0

2
0

文字

分享

0
2
0

「科學」與「非科學」差在哪?卡爾・波普爾「可證偽性」劃下分明界線 ——《反智》

天下文化_96
・2020/09/23 ・3085字 ・閱讀時間約 6 分鐘 ・SR值 562 ・九年級

-----廣告,請繼續往下閱讀-----

  • 作者/古倫姆斯 (David Robert Grimes) ;譯者/楊玉齡

我們都知道「科學」與「迷信」大不同……

但是,要由什麼來判定某樣事物是否為科學的?

是哪一條界線區隔開天文科學與占星迷信?畢竟,兩者都與天體運行有關。為什麼我們會認為放射療法是科學的,而靈氣療法是偽科學,雖說兩者都以「能量」為中心?

我們能否訂出精確的界線,來區隔什麼是合理的、什麼是胡扯的,以及什麼是科學的、什麼是似是而非的,而不是單憑直覺來區分?這個問題的一個答案,源自看似最不可能的搖籃。

同樣著迷於浩瀚星斗,為什麼天文是科學?占星是迷信?圖/wikimedia

動盪的歐洲,馬克思主義者走上街頭

1919年的維也納是個動亂的城市。第一次世界大戰結束了,但是盟國的封鎖還沒解除。巴伐利亞和匈牙利剛剛宣布成立巴伐利亞蘇維埃共和國,而奧地利共產黨則謀劃要成立一個中歐共產黨集團。一場政變被策劃起來,但是還沒來得及執行,維也納當局就把他們的頭兒逮捕了。

在共產黨起義失敗後,社會主義人士在6月走上街頭,抗議維也納的狀況。在這群人裡頭,包括還差幾日才滿十七歲的波普爾 (Karl Popper) ,他站在奧地利的馬克思社會民主工人黨這邊。

-----廣告,請繼續往下閱讀-----
20 世紀英國中思想家卡爾・波普爾 (Karl Popper) 提出「不可證偽」劃清科學與非科學界線。圖/wikipedia

共產黨人在抗議時,企圖衝進監獄,解放他們的同志,結果引發一場暴亂。混亂中,警方對手無寸鐵的群眾開火,殺死了幾名抗議者。這場流血衝突令波普爾心驚不已。

馬克思主義的屠殺與教義,陷入苦思的波普爾

然而奧地利馬克思社會民主工人黨的反應,卻是近乎慶功般快樂。這種反應源自他們真心相信馬克思的教誨,也就是階級戰爭和革命是共產黨未來興盛的前兆,死亡是不可避免的損傷。

但是波普爾親眼目睹的屠殺,以及共產黨人的興奮,令他愈來愈不自在。反省之後,他發覺自己「很震驚,不得不承認,我真的注意到這個複雜的理論裡頭,有很多是錯誤的,可是我卻不加批判的接受了這個理論。」

馬克思的唯物史觀,尤其令他困擾。唯物史觀主張,所有人類歷史都是完全由物質因素驅動的

-----廣告,請繼續往下閱讀-----

馬克思及追隨者稱這個為科學,但是波普爾覺得它非常含糊其辭,無法解釋任何擺在面前的事實,也無法把屠殺重新定義為進步的標誌。

雖然波普爾一生都是社會主義者,但是當他明白自己的和平主義與對馬克思宣言的懷疑,不能得到同儕的認同,於是他放棄了馬克思主義。

兩次世界大戰之際百家爭鳴,誰才是科學?

由於法西斯主義於1930年代初在歐洲各地崛起,波普爾被迫逃離維也納。放逐期間,他的心思都集中在兩位聲譽卓著的人物身上,這兩人的思想是當時歐洲知識份子的談話中心。

他們是愛因斯坦與佛洛伊德。

  • 對外探求宇宙:
    愛因斯坦先前做出一個大膽的預測,說空間本身會因為質量而彎曲,結果產生我們都能感覺到的重力。愛因斯坦的場方程式將這項詮釋的結果給精確量化出來,預測光線在極大的物體(例如太陽)旁邊會彎折,甚至計算出確切的數值。
    1919年,愛丁頓及同僚用實驗證明了這項預測,方法為觀測星光在日食的太陽周圍確實出現了彎折現象,這使愛因斯坦成為家喻戶曉的人物。
  • 對內摸索自我:
    佛洛伊德是維也納上流階級的知名心理治療師,他的名氣源自他身為心理分析之父的地位。在佛洛伊德最重要的著作《夢的解析》中,佛洛伊德聲稱夢是潛意識裡的願望滿足。

就像馬克思主義,這兩位大人物的研究也被貼上科學的標籤。然而,愛因斯坦的想法似乎超級脆弱,他做出的明確預測是能夠被撕成碎片的。但儘管如此脆弱,卻通過了每一項實驗的障礙。

可是同樣的話卻不能拿來形容佛洛伊德。有一名病人夢見了她向來厭惡的婆婆,於是她很懷疑佛洛伊德的願望滿足說法。對此,佛洛伊德反駁這病人「真正的」願望為「佛洛伊德是錯的」。換句話說,佛洛伊德即使面對相反的證據,依然面不改色,繼續提出自己的揣測。

-----廣告,請繼續往下閱讀-----
佛洛伊德為精神分析創始人,提倡以夢境分析人的淺意識,在二十世紀具有十足影響力,啟發醫學、藝術、文學等多個領域。圖/wikipedia

除了宣稱為真,是否可以證實為「假」?

愛因斯坦的想法能得出明確且可驗證的預測,但是佛洛伊德的聲明卻是沒有定形的,而且可在事後再加以揉捏,把它詮釋為真確的。雖然愛因斯坦的想法具有通不過測試的脆弱性,但佛洛伊德的想法卻完全與批評絕緣。

對此,波普爾有一項洞察,他提出「可證偽性」 (falsifiability) ,做為科學與偽科學的區隔:針對某個假說,如果我們能構思出一個結果有可能牴觸該假說的實驗,那麼這個假說就是一個科學猜想。

一個科學的假說,必須能做出可以被驗證的明確預測。做不到這些,該想法就不能被視為是科學的。很重要的是,可證偽性並不表示某個假說就是錯的,它只不過代表原則上該假說是可以被駁倒的。

「星期二紐約將會下雨」就是可證偽性的;因為當天紐約如果沒下雨,該揣測就可以被駁倒。一個靈媒聲稱無形的鬼魂對自己耳語,則不是可證偽性的,即便這樣的聲明很可能是假的。

經過時間淬鍊,科學假設成為理論

科學想法必須經過驗證。如果證據與某個假說相牴觸,該假說就必須修正或被推翻。嚴格說來,這意味著沒有任何科學假說能夠被「證實」

-----廣告,請繼續往下閱讀-----

相反的,只能說與某假說一致的證據,能隨著時間累積。禁得起詳細驗證的假說,最後會成為理論。但是之後一旦遇到有證據與理論相牴觸時,理論也需要修正。

例如,牛頓的運動定律無人能挑戰,屹立不搖超過二百二十年,它正確預測了各種物體的運動,從微小的、到天體的。但是在1905年,愛因斯坦證明了牛頓定律不適用接近光速運動的物體,而這也使得我們對大自然的理解更加精確。

科不科學,誰說了算?

可證偽性對科學方法來說是最根本的。它堅持要科學家不只尋找能夠佐證的觀測,也要最嚴謹的主動驗證他們的想法。

這解釋了為何占星術不是科學——它的陳述太模稜兩可了,無法驗證。和佛洛伊德的心理分析一樣,占星術的判讀也可以事後重新詮釋成正確的解讀。反觀天文科學會得出非常明確、且可驗證的預測。

靈氣療法宣稱使用一種可治病的宇宙能量,但是卻不能提供這種宇宙能量存在的證據,甚至也不能幫它下定義。或許靈氣是可以驗證的,但是到目前為止的臨床調查,都沒有發現其效益的證據。但是放射療法卻有無數來自理論與實驗的數據的支撐。

-----廣告,請繼續往下閱讀-----

不能驗證的想法,不是科學,而那些禁不起研究測試的想法,應該被駁回。

——本文摘自泛科學2020年9月選書《反智:不願說理的人是偏執》,2020 年 7月 月,天下文化

-----廣告,請繼續往下閱讀-----
文章難易度
天下文化_96
142 篇文章 ・ 625 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
「科學」能有價值觀嗎?堅持「客觀」反而讓民眾失去信任?——《為何信任科學》
貓頭鷹出版社_96
・2024/05/26 ・3357字 ・閱讀時間約 6 分鐘

科學這門事業並非價值中立,個別科學家也不是。沒有任何人可以真正做到價值中立,當科學家這樣講自己,人們會覺得他們虛偽,因為那是不可能的。除非他們是白痴學者或超級天真,不然就是不誠實。然而誠實、開放和透明又被認為是科學研究的核心價值。科學家怎麼可能同時做到誠實,又說他們沒有自己的價值觀?如果科學家要堅守誠信,同時卻讓大眾誤解他們的角色(就算不是故意的),這會讓他們的事業出現根本的矛盾。

可能有人會反駁,科學家並不是說他們沒有自己的價值觀,只是不會允許這些價值觀影響到科學工作。這種論述不可能證明對或錯,但社會科學研究和一般常識都顯示這不太可能。這就把我們帶到下一個問題,不知為何長久以來都沒有人認真討論一件事,但它卻是許多美國人不信任科學的核心因素:要說科學是價值中立的,多少是在說它沒有價值,至少除了創造知識以外沒有其他價值,而這很容易就變成在說科學家沒有價值信念。當然不是這樣,但如果科學家不願意討論他們的價值觀,就會給人一種印象,認為他們的價值觀有問題,所以才需要遮遮掩掩,或認為他們根本就沒有價值信念。你會相信一個沒有價值信念的人嗎?

我在第二章提出了一個問題:忽視科學主張但最終發現它是對的,風險是什麼?相比之下,相信一個錯誤的科學主張,風險又是什麼?回答這個問題必須仰賴價值。我和康威合著的《販賣懷疑的人》提到,氣候科學所引起的爭辯,幾乎都是價值上的爭辯。很多有影響力的人物在一九八○和一九九○年代相信,政府干預市場的政治風險是如此之大,超越了氣候變遷的風險,因此他們懷疑、蔑視,甚至否認後者的科學證據。這些立場由自由主義智庫繼承,得到共和黨支持,演變成共和黨支持者很多都否認氣候變遷,只是有些積極、有些消極;然後再演變成很多質疑「大政府」的人都懷疑氣候變遷,包括商人、長者、福音派基督徒、住在美國鄉下的人。

即使氣候變遷的證據不斷累積,懷疑論者還是堅稱,就算氣候真的有在變遷,情況也不會太嚴重,或者不是「我們造成的」。因為如果事情真的很嚴重而且是我們造成的,那我們就應該採取行動,可能需要政府以某種方式管制。如此一來,否認氣候變遷逐漸變成美式生活的常態,先是否認證據,最終否認事實。這個問題非常嚴重,但是對於氣候變遷否認者秉持的價值,不能一網打盡說是錯的。

-----廣告,請繼續往下閱讀-----
共和黨支持者很多都否認氣候變遷。圖/giphy

我們可以討論大政府和小政府的優缺、市場管制不足或過度管制的風險,但任何這類討論都(至少在某種程度上)是從價值出發。如果要開誠布公討論這個話題,就必須討論我們的價值觀。不同的人面對同樣的風險,可能有不同的想法,不代表他們就是愚笨或腐敗。人為氣候變遷的科學證據很清楚,疫苗不會導致自閉症很清楚,使用牙線有益健康也很清楚。但價值觀導致許多人拒絕接受證據指出的事情。

回到剛才的問題:你會相信一個沒有價值信念的人嗎?答案當然是不會,這種人是反社會人格。你也不會相信那些擁抱你所厭惡的價值的人。但如果你認為,某個人的價值觀起碼部分與你相似,就算不盡相同,你可能就比較願意聽聽他的想法,接受他說法的一部分。因此,無論價值中立是否能讓一個主張在知識論上比較站得住腳,可以確定的是它在現實中沒有用,不能以此確保溝通、建立信任的連結

科學寫作的主流寫法不只試圖隱藏作者的價值觀,也把他們的人性一同抹煞了。價值觀隱藏、情緒不得伸張、避免使用形容詞,甚至連「我」這個字都無形中禁止了,即便論文只有單一作者也一樣。理想的科學論文寫得好像作者沒有價值觀或感覺,甚至好像作者根本不是人,這都是為了表現出客觀。

圖/envato

科學家可能覺得根本沒辦法讓否認氣候變遷和相信地球年紀是 6000 年的人相信他們。或許這是真的。我曾經公開表示對於要如何跟千禧世代交流感到非常絕望,他們之中有些人聽信末世論,認為世界就要毀滅了,幹麻還擔心氣候變遷?但當我陷入絕望,隔天幾位記者就告訴我怎樣才能透過基督教價值和教導打動這些人。他們建議我從價值觀下手,社會科學研究也支持這種想法。

-----廣告,請繼續往下閱讀-----

結論

科學家壓抑自己的價值觀,堅持科學是價值中立的,這是一條歧路。他們認為人們如果相信科學沒有價值觀,就會相信他們,但這是錯的。

墨頓顯然這樣想,但他可能是錯的,或許反過來才是對的。原因如下:

政治與社會觀念保守的基督徒、自由主義者、共和黨人拒絕相信演化論和人為氣候變遷,大部分分析都聚焦在科學家與這些人之間的價值衝突。但我相信,驅動大多數科學家的價值觀,還是和大多數美國人的價值觀有重疊之處,包括多數的保守派和宗教信徒。近來有一些科學家開始公開聲明他們的價值觀,我認為部分原因是,他們深信這些價值觀確實得到廣泛接納,可以作為信任連結的基礎。 我認為他們是對的。

我認識的大部分科學家都想要預防疾病、促進人類健康、透過創新和發現來強化經濟、保護美國與全世界美麗的大自然。前共和黨議員殷格利斯講得很有說服力,他談到他和海洋生物學家一同造訪大堡礁,他們肩並肩站著,欣賞珊瑚礁周邊生物撼人的美麗。殷格利斯了解到一件事:他看到「創造」,科學家看到「生物多樣性」,但他們實際上看到的、在意的、珍惜的,是同一件事。

-----廣告,請繼續往下閱讀-----

我好喜歡這個故事,因為多數人至少都在某方面珍愛自然。不同背景的美國人都曾造訪國家公園和森林,去健行、釣魚、露營、開車、攝影、漫遊、抱怨,雖然從事不同活動,但美景與體驗帶來了共同的喜悅。儘管如此,我們對人類與自然世界的關係,確實有不一樣的想法。有些人想要在冬日的黃石公園騎雪上摩托車,有些人想要安靜休養。幾乎所有美國人都說他們相信自由,然而我們對這個詞的理解卻嚴重分歧,也很難同意該把哪一類自由看得最重要。柏林有句名言:狼的自由可能代表羊的死亡。同意「自由」這個詞意義並不大。

宗教歷史學家普羅特勞指出,猶太人、天主教徒和新教教徒都相信十誡,但是版本差距之大,令人吃驚。例如天主教放棄了不可崇拜偶像,而猶太教與新教徒堅守此道。天主教因此少了一條戒律,只剩九條很奇怪,於是他們把最後一條一分為二,變成第九條是不可貪圖鄰人之妻,第十條是不可貪圖其他東西。儘管如此,美國人中超過 70% 都信奉這三個宗教,他們都還是認同不可殺人、偷竊、通姦或做偽證,也相信我們應該崇拜唯一真神、不可妄稱神的名、守安息日、孝敬父母。伊斯蘭教也同意這些,只是比這三個宗教更加強調慈善:課(zakat),也就是施捨,是五大支柱之一。不過,看看 zakat 這個字和希伯來文中的 tzedakah 多麼相似,tzedakah 代表慈善施予,是猶太生活的道德義務。慈善也是基督教的核心價值,虔誠的摩門教徒會繳納什一奉獻。

在很多政治議題上我們意見相左,但我們的核心價值大部分都重疊。釐清這些我們都同意的部分,並解釋它們和科學研究的關聯,我們就有機會克服盛行的懷疑論與對科學的不信任,尤其是因價值受到衝擊而產生的不信任。

We have been authorized by Princeton University Press to use this conten. 該內容由普林斯頓大學出版社授權使用

——本文摘自《為何信任科學:科學的歷史、哲學、政治與社會學觀點》,2024 年 04 月,貓頭鷹出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。