Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

關鍵基因:兇猛小野貓變成溫柔小毛球?

蕭汎如
・2014/12/09 ・1258字 ・閱讀時間約 2 分鐘 ・SR值 562 ・九年級

如果把現今的貓咪和9500年前的近東野貓(the Near Eastern wildcat)放在一起,你或許分辨不出來。牠們體型相似,看起來都是「貓」,但是性格可是天差地遠!科學家好奇,究竟是哪些基因,讓野生又兇猛的野貓,變成人們家中討喜的毛小孩呢?

263231958_ff8cd34214
來源: Animal Photos!

貓咪為什麼進入人類社會?

歷史上,貓咪大約是在從9500年前進入人類社會,與人類最早開始經營農牧業(在中東地區)的時間點並沒有相差太遠。野貓們躡手躡腳地遠離惡劣的沙漠環境,並且進入人類村莊的時機,起因於齧齒類動物大舉入侵穀倉之後。因此,有許多科學家猜測,牠們最有可能是自我馴化了。因為性格友善的貓咪更有可能取得人類餐桌的剩餘食物,也會受到人類的保護。

數千年之後,貓咪的體型隨著時間逐漸縮小,獲得了花樣繁多、顏色豐富的皮毛,而且發展出有別於過去、反社交性(antisocial)的溫馴脾性。

更進一步的說,畜牧類的動物例如牛隻、雞、豬…….等等到狗,也經歷了相似的轉變過程,然而,科學家卻對這中間的基因機轉所知不多。

-----廣告,請繼續往下閱讀-----
262825285_2e1d043914
來源: Animal Photos!

進擊的貓咪大變身

現在,由華盛頓大學醫學院的發表在《美國國家科學院院刊》(Proceedings of the National Academy of Sciences)的一篇研究中,發現了貓咪體內281個變異的基因,有些基因表現在貓咪最為依賴的感官,比如視覺和聽覺上;其他則表現在脂肪代謝以及貓咪適應高度肉食性的生活型態上。

最有趣的是,則是該團隊定序了22隻家貓及2隻近東野貓的基因並且比較之後,找到了至少13個讓貓咪性格自兇猛到溫馴的關鍵基因。根據先前其他科學家對小鼠的研究,這13個基因在動物的認知與行為上扮演重要的角色,影響了動物對於害怕的反應,或是透過食物獎勵動物學習新行為的能力。主持這項研究的Montague博士說,「因為貓咪需要對於新環境以及人類更具勇氣,而且人類承諾給予的食物也讓牠們在附近地區徘徊」。

另外,研究團隊也發現了,有五個來自家貓的基因會影響神經脊細胞 ( neural crest cells )的演化,發展中的胚胎幹細胞會影響構成生物體的每個部分:從頭蓋骨的型構到皮毛的顏色。這也支持了最近的研究,也就是說,這些細胞可能都是影響動物馴養的主要控制開關,解釋了為何家畜都共享相同的特徵,例如牠們都擁有更小的腦和某種色素沉澱所致的斑紋。

假如貓咪因為基因改變而導致和原先的種類有不同的習性,而且變化的過程與其他家畜相似的話,為什麼貓咪仍然比其他家畜更保有野性呢?比如說,與狗兒相較?這篇研究的共同作者William Murphy表示,那是因為貓咪的基因體經歷演化壓力的強度較小,而且牠比狗的馴化過程短──狗可是陪伴了人類30,000年的好朋友呢──所以一點也不驚訝貓咪更具野性。另外,「貓咪最初被選擇變成家畜的原因和狗以及其他家畜不同,牠們原本只是到處遊晃,但人類卻容忍了牠們」。

-----廣告,請繼續往下閱讀-----
208625821_be1ca0ad75
來源: Animal Photos!

資料來源:The genes that turned wildcats into kitty cats David Grimm (10 November 2014)

-----廣告,請繼續往下閱讀-----
文章難易度
蕭汎如
7 篇文章 ・ 1 位粉絲
PanSci 實習編輯,台大公衛系,對世界充滿好奇,最喜歡的句子是王爾德在《溫夫人的扇子》中寫的一句台詞:"We are all in the gutter, but some of us are looking at stars. "。沒錯,我們都身陷在日常生活的爛泥溝渠之中,但還是可以抬頭,仰望燦爛星空。:)

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
貓咪也會跟人玩「拋接遊戲」?顛覆你對貓咪的印象,新研究揭示牠們遊戲背後的原因
F 編_96
・2024/12/29 ・2749字 ・閱讀時間約 5 分鐘

F 編按:本文編譯自 Live Science

說到「拋接遊戲」,許多人腦中應該都會浮出狗狗的畫面,牠們會快速地撲向被丟出去的球或玩具,再興奮地叼回到主人面前。但超出大家想像的是,貓咪也擁有這項天賦(想不到吧),不少飼主都曾發現,家裡的貓貓竟然會以各種物品如紙球、髮圈、瓶蓋,甚至鉛筆等,主動找主人來一場「拋接遊戲」。

在大部分人的認知中,狗是天生「撿東西」的好手,因此曾被培育成獵犬或工作犬,用以回收獵物、報信或傳送物品。而貓咪喜歡捕捉老鼠,又孤傲高冷的形象,則似乎與這項技能沒有何關係。但既然如此,那為何新的研究以及大量飼主觀察都顯示,有些貓能不經任何刻意訓練,就自發地找主人玩起拋接遊戲呢?

在家感覺高冷又有點懶洋洋的貓貓,也會跟人玩拋接遊戲?圖 / unsplash

貓咪自發性的「拋接遊戲」

英國蘇賽克斯大學的博士生珍瑪.佛曼(Jemma Forman)與團隊近期在《Scientific Reports》上發表了一份有趣的研究。該研究針對 924 位飼主進行問卷,篩選那些聲稱自家貓咪曾展現「叼回來」行為的案例。結果發現,超過 94% 的飼主表示,自家貓咪的撿拾行為是「自然發生」的,而且往往在牠們還是不到一歲的幼貓時期就自發展開。

不少飼主的敘述顯示:這類行為的開始常常並非飼主主導,有時可能只是「不小心」丟出一個物體,貓看見後便會自行撲上前把它叼回來;或是貓咪先將某個小物件疊在主人腳邊,若飼主把該物件再拋出去,貓就衝向前撿回,來回幾次便形成「丟接」的循環。一位研究者便提到,有飼主開玩笑說:「其實是貓訓練了我們,而不是我們訓練了貓!」

-----廣告,請繼續往下閱讀-----

飼主與貓的互動:是誰主導了遊戲?

研究另一個重要發現,是貓比人想像中更「有意識」地控制遊戲進程。根據問卷結果,大多數貓會自行決定什麼時候開始玩,也多半由牠們決定何時結束。相較於狗狗可能乖巧等待主人丟球,甚至對「再來一次!」樂此不疲,貓咪常在丟接幾回合後顯露不耐、失去興趣或乾脆躺下睡覺。換言之,這些「叼回來」的遊戲時間通常很短,平均不到 10 次的往返後,貓就會轉移注意力。

此外,貓咪對「丟接」場域與對象都有明顯偏好。部分飼主觀察到,貓只會和特定人士或在特定房間裡玩這個遊戲;如果換個地方、換個人,貓便不再給予任何回應。物件本身也有強烈偏好:有些貓喜歡輕巧的紙團或塑膠瓶蓋,有些則迷戀鉛筆、彈性髮圈,甚至噗嚨共不明的「隨手抓到啥」。從個案顯示,某些貓跟筆有著奇妙的羈絆,一旦看到主人拿筆在地上,就會立刻叼起來,再「要求」被丟遠一點,好繼續衝刺撿回。

為什麼貓會撿東西回來?

不論是狗還是貓,「撿東西」基本上與狩獵本能脫不了關係。對狗來說,傳統解釋是牠們祖先源自狼族,群居習性和人類培育下的獵取天賦,使牠們更具把「獵物」叼回巢穴或交給領袖的行為模式。人類便利用此特徵,培養獵犬能把獵物從遠處叼回,或訓練牠們在工作環境中搬運物資。

不管是對貓還是狗來說,將物品叼回來的行為,與自身的狩獵本能有關。圖 / unsplash

至於貓咪,牠們並沒有經過繁雜而漫長的馴化過程來加強「帶回獵物」的基因。多數家貓的繁育重點在外觀(毛色、體型等)或日常溫馴度,而非特別功能。然而,野外的貓科動物依然經常把捕捉到的小動物叼回家中,可能是母貓餵養幼貓的天性延伸;既然公母貓都可能會「叼回來」,顯示其中還涉及更複雜的本能驅動。部分專家推測,或許貓有一部分遺傳特質,會對移動中的小物件產生高度興趣,因而自然而然地「啟動」衝刺、叼拿、再放回主人跟前的動作。

-----廣告,請繼續往下閱讀-----

貓咪真的「天生社交」嗎?

長久以來,狗被視為「社會性」動物,貓則被歸類為「獨居型」;然而,越來越多研究開始顯示,貓其實也會對飼主表現相當程度的關注,並非只在用餐時間才記得「家裡有個人」。一些行為專家指出,貓很可能透過「拋接遊戲」來吸引主人注意,或回饋主人放出的社交信號。例如,人類在地上丟出一個物品或在空間中拋擲,可能看似無意,但貓卻將之視為「你在呼喚我一起玩」,進而加入互動。

儘管貓普遍沒有群居獵食的祖先背景,也不如狗般崇拜「主人」,牠們仍能形成一種與人類共存並汲取好處的社交關係。例如,許多貓會主動把「戰利品」,像是戶外抓到的昆蟲、小鳥,甚至是室內看似無關痛癢的物體,叼到飼主面前,彷彿是獻禮或玩耍邀請。將叼回來的行為延伸成丟接遊戲,或許是貓對「社交互動」的一種嘗試,更帶有娛樂及互利的意味。

未解的謎團

雖然這項新研究顯示了「貓咪叼回來」行為的常見模式,也試圖探討牠們如何與人協作玩樂,但對「為何」會出現此行為,依然沒有定論。一般相信,狗會撿東西是出自體內被強化的基因;可貓的祖先卻是更善於獨自狩獵且不需看同伴眼色。若從母貓育幼行為或雄貓的「玩獵物」角度來看,都仍無法全面解釋:究竟貓自願玩「拋接」是基於何種驅力?

有些專家認為,品種也可能是關鍵因素。互聯網論壇以及養貓社群時常討論,西方的暹羅貓或孟加拉貓等品種出現「叼回來」行為的比率似乎較高,或許意味某些基因序列更傾向於進行空間探索與物件互動。可是,現今仍缺乏大型量化研究去證實這些品種間的顯著差異。

-----廣告,請繼續往下閱讀-----
有些人認為叼回物品的行為,可能也與貓貓的品種有關,但目前尚未證實。圖 / unsplash

人在貓科動物的研究上往往著重於飲食、繁殖或健康問題,而貓的玩耍模式與社交行為在科學領域仍是相對陌生的領域。不過,隨著新一代學者與廣大愛貓人士投入觀察、蒐集資料,或許很快就能釐清更多引人好奇的問題。例如:「各類貓咪在何種年齡段最常表現叼回行為?」「是否有特定環境因素(如家中空間大小、多貓相處情況)會影響貓的叼回頻率?」「不同個性或壓力承受度的貓,對『拋接』的接受程度是否有所差異?」等等。

這次研究也為後續打開一條可深入探究的線索,英國林肯大學的教授詹姆斯.瑟培爾(James Serpell)也持續透過線上問卷收集成千上萬份有關貓行為的回饋,期望未來能與其他學者合作,一起揭開更多「貓咪為何玩丟接」的奧祕。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

2
0

文字

分享

0
2
0
從遺傳學角度剖析:女性能在體育場上超越男性嗎?——《運動基因》
行路出版_96
・2024/08/10 ・3712字 ・閱讀時間約 7 分鐘

科學期刊的預言:女性能追趕甚至超越男性?

我在 2002 年還在讀大四時,第一次看到兩位 UCLA 生理學家的論文〈不用多久女性就會跑得比男性快?〉,當時我覺得這個標題很荒謬。在那之前我花了五個賽季,進行 800 公尺中距離跑步訓練,成績已經超越世界女子紀錄。而且我還不是自己接力隊上跑最快的。

但那篇論文發表在《自然》(Nature)期刊上,這是世上極具聲望的科學期刊,所以一定有些道理。大眾就是這麼認為的。《美國新聞與世界報導》雜誌在 1996 年亞特蘭大奧運之前,對一千個美國人做了調查,結果其中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。

1996 年亞特蘭大奧運前,一千位美國人中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。 圖/envato

《自然》期刊上那篇論文的作者,把男子組和女子組從 200 公尺短跑到馬拉松各項賽事歷年的世界紀錄畫成圖表,發現女子組紀錄進步得遠比男子組急速。他們用外推法從曲線的趨勢推斷未來,確定到 21 世紀前半葉,女性就會在各個賽跑項目擊敗男性。兩名作者寫道:「正因進步速度的差異實在非常大,而使(兩者)差距逐漸縮小。」

2004 年,趁著雅典奧運成為新聞焦點之際,《自然》又特別刊出一篇同類型的文章〈2156 年奧運會場上的重要衝刺?〉(Momentous Sprint at the 2156 Olympics?)──標題所指的,正是女子選手會在 100 公尺短跑比賽中,勝過男子選手的預計時間。

-----廣告,請繼續往下閱讀-----

2005 年,三名運動科學家在《英國運動醫學期刊》發表了一篇論文,省去問號開門見山在標題宣稱:〈女性終將做到〉(Women Will Do It in the Long Run.)。

難道男性主導世界紀錄的情況,始終是歧視女性、把女性排除於競技場外的結果?

20 世紀上半葉,文化規範與偽科學嚴重限制了女性參與運動競技的機會。在 1928 年阿姆斯特丹奧運期間,有媒體(捏造)報導指稱,女性選手在 800 公尺賽跑後筋疲力竭地躺在地上,這讓一些醫生和體育記者十分反感,使得他們認為這個比賽項目會危害女性健康。《紐約時報》上有篇文章就寫:「這種距離太消耗女性的體力了。」〔1〕那幾屆奧運之後,在接下來的三十二年間,距離超過 200 公尺的所有女子項目,都突然遭禁,直到 2008 年奧運,男女運動員的徑賽項目才終於完全相同。但《自然》期刊上的那幾篇論文指出,隨著女性參賽人數增多,看起來她們的運動成績到最後可能會與男性並駕齊驅,甚至比男性更好。

運動能力的基因密碼:性別差異的生物學根源

我去拜訪約克大學的運動心理學家喬.貝克時,我們談論到運動表現的男女差異,尤其是投擲項目的差異。在科學實驗裡證實過的所有性別差異中,投擲項目一直名列前茅。用統計學術語來說的話,男女運動員的平均投擲速度相差了三個標準差,大約是男女身高差距的兩倍。這代表如果你從街上拉一千個男子,其中 997 人擲球的力氣會比普通女性大。

-----廣告,請繼續往下閱讀-----

不過貝克提到,這種情形可能是反映女性缺乏訓練。他的太太是打棒球長大的,輕輕鬆鬆就能贏過他。他打趣說:「她會發出一束雷射光。」那麼這是生物學上的差異嗎?

男性和女性的 DNA 差異極小,僅限於在女性身上為X或男性為Y的那單一染色體。姊弟或兄妹從完全相同的來源取得基因,透過重組母親和父親的 DNA,確保兄弟姊妹絕對不會相近到變成複製人。

性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,它的全名是「Y 染色體性別決定區基因」。若要說有「運動能力基因」,那就非 SRY 基因莫屬了。人類生物學的安排,就是讓同樣的雙親能夠同時生育出男性的兒子和女性的女兒,即使傳遞的是相同的基因。SRY 基因是一把 DNA 萬能鑰匙,會選擇性地啟動發育成男性的基因。

我們在生命初期都是女性──每個人類胚胎在形成的前六週都是女性。由於哺乳動物的胎兒會接觸到來自母親的大量雌激素,因此預設性別為女性是比較合算的。在男性身上,SRY 基因到第六週時會暗示睪丸及萊氏細胞(Leydig cell)該準備形成了;萊氏細胞是睪丸內負責合成睪固酮的細胞。睪固酮在一個月之內會不斷湧出,啟動特定基因,關閉其他基因,兩性投擲差距不用多久就會出現。

-----廣告,請繼續往下閱讀-----

男孩還在子宮時,就開始發育出比較長的前臂,這使得他們日後投擲時會做出更有力的揮臂動作。儘管男孩和女孩在投擲技能方面的差異,不如成年男性和女性之間那麼顯著,但這種差異在兩歲幼童身上已經很明顯了。

性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,會選擇性地啟動發育成男性的基因。 圖/envato

文化與訓練的影響:投擲項目中的性別差距

為了確定孩童之間的投擲差距有多少與文化有關,北德州大學和西澳大學的科學家組成團隊,共同測試美國孩童與澳洲原住民孩童的投擲技能。澳洲原住民沒有發展出農業,仍過著狩獵採集生活,他們教導女孩丟擲戰鬥及狩獵用武器,就像教導男孩一樣。這項研究確實發現,美國男孩和女孩在投擲技能上的差異,比澳洲原住民男孩和女孩之間的差異顯著許多。不過儘管女孩因為較早發育長得較高較壯,男孩仍比女孩擲得更遠。

普遍來說,男孩不僅比女孩更善於投擲,視覺追蹤攔截飛行物的能力往往也出色許多;87% 的男孩在目標鎖定能力的測試上,表現得比一般女孩好。另外,導致差異的部分原因,至少看起來是因為在子宮的時期接觸到了睪固酮。由於先天性腎上腺增生症,而在子宮裡接觸到高濃度睪固酮的女孩,上述項目的表現會像男孩一樣,而不像女孩;患有這種遺傳疾病的胎兒,腎上腺會過度分泌男性荷爾蒙。

受過良好投擲訓練的女性,能輕易勝過未受訓練的男性,但受過良好訓練的男性,表現會大幅超越受過良好訓練的女性。男子奧運標槍選手擲出的距離,比女子奧運選手遠大約三成,儘管女子組使用的標槍比較輕。此外,女性投出的最快棒球球速的金氏世界紀錄是 65 mph(相當於時速 105 公里),表現不錯的高中男生的球速經常比這還要快,有些男子職業球員可以投出超過 100 mph(相當於時速 160 公里)的球速。

-----廣告,請繼續往下閱讀-----

在跑步方面,從 100 公尺到 1 萬公尺,經驗法則是把菁英級表現差距定在 11%。從短跑到超級馬拉松,不管任何距離的賽跑,男子組的前十名都比女子組的前十名快大約 11%。〔2〕在職業等級,那就是個鴻溝。女子組的 100 公尺世界紀錄,跟 2012 年奧運男子組的參賽資格還差了四分之一秒;而在一萬公尺長跑,女子組的世界紀錄成績,與達到奧運參賽資格最低標準的男選手相比落後了一圈。

不論距離,男子組前十名的跑步速度普遍比女子組快約 11%。圖/enavato

投擲項目與純爆發力型運動項目的差距更大。在跳遠方面,女子選手落後男子 19%。差距最小的是長距離游泳競賽;在 800 公尺自由式比賽中,排名前面的女子選手,與排名前面的男子選手差距不到 6%。

預言女性運動員將超越男性的那幾篇論文暗示,從 1950 年代到 1980 年代,女性表現的進展遵循一條會持續下去的穩定軌跡,但在現實中是有一段短暫爆發,隨後趨於平穩──這是女子運動員,而非男子運動員進入的平穩期。儘管到 1980 年代,女性在 100 公尺到 1 英里各項賽跑的最快速度,都開始趨於穩定,但男子運動員仍繼續緩慢進步,雖然只進步一點點。

數字很明確。菁英女子選手並未趕上菁英男子選手,也沒有保持住狀況,男性運動員則在非常慢地進步。生物學上的差距在擴大。但為什麼原本就有差距存在?

-----廣告,請繼續往下閱讀-----

註釋

  1.  各報上氣不接下氣地報導 800 公尺女子選手紛紛倒在跑道上。正如運動雜誌《跑步時代》(Running Times)2012 年的一篇文章指出的,實情是只有一個女子選手在終點線倒下,其餘三名都打破了先前的世界紀錄。據稱人在現場的《紐約郵報》記者寫道,「11 位淒慘的女性」當中有 5 人沒有跑完,5 人在跑過終點線後倒下。《跑步時代》報導說,參賽的女運動員只有 9 個,而且全部跑完。
  2. 過去普遍認為,隨著比賽距離拉長,女子賽跑選手會超越男子選手。這是克里斯多福.麥杜格(Christopher McDougall)在《天生就會跑》這本很吸引人的書裡談到的主題,但不完全正確。成績非常優秀的跑者之間的 11% 差距,在最長距離和最短距離同樣穩固存在。儘管如此,南非生理學家卻發現,當一男一女的馬拉松完賽時間不相上下,那個男士在距離短於馬拉松的比賽中通常會贏過那個女士,但如果競賽距離加長到 64 公里,女士就會跑贏。他們報告說,這是因為男性通常比較高又比較重,比賽距離越長,這就會變成很大的缺點。然而在世界頂尖超馬選手當中,男女體型差異比一般群體中的差異小,而 11% 的成績差距,也存在於超級長距離的最優秀男女選手之間。

——本文摘自 大衛・艾普斯坦(David Epstein)運動基因:頂尖運動表現背後的科學》,2020 年 12 月,行路出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing