Advertisements

0

0
0

文字

分享

0
0
0

2014年10大科學重大突破(上)

鄭國威
・2015/01/09 ・3017字 ・閱讀時間約 6 分鐘 ・SR值 560 ・八年級

每年,《科學》(Science)的編輯群都會選出科學上的年度突破成就,去年入榜的有:上帝粒子-希格斯玻色子(Higgs boson)的發現、癌症的免疫療法和第一個量子儀器等。今年的獲選者同樣表現十分吸睛,而這些成就也再一次的提醒大家,人類的科學素養便是在無邊無際的各個領域上勇於追求進步與真相,曾經我們這麼做,而未來我們也會如此繼續。以下我們簡單扼要地介紹這些入榜者以及它們的小故事。

延伸閱讀:想了解上帝粒子看這邊!

參考資料:


13-5

一、羅賽塔(Rosetta)任務-登陸彗星

這件太空界的大事想必大家都不陌生,歷經延期與更改登陸目標等種種困難,睽違十年後成功登陸的消息讓很多人是既緊張又興奮吧!

Advertisements

這是歐洲有史以來野心最大的太空任務,研究人員渴望藉由彗星追蹤器羅賽塔(Rosetta)和探測器菲萊(Philae),捕捉遠在火星以外的一系列照片,羅賽塔的運行軌道環繞著編號67P/C–G的格拉希門克(Churyumov-Gerasimenko)彗星,試圖幫助科學家找出地球的生命起源,這也同時宣告了彗星科學的時代已經來臨。

而羅賽塔的命名其實源自「羅塞塔石碑」(Rosetta Stone),這塊石碑上刻有一段古埃及法老托勒密五世的詔書,以古埃及象形文字、埃及草書及古希臘文三種文字對照書寫,而其中法國學者尚-佛罕索瓦.商博良(Jean-François Champollion)認為這是破解古埃及象形文字的關鍵。同樣的,歐洲太空總署希望這趟旅程也能發揮相同的關鍵作用,為科學家們解開太陽系的各種謎團。

延伸閱讀:探測器菲萊成功登陸彗星

參考資料:

Advertisements

 

13-16
部分恐龍出現羽化的現象如Kulindadromeus,牠被視為和鳥類關係最密切。Photo credit:http://www.sciencemag.org/

鳥的身世之謎

你知道其實恐龍的後裔現在依然存在地球上嗎?你一定也看過牠們!

其實雷克斯暴龍(Tyrannosaurus rex)和敏捷的蜂鳥是近親,今年,演化生物學家終於找出了這種演化過渡時期的模式和步調。

隨著新的化石不斷出土,科學家分析後發現恐龍鳥類出現前,便陸續有羽化的證據出現,且開始發展出飛行、絕緣、展示和平行的功能,並認為鳥類從恐龍滅絕後經歷了爆發式的演進與分化(註1),且雞的基因結構在恐龍滅絕後更是改變極少(註2),因此,目前的研究普遍認為雞跟恐龍的血緣關係最近。

而其中有趣的一件事是,身為世界上體型最精小的鳥類,也是恐龍近親的蜂鳥,有一項「叛逆」的演化(註3),在掌管甜味受器蛋白的T1Rs基因家族(註4)中,T1R1和T1R3負責偵測胺基酸以引起「鮮美」的風味,而T1R2-T1R3則是可偵測糖類並產生想吃甜食的慾望,而古代鳥類受到恐龍祖先的影響,缺乏T1R2基因而對於糖類興趣缺缺,但蜂鳥的T1R1和T1R3基因卻突變轉換成了「香甜」的醣類探測器,使得牠們異於同類反而是「重度嗜甜者」!

Advertisements

延伸閱讀:鳥羽之謎

參考資料:

  • 註1:Meredith, R. W., Zhang, G., Gilbert, M. T. P., Jarvis, E. D., & Springer, M. S. (2014). Evidence for a single loss of mineralized teeth in the common avian ancestor. Science, 346(6215), 1254390.
  • 註2:Romanov, M. N., Farré, M., Lithgow, P. E., Fowler, K. E., Skinner, B. M., Rebecca, O., … & Griffin, D. K. (2014). Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC genomics, 15(1), 1060.
  • 註3:Baldwin, M. W., Toda, Y., Nakagita, T., O’Connell, M. J., Klasing, K. C., Misaka, T., … & Liberles, S. D. (2014). Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor. Science,345(6199), 929-933.
  • 註4:Bachmanov, A. A., & Beauchamp, G. K. (2007). Taste receptor genes. Annual review of nutrition, 27, 389.
  • Chickens are closely related to dinosaurs, and other insights from the new bird family tree. [December 11, 2014]
  • Most birds can’t taste sugar – here’s why the hummingbird can.[10 September 2014]

三、返老還童,即將成真?

長生不老一直以來都是人類心裡最深沉的慾望之一,無論東西方自古以來皆然,也因此促成了煉金術(也稱煉丹術)的興起,利用化學方法提煉重金屬以製備靈丹妙藥。不過這些「解藥」通常都含有劇毒,根本無法成功達到它的「目的」,但不可否認的,它的確促進了化學實驗技術和醫藥學等發展。

目前的科學還辦不到讓人類永生,但返老還童的方法卻出現一道曙光!

Advertisements

由艾美.瓦格薩特(Amy J. Wagers)領導的哈佛大學團隊研究(註1)發現,將年輕老鼠的血輸入年長老鼠的體內,會使年長老鼠的肌肉和大腦出現了逆轉衰老的功效。他們從年輕老鼠的血液中分離出了一種GDF11因子,它可以活化心臟,也能提振肌肉強度和耐力,以及刺激大腦中的神經生長,而無細胞的血漿甚至可以改善空間記憶。

咦?那如果……這項結果在人體上也成立的話,不就……!科學家跟你想的也一樣噢!目前這個想法已經進入測試階段,試圖找出青年血液中可以對抗老化的因子。

延伸閱讀:注入新血:返老還童的關鍵?

參考資料:

Advertisements
  • 註1:Sinha, M., Jang, Y. C., Oh, J., Khong, D., Wu, E. Y., Manohar, R., … & Wagers, A. J. (2014). Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science, 344(6184), 649-652.

13-2

Bye-bye,人類

今年有數個團隊的研究顯示,即使沒有人類的監督,機器人和機器人之間也可以合作無間。研究人員開發了一套新的軟體使它們可以利用感應器共同完成基本任務,對於未來世界趨勢可能全面機械化來說,這是十分重要的第一步。

還記得電影《機械公敵》(I,Robot)嗎?智慧型機器人的應用遍布未來人類的日常生活中,而在成為不可或缺的生活幫手的同時,機器人卻發展出了人類獨有、也是人類控制機械人的最後一道防線-心智。

而這也似乎是科學家所擔心的,電腦科學家史帝夫.奧姆亨卓(Steve Omohundro)《人工智能實驗與理論》期刊(Journal of Experimental & Theoretical Artificial Intelligence)的文章(註1)中預測:「軍事和經濟壓力促使自動機械系統迅速發展,具有自我意識的殺人機器將無可避免地造成人工智能終結者,結果給人類帶來滅亡。」

然而截至目前,電腦或機器人雖已經可以展現成年人的智力,甚至超越許多領域的頂尖高手,但要具備如一歲小孩的感知與運動能力,仍是十分的困難。在未來機械人高度發展的過程中,許多的倫理問題即將考驗著人類的智慧。

Advertisements

延伸閱讀:程式碼就是法律:智慧財產權法 或 機器人三大法則?

參考資料:


13-1

晶片,下一個大腦

傳統電腦以美國數學家約翰.馮.諾伊曼(John von Neumann)所提出的理論結構為基礎,執行序列的邏輯運算(如試算表和文字處理),但卻無法解決海量數據如視覺資訊的處理。不過人類的大腦卻十分善於面對這項難題,數以千計的神經元藉由化學訊息互相溝通,使大腦的不同區域能夠分工並同時執行任務。

因此,IBM和其他公司的電腦工程師首次聯合推出了仿人腦的「神經」晶片TrueNorth,晶片包含了54億的電晶體和2.56億的「突觸」,可模擬人類大腦處理訊息,而這款晶片改變了以往電腦應付複雜工作的模式,發展出機器視覺以及環境監測,以達到提高效率卻低耗能的目的。

Advertisements

延伸閱讀:更聰明的晶片–仿人類神經元的電腦晶片

參考資料:

等不及想知道更多傳送門:2014年10大科學重大突破(下)

Advertisements
相關標籤:
文章難易度
Advertisements
鄭國威
26 篇文章 ・ 0 位粉絲
愛吃愛玩愛科學,過著沒錢的快樂日子。
Advertisements
Advertisements


1

4
2

文字

分享

1
4
2

什麼是「造父變星」?標準燭光如何幫助人類量測天體距離?——天文學中的距離(四)

CASE PRESS_96
・2021/10/22 ・3032字 ・閱讀時間約 6 分鐘
  • 撰文|許世穎

「造父」是周穆王的專屬司機,也是現在「趙」姓的始祖。以它為名的「造父變星」則是標準燭光的一種,讓我們可以量測外星系的距離。這幫助哈柏發現了宇宙膨脹,大大開拓了人們對宇宙的視野。然而發現這件事情的天文學家勒梅特卻沒有獲得她該有的榮譽。

宇宙中的距離指引:標準燭光

經過了三篇文章的鋪陳以後,我們終於要離開銀河系,開始量測銀河系以外的星系距離。在前作<天有多大?宇宙中的距離(3)—「人口普查」>中,介紹了距離和亮度的關係。想像一支燃燒中、正在發光的蠟燭。距離愈遠,發出來的光照射到的範圍就愈大,看起來就會愈暗。

我們把「所有發射出來的光」稱為「光度」,而用「亮度」來描述實際上看到的亮暗程度,而它們之間的關係就是平方反比。一旦我們知道一支蠟燭的光度,再搭配我們看到的亮度,很自然地就可以推算出這支蠟燭所在區域的距離。

舉例來說,我們可以在台北望遠鏡觀測金門上的某支路燈亮度。如果能夠找到那支路燈的規格書,得知這支路燈的光度,就可以用亮度、光度來得到這支路燈的距離。如果英國倫敦也安裝了這支路燈,那我們也可以用一樣的方法來得知倫敦離我們有多遠。

我們把「知道光度的天體」稱為「標準燭光(Standard Candle)」。可是下一個問題馬上就來了:我們哪知道誰是標準燭光啊?經過許多的研究、推論、歸納、計算等方法,我們還是可以去「猜」出一些標準燭光的候選。接下來,我們就來實際認識一個最著名的標準燭光吧!

Advertisements

「造父」與「造父變星」

「造父」是中國的星官之一。傳說中,「造父」原本是五帝之一「顓頊」的後代。根據《史記‧本紀‧秦本紀》記載:造父很會駕車,因此當了西周天子周穆王的專屬司機。後來徐偃王叛亂,造父駕車載周穆王火速回城平亂。平亂後,周穆王把「趙城」(現在的中國山西省洪洞縣一帶)封給造父,而後造父就把他的姓氏就從本來的「嬴」改成了「趙」。因此,造父可是趙姓的始祖呢!(《史記‧本紀‧秦本紀》:造父以善御幸於周繆王……徐偃王作亂,造父為繆王御,長驅歸周,一日千里以救亂。繆王以趙城封造父,造父族由此為趙氏。)

圖一:危宿敦煌星圖。造父在最上方。圖片來源/參考資料 2

回到星官「造父」上。造父是「北方七宿」中「危宿」的一員(圖一),位於西洋星座中的「仙王座(Cepheus)」。一共有五顆恆星(造父一到造父五),清代的星表《儀象考成》又加了另外五顆(造父增一到造父增五)。[3]

英籍荷蘭裔天文學家約翰‧古德利克(John Goodricke,1764-1786)幼年因為發燒而失聰,也無法說話。1784 年古德利克(John Goodricke,1764-1786)發現「造父一」的光度會變化,代表它是一顆「變星(Variable)」。2 年後,年僅 22 歲的他就當選了英國皇家學會的會員。卻在 2 週後就就不幸因病去世。[4]

造父一這顆變星的星等在 3.48 至 4.73 間週期性地變化,變化週期大約是 5.36 天(圖二)。經由後人持續的觀測,發現了更多不同的變星。其中一群變星的性質(週期、光譜類型、質量……等)與造父一接近,因此將這一類變星統稱為「造父變星(Cepheid Variable)」。[5]

Advertisements
圖二:造父一的亮度變化圖。橫軸可以看成時間,縱軸可以看成亮度。圖片來源:ThomasK Vbg [5]

勒維特定律:週光關係

時間接著來到 1893 年,年僅 25 歲的亨麗埃塔‧勒維特(Henrietta Leavitt,1868-1921)她在哈佛大學天文台的工作。當時的哈佛天文台台長愛德華‧皮克林(Edward Pickering,1846-1919)為了減少人事開銷,將負責計算的男性職員換成了女性(當時的薪資只有男性的一半)。[6]

這些「哈佛計算員(Harvard computers)」(圖三)的工作就是將已經拍攝好的感光板拿來分析、計算、紀錄等。這些計算員們在狹小的空間中分析龐大的天文數據,然而薪資卻比當時一般文書工作來的低。以勒維特來說,她的薪資是時薪 0.3 美元。順帶一提,這相當於現在時薪 9 美元左右,約略是台灣最低時薪的 1.5 倍。[6][7][8]

圖三:哈佛計算員。左三為勒維特。圖片來源:參考資料 9

勒維特接到的目標是「變星」,工作就是量測、記錄那些感光板上變星的亮度 。她在麥哲倫星雲中標示了上千個變星,包含了 47 顆造父變星。從這些造父變星的數據中她注意到:這些造父變星的亮度變化週期與它們的平均亮度有關!愈亮的造父變星,變化的週期就愈久。麥哲倫星雲離地球的距離並不遠,可以利用視差法量測出距離。用距離把亮度還原成光度以後,就能得到一個「光度與週期」的關係(圖四),稱為「週光關係(Period-luminosity relation)」,又稱為「勒維特定律(Leavitt’s Law)」。藉由週光關係,搭配觀測到的造父變星變化週期,就能得知它的平均光度,能把它當作一支標準燭光![6][8][10]

圖四:造父變星的週光關係。縱軸為平均光度,橫軸是週期。光度愈大,週期就愈久。圖片來源:NASA [11]

從「造父變星」與「宇宙膨脹」

發現造父變星的週光關係的數年後,埃德溫‧哈柏(Edwin Hubble,1889-1953)就在 M31 仙女座大星系中也發現了造父變星(圖五)。數個世紀以來,人們普遍認為 M31 只是銀河系中的一個天體。但在哈柏觀測造父變星之後才發現, M31 的距離遠遠遠遠超出銀河系的大小,最終確認了 M31 是一個獨立於銀河系之外的星系,也更進一步開拓了人類對宇宙尺度的想像。後來哈柏利用造父變星,得到了愈來愈多、愈來愈遠的星系距離。發現距離我們愈遠的星系,就以愈快的速度遠離我們。從中得到了「宇宙膨脹」的結論。[10]

Advertisements
圖五:M31 仙女座大星系裡的造父變星亮度隨時間改變。圖片來源:NASA/ESA/STSci/AURA/Hubble Heritage Team [1]

造父變星作為量測銀河系外星系距離的重要工具,然而勒維特卻沒有獲得該有的榮耀與待遇。當時的週光關係甚至是時任天文台的台長自己掛名發表的,而勒維特只作為一個「負責準備工作」的角色出現在該論文的第一句話。哈柏自己曾數度表示勒維特應受頒諾貝爾獎。1925 年,諾貝爾獎的評選委員之一打算將她列入提名,才得知勒維特已經因為癌症逝世了三年,由於諾貝爾獎原則上不會頒給逝世的學者,勒維特再也無法獲得這個該屬於她的殊榮。[12]

本系列其它文章:

天有多大?宇宙中的距離(1)—從地球到太陽
天有多大?宇宙中的距離(2)—從太陽到鄰近恆星
天有多大?宇宙中的距離(3)—「人口普查」
天有多大?宇宙中的距離(4)—造父變星

參考資料:

[1] Astronomy / Meet Henrietta Leavitt, the woman who gave us a universal ruler
[2] wiki / 危宿敦煌星圖
[3] wiki / 造父 (星官)
[4] wiki / John Goodricke
[5] wiki / Classical Cepheid variable
[6] wiki / Henrietta Swan Leavitt
[7] Inflation Calculator
[8] aavso / Henrietta Leavitt – Celebrating the Forgotten Astronomer
[9] wiki / Harvard Computers
[10] wiki / Period-luminosity relation
[11] Universe Today / What are Cepheid Variables?
[12] Mile Markers to the Galaxies

Advertisements

Advertisements
所有討論 1
Advertisements
CASE PRESS_96
156 篇文章 ・ 375 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策