4)—造父變星

參考資料:

[1] Astronomy / Meet Henrietta Leavitt, the woman who gave us a universal ruler
[2] wiki / 危宿敦煌星圖
[3] wiki / 造父 (星官)
[4] wiki / John Goodricke
[5] wiki / Classical Cepheid variable
[6] wiki / Henrietta Swan Leavitt
[7] Inflation Calculator
[8] aavso / Henrietta Leavitt – Celebrating the Forgotten Astronomer
[9] wiki / Harvard Computers
[10] wiki / Period-luminosity relation
[11] Universe Today / What are Cepheid Variables?
[12] Mile Markers to the Galaxies

所有討論 1
CASE PRESS_96
1 篇文章 ・ 3 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策