Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

研究造假與科學假說的可證偽性有關嗎?

活躍星系核_96
・2014/11/26 ・2545字 ・閱讀時間約 5 分鐘 ・SR值 571 ・九年級

撰文者/艾俠(自由文字工作者)

交通大學教授黃國華教授與其助理在國際期刊「Nature Nanotechnology」上發表的研究受質疑造假、歷經一年的調查卻得到作者諸多不合理的回應,這是近日國內最受矚目的科學新聞[1][2]。在針對論文作者的抨擊中,朱敬一、牟中原、孫以瀚三位學者聯名發表了「研究造假 一句『資料丟了』就卸責?」一文,以哲學家 Karl Popper 提出的科學要件「可證偽性」(falsifiability),指實驗細節交代不清的研究無法被重現,不能被稱為科學。

不過,我覺得這聽起來怪怪的——研究造假真的與科學假說的可證偽性有關嗎?在這篇文章裡,我希望能夠藉由更深入地討論可證偽性的觀念,來檢視這個問題。

《The Black Swan》,1896, by William Degouve de Nuncques
《The Black Swan》,1896, by William Degouve de Nuncques

哲學普及作家朱家安在「從學術醜聞到科學精神:科學哲學能幹嘛?」一文中補充了可證偽性的細節,並且試圖解釋它和此一事件的關係。朱家安對可證偽性(亦作「可否證性」)的解說相當地簡明易懂,在這裡我引用他的解釋,朝另一方向說明此一概念:

-----廣告,請繼續往下閱讀-----

物理學和占星術有什麼不一樣?

對於這個問題,Popper給的答案是:科學假說具備可否證性,非科學假說則沒有。這裡的「可否證性」,並不是說科學假說都是錯的,或者都有瑕疵,而是強調:

每一則科學假說,都必須保有這樣的可能性:
當特定的證據出現,這則假說就被推翻。

科學是一種藉由比對證據來判斷假說是否可信的方法。如果有個假說不可能經由任何的比對而被判斷為是錯的,這意味著比對證據對它來說沒有科學上的意義;這樣的假說就不能被稱作是科學假說。必須強調的是科學方法並不是唯一有價值的研究方法,然而當有人試圖像科學家那樣解釋現實世界,但又不打算在任何反面證據出現時承認錯誤,我們就會說他是在做偽科學。

「可證偽性」的簡化與實用

在舉可證偽性的正面例子時,我們經常會使用一些能用一句或數句話說完的「假說」,例如「所有天鵝都是白的」、「在地表,把手放開,雞蛋總是會墜落」,其中每一句話的每一要素都是可直接觀察的(我們把這種句子叫做「觀察語句」[3];每個觀察語句都能對應到一種具體的檢驗方法)。這種「假說」展示出了一種重要性質:嚴格來說,只有能直接觀察的東西是可證偽的

當「假說」是以觀察語句一次寫出全部內容的方式書寫時,它一定是可證偽的。

-----廣告,請繼續往下閱讀-----

然而,如果我們翻出一些實例來看,會發現幾乎沒有真正的科學假說是用這種方式板上釘釘地寫在那裡。科學既然是為了深入探究我們所不知道的東西,那麼理所當然地不會問一些顯而易見的事情。科學假說通常會討論一些不能直接看到的東西例如基因、重力、物質波;接著,我們總是會用某個核心觀念來表達整個假說,例如「真空中的光速在任何參考系下是恆定不變的」之類,然後再考慮它技術性的細節、可能用什麼方式檢驗。

這和直接用觀察語句寫成的「假說」有很大的不同嗎?在這裡,有的。這種應用上有價值的假說如何檢驗,很大程度要看相關學術社群的習慣;而當我們說某假說不可證偽時,通常就是在抱怨那些人的習慣,使它無法合理地對應到可預期的檢驗方法。這代表的有時候是例如社群主張不存在能夠檢驗的方法,有時候是例如沿用朱家安的舉例:占星師是一群很會找理由的人,被反駁了會馬上找出新的說法。可證偽性在現實狀況中,通常不面對一個已明確敘述了檢驗方式的假說,而是把相關社群的傳統看作假說的一部分。在這裡,我們也能窺見可證偽性不足以真正用來分辨科學與偽科學的原因之一:我們總是會涉入那些極具複雜性的社群問題,而難以拿出具體的檢驗方式來判斷。

「逃避責任」與「偽科學」的距離

可證偽性的介紹就到這裡,接下來回頭討論這次的造假疑案。為了了解三位學者的說法有什麼奇怪之處,我在這裡不得不接觸一些瑣碎的語言問題。

-----廣告,請繼續往下閱讀-----

科學(science)是什麼?這應該是所有自認為是科學家的人最最基本的常識。大哲學家 Karl Popper 有以下經典的描述:科學家提出的是「可以被證明為偽的假說(falsifiable hypotheses)」。科學家之所以要做詳細的實驗室記錄、要在論文中仔細交代每一步細節,就是要讓「別人」得以檢驗重複,或是讓別人能挑戰、證明其假說中的瑕疵。

三位學者引用可證偽性來批判這次事件,並且認為發表研究就有詳細交代實驗細節的義務。我認為上面這段話的前半和後半都沒有什麼問題,但如果在這裡,「科學假說應有可證偽性」是「研究應詳細交代細節」的理由,那就很奇怪了。前面提到,我們在討論可證偽性時,一個核心概念會和相關社群的傳統共同形成假說而被檢視;僅僅是一個研究者、甚至是提出假說者的研究態度不好、實驗過程交代不清,並不足以使假說失去構築出檢驗方法的可能性(特別是,既然這篇論文被國際知名期刊接受過,代表科學社群對它的概念有一定的接受程度);我們必須能夠指出「這個概念已經不被重視證據的人認為是可研究的」,才有辦法說:它作為一種假說已失去了可證偽性。

我認為三位學者的文章,是把「假說」與「實驗過程」混淆了。文中指出,他們憂慮發生「每位當事人都只要說『資料丟了、電腦壞了、助理跑了、過程忘了』就能卸責,那麼其假說是永遠無法『被證明為偽的』」的後果;但這時不能被證明為偽的,似乎不是研究者在期刊上所發表的假說,而是實驗的真實性。誠然,我們可以重新把「這個實驗真的在此時此刻做出這個結果」當作是一個「假說」(想想前面那種用觀察語句寫的「假說」),但它應該不會是我們抱怨某人在做偽科學時想說的事情。

結語

這篇文章起於一些和 Karl Popper 相關的討論。我們在討論中同意前述文章對可證偽性的詮釋看起來怪怪的,不過朱家安覺得很難用普及的方式說清楚(見此討論)而沒有在文中碰觸,我則在這裡補完我認為在可證偽性方面需要釐清的部分。

-----廣告,請繼續往下閱讀-----

最後,我仍然會在這個層面上同意這三位學者的指責:對實驗細節交代不清的科學家是不負責任的——即使他真的作出了那個實驗,也沒有好理由要別人相信他——而且如果在某個學術社群之中大家都這樣做,那裡很快就會成為偽科學的溫床了。這是我們應當嚴肅看待這種研究態度的原因。

參考資料

  1. 交大教授違學術倫理 科技部「書面告誡」輕放
  2. DNA sequencing using electrical conductance measurements of a DNA polymerase
  3. 觀察詞與理論詞

本文轉載自中立之丘

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
今天的星座運勢是……不宜相信占星術?——《數盲、詐騙與偽科學》
大牌出版.出版大牌_96
・2024/01/07 ・2000字 ・閱讀時間約 4 分鐘

占星術的背後

占星術是極普遍的偽科學,書店架上塞滿了談占星的書,而且幾乎每一份報紙都會發布每日星座運勢。蓋洛普(Gallup)1986 年發布的一項調查報告指出,52% 的美國青少年相信星座,而各行各業中,認同占星學中某些亙古流傳說法的人,也多到讓人難過。我說讓人難過,是因為如果那些人相信占星師和占星術,當你進一步思考他們還可能相信哪些人事物,會讓人不寒而慄。一旦那些人手握大權(比方說雷根總統)、卻根據這類信念行事,特別可怕。

占星術主張,人出生那一刻的各星球牽引力,會影響一個人的個性。但這個論點很難讓人接受,理由有二:(一)占星學完全沒有提到這種牽引(或是其他)力道,到底要透過哪一種生理或神經生理機制運作,更別說解釋了;(二)負責接生的產科醫師施加的牽引力,遠高於各個星球。請記住,一件物體對於身體(比方說,新生兒)施加的牽引力,和物體的質量成正比,但和物體與身體的距離平方成反比。這是否代表比較胖的產科醫師接生的寶寶,會有一組人格特質;比較瘦的產科醫師接生的寶寶,會有另一種不同的人格特質?

占星理論中有很多缺陷,但數盲視而不見。他們不太關心運作的機制,也不太想去比較數值大小。話說回來,即使沒有清晰明瞭的理論基礎,但如果占星術有用、有實務證據撐腰,還是應該獲得尊重。只可惜,一個人的出生日期,與標準人格測驗的得分之間,沒有任何相關性。

圖/envato

一直以來,都有人找占星師做相關的實驗(最近是加州大學的蕭恩.卡爾森﹝Shawn Carlson﹞)。研究人員會給占星師看三個匿名的人格特質側寫,其中一個是當事人的。當事人提供所有占星要用到的數據(透過問卷,而非面對面),占星師必須從人格特質側寫中挑出哪一份是當事人。實驗中總共有 116 位當事人,而負責檢驗的是歐洲與美國 30 位最頂尖(由同業判定)的占星師。實驗結果如下:占星師約有三分之一的機率,可以挑出正確的當事人人格特質側寫,也就是說,和隨機猜測沒什麼區別。

-----廣告,請繼續往下閱讀-----

凱斯西儲大學(Case Western Reserve Univer sity)物理學家約翰.馬蓋文(John McGervey)檢視《美國科學名人錄》(American Men of Science)上,超過 1 萬 6,000 位科學家,以及《美國政治名人錄》(Who’s Who in American Politics)上,超過 6,000 位政治人物的出生日期,發現他們的星座是隨機且均勻分布在十二個月中。密西根州立大學(Mi chi gan State University)的伯納德.西弗曼(Bernard Silver-man)取得密西根州 3,000 對夫婦的紀錄,發現他們的星座和占星師預測相配的星座之間,沒有相關性。

那麼,為何這麼多人相信占星之說?一個明顯的理由是:在通常語焉不詳的占星預言中,人們會去讀他們想讀到的一切,然後為預言添加根本不存在的真實性。他們也比較可能記得有成真的「預言」,過度看重巧合,忽略其他。其他理由還包括,占星術的歷史悠久(當然,人祭﹝ritual murder﹞和獻祭也同樣古老)。或是因為,它原理很簡單、但操作起來有一定的複雜度,會讓人感到安心。或者是,堅稱這個月能不能墜入愛河和天上的浩瀚星海有關,很能寬慰人心。

圖/envato

我猜,此外還有最後一個理由,那就是在一對一諮詢期間,占星師會從臉部表情、儀態、肢體語言等等,尋找和人格特質有關的線索。我們來看看知名的案例:聰明的漢斯(Clever Hans)。漢斯看來是一匹會算數的馬,牠的訓練師會擲骰子,問牠骰子上面的點數是多少。而漢斯會用馬蹄踏出正確答案,然後停住,旁觀者都大為驚異。但人們看不出來的是,訓練師原先都站定不動,等到馬兒敲到正確的次數,會有意無意地動了一下,就是這樣的反應讓漢斯停了下來。所以,不是這匹馬知道答案,牠只是反映了訓練師知道答案。人常無意間在占星師面前扮演訓練師的角色,占星師就像漢斯一樣,反映出客戶的需求。

美國天文學家卡爾.薩根(Carl Sagan)就說過,要破解占星術以及更廣義的偽科學,最好的辦法就是真正的科學。真正科學的奇妙之處也同樣神奇,不過多了一項優點:這些奇妙之處很可能是真有其事。說到底,偽科學之所以成為偽科學,並不是因為得出的結論稀奇古怪。畢竟,運氣好猜中、機緣巧合、奇特的假說,甚至是一開始的誤信,都在科學上扮演過一定角色。偽科學失當,是因為其結論經不起檢驗,以及無法和其他經過檢驗的主張之間,建立起一致的關係。我很難想像,像演員莎莉.麥克琳(Shirley MacLaine,按:麥克琳是推動新時代運動的先驅)這些人會因為證據不足、或有更好的替代解釋,就去否定通靈等超自然現象。

-----廣告,請繼續往下閱讀-----

——本書摘自《數盲、詐騙與偽科學》,2023 年 11 月,大牌出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

大牌出版.出版大牌_96
3 篇文章 ・ 0 位粉絲
閱讀的大牌不侷限於單一領域, 視野寬廣,知識豐富,思考獨立。

6

20
2

文字

分享

6
20
2
阿茲海默風暴:通訊作者的辯駁與責任
胡中行_96
・2022/07/28 ・3231字 ・閱讀時間約 6 分鐘

「關於《科學》…控訴我的前同事 Sylvain Lesné 博士可能篡改影像,我不予置評,畢竟後者正在接受明尼蘇達大學的正式調查。然而,文中的科學陳述我有意見,因為針對我的學理描述並不正確。」[1] 2022 年 7 月 21 日,知名期刊《科學》的新聞專題,指出影響深遠的 2006 年阿茲海默症論文造假,向全球醫療圈投下震撼彈。[2] 隔天當事人之一,明尼蘇達大學的 Karen Hsiao Ashe 教授親上火線,在阿茲海默症新聞論壇 Alzforum 上,發出嚴正聲明,同時引發學界熱烈討論。[1]

《自然》期刊 2022 年 7 月 14 日的(黃色底線)編按,提到正在調查遭質疑的圖像。
圖/參考資料 3(Screenshot used as fair dealing for news report.)

《科學》期刊報導,去年 8 月,二名希望 Cassava Sciences 製藥公司股票下跌,以從中獲利的投資人,[註] 透過律師聘雇時年 37 歲的范德比大學神經科學家 Matthew Schrag 。他們付了美金 1 萬 8 千元,要求調查該公司的阿茲海默症實驗藥物 Simufilam 。執行任務的過程中, Schrag 發現一篇 2006 年刊登於《自然》期刊的論文,十分可疑。[2] 該研究的第一作者是 Sylvain Lesné ,而 Karen Hsiao Ashe 則是通訊作者。[3]

明尼蘇達大學 Karen Hsiao Ashe 教授。圖/University of Minnesota(Image used as fair dealing for news report.)

Karen H. Ashe 教授是中國裔美國人,本姓蕭,但冠上第二任丈夫的姓氏 Ashe 。[4] 母親為生化學家袁昭穎(Joyce C.Y. Yuan),曾任諾貝爾得主 Alexander Todd 實驗室的訪問學者;[5] 父親則是明尼蘇達大學航太工程榮譽教授蕭之㑺(Chih Chun Hsiao),於兩次國共內戰之間移民美國,後來曾受邀赴共產中國教書,並致力於中美交流。[4, 6, 7] 不枉其家學淵源, Ashe 教授 3 歲立志當科學家, 17 歲跳級進入哈佛大學二年級就讀, 27 歲時不僅已經唸完哈佛大學醫學系,還取得麻省理工的博士學位。她曾追隨諾貝爾得主 Stanley Prusiner 教授進行腦部研究;後來在自己領導的團隊中,和法國科學家 Sylvain Lesné 合作阿茲海默症相關主題,[4] 還因此獲得重要獎項。[2] 2012 年明尼蘇達的世紀老報《明星論壇》,在專訪中更描述她多才多藝,且具有謙遜的中國傳統美德。[4]

明尼蘇達大學 Sylvain Lesné 副教授。
圖/University of Minnesota
(Image used as fair dealing for news report.)

在 2006 年《自然》期刊關鍵性的論文中, Lesné 和 Ashe 表示注射到腦袋裡的 Aβ*56 ,會令年輕小鼠失智,並認為此發現將有助未來的阿茲海默症研究。[2, 3] Aβ*56 唸作「 amyloid beta star 56 」,是一種 β 澱粉類蛋白(amyloid beta,縮寫成Aβ)。[2]如何減少 Aβ 的累積,至今仍是阿茲海默症研究的方向之一;[2, 8, 9] 而 Cassava Sciences 的 Simufilam ,則是以預防 Aβ 與特定受器結合,來達此效果[10, 11]

范德比大學神經科學家 Matthew Schrag 。
圖/Vanderbilt University Medical Center
(Image used as fair dealing for news report.)

這次新聞事件的吹哨者 Matthew Schrag ,此前就曾公開批評美國食品藥管理局,不該核准另一款抗 Aβ 藥物;而他自己的研究也與 Cassava Sciences 的主張相悖,認定 Simufilam 對受試者有弊無利。當 Schrag 開始懷疑 Lesné 不只是在 2006 年《自然》刊載的影像上動手腳,《科學》期刊請來 George Perry 和 John Forsayeth 等頂尖專家協助鑑定。他們均認同 Schrag 的看法,也就是對 Lesné 發表於超過 70 篇論文中的上百張影像存疑。[2]

-----廣告,請繼續往下閱讀-----

這把燒毀阿茲海默症重要研究根基的熊熊烈火,一發不可收拾,向四面八方蔓延開來。美國國家衛生研究院、《自然》、《神經科學期刊》、《PLOS ONE》,以及與《科學》同屬美國科學促進會的《科學信號》等單位,通通重新審視 Lesné 參與的論文,而且其中部份已遭撤回。 Schrag 批評這些錯誤資訊,不單浪費國家衛生研究院為數可觀的贊助經費,還被引用數千次,「因此誤導了整個學界。」另外,他也揪出 34 篇由其他作者撰寫,跟 Cassava Sciences 直接相關的問題論文,並上報國家衛生研究院。[2] 因此,那斯達克股票交易所警告投資人, Cassava Sciences (股票代號: SAVA )的情況岌岌可危。如果未來美國食品藥物管理局不批准 Simufilam ,其股價或許會慘跌至個位數字。[12]

儘管事件主要聚焦在 Lesné 上,就學術倫理來說,身為 2006 年那篇論文的通訊作者, Ashe 教授也得為研究品質負責。[13-15]面對「誤導整個學界」的指控,她在 Alzforum 上以自己過去發表的研究,說明 Aβ 分為第一型與第二型。當年害小鼠失智的 Aβ*56 ,屬於第一型;而第二型則是在類澱粉蛋白斑塊(amyloid plaques)中找到的。「後者是藥物研發者屢戰屢敗的目標。」Ashe 教授寫道:「從來就沒有臨床試驗針對第一型,但那才是我在研究中點出的失智關聯。」[1]

阿茲海默新聞論壇 Alzforum 上,Karen H. Ashe 教授和其他學者,對此事件公開表態。
圖/參考資料1(Screenshot used as fair dealing for news report.)

在 Ashe 教授的辯駁下方,有幾名學者留言強調學界不該以偏概全,為了一則新聞報導,抹滅相關研究的重要性。[1] 此外,目前仍在進行中的 Simufilam 臨床試驗,也與 Aβ*56 無關。他們當初挑選受試者的條件,包含某種蛋白質跟 Aβ42 的比例(CSF tau/Aβ42 ratio ≥ 0.28);[16] 所發表的論文,也是在分析是否能抑制 Aβ42 的負面影響。[10]

這是本文未提及,但也是針對 Aβ 的研究。由左至右: Aβ 逐漸累積成塊,右上為接受免疫療法的(灰色)神經元,右下則缺乏治療。
圖/Esang M and Gupta M. (2021) ’Aducanumab as a Novel Treatment for Alzheimer’s Disease: A Decade of Hope, Controversies, and the Future.’ Cureus, 13, 8, e17591. (CC BY 4.0)

然而,就因為阿茲海默症的藥物臨床試驗,都不是和 Aβ*56 直接相關,[11, 16] Ashe 教授便責無旁貸了嗎?美國軍醫學校的 David Brody 博士在 Alzforum 的討論串中提到,他的團隊以前試圖重複 Aβ *56 的研究,花了約一整年的時間,卻徒勞無功。[11] 《科學》也提及不少實驗室,遇到一樣的情形。[2] 這些想要以經典為基石向前邁進的人,都被謊言所羈絆,而使得醫學的進展停滯不前。失敗的研究當然不太有論文發表,[2] 更甭論人體臨床試驗。害大家耗費精力走冤枉路,難道不是對阿茲海默症研究的嚴重傷害?

「你可以靠作弊發表論文,獲取學位,贏得補助」, Schrag 對《科學》的記者說:「但你不能用欺騙來治癒疾病」。[2] 諷刺的是,十年前《明星論壇》也記錄了 Ashe 教授類似的談話。她當時鼓勵人們要勇於挑戰她,因為錯誤的理論「不會迎來解藥」。[4]

-----廣告,請繼續往下閱讀-----

  

備註

根據美國第一證券的解釋,「賣空」(short selling)的投資人會將非己有的股票售出,計劃未來以較低的股價買回。[17] (筆者完全沒聽懂為何這樣能獲利,還請會玩股票的讀者不吝指教,謝謝。)

  1. Sylvain Lesné, Who Found Aβ*56, Accused of Image Manipulation (Alzforum, 2022)
  2. Charles Piller. (2022) ‘Blots On A Field?’ Science, 377, 6604.
  3. Lesné, S., Koh, M., Kotilinek, L. et al. (2006) ‘A specific amyloid-β protein assembly in the brain impairs memory’. Nature, 440, pp. 352–357.
  4. Dr. Karen Ashe: Stalking Alzheimer’s (Star Tribune, 2012)
  5. MCFGS ADVISORS (明州中国友好花园协会,accessed on 26 JUL 2022)
  6. CC Hsiao Memorial (The University of Minnesota Digital Conservancy, 2009)
  7. Changsha Garden History (明州中国友好花园协会,accessed on 26 JUL 2022)
  8. Multiple Dose Study of Aducanumab (BIIB037) (Recombinant, Fully Human Anti-Aβ IgG1 mAb) in Participants With Prodromal or Mild Alzheimer’s Disease (PRIME) (ClinicalTrials.gov, 2020)
  9. An Extension Study of V203-AD Study to Evaluate the Safety, Tolerability, Immunogenicity, and Efficacy of UB-311 (ClinicalTrials.gov, 2021)
  10. Wang HY, Bakshi K, Frankfurt M, et al. (2012) ‘Reducing Amyloid-Related Alzheimer’s Disease Pathogenesis by a Small Molecule Targeting Filamin A’. Journal of Neuroscience, 32, 29, pp. 9773-9784.
  11. Simufilam (Alzforum, 2022)
  12. 7 Meme Stocks Trading at a Massive Discount Right Now (Nasdaq, 2022)
  13. 想一想:共同作者是誰(臺灣學術倫理教育資源中心,accessed on 26 JUL 2022)
  14. 科技部對研究人員學術倫理規範(科技部,2017)
  15. Corresponding author defined (Springer, 2020)
  16. Simufilam (PTI-125), 100 mg, for Mild-to-moderate Alzheimer’s Disease Patients (ClinicalTrials.gov, 2021)
  17. 投資辭彙(FirstTrade,accessed on 28 JUL 2022)
-----廣告,請繼續往下閱讀-----
所有討論 6
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。