Loading [MathJax]/extensions/tex2jax.js

1

5
2

文字

分享

1
5
2

血型不止四種!紅遍全球的「血型性格學說」,為什麼讓科學家皺眉不已?——《了不起的人體:如此精妙,如此有趣,說不定還能救你一命》

如何出版
・2022/07/26 ・2880字 ・閱讀時間約 6 分鐘

填寫血型,是為了避免被輸錯血嗎?

很不可思議的,日常生活中很多地方都會被要求填寫血型。

馬拉松的報名表和號碼牌、幼兒園或學校的文件、貼身的避難包等,都有血型註記欄位。

日常生活中很多地方都會被要求填寫血型。圖/Pixabay

但是在不少國家,如果要求市民也填寫同樣的資料,這就困難了。因為很多人根本不知道自己的血型,問了反而徒增困擾。

究竟我們填寫的血型資訊有什麼用?或許你會想,莫非是受傷需要輸血時可以派上用場?但這其實是誤會。

-----廣告,請繼續往下閱讀-----

即便患者提前告知,輸血前仍會確認患者的血型

輸血前一定會進行血液檢查確認血型。每家醫院所需時間不同,但一般來說,血型檢查結果只需要數十分鐘就能出來。還有在輸血前,一定會進行將患者血液與一部分血液製劑混合,觀察是否出現有害反應的「交叉配合試驗」。

這些不會因為病患本人主張「我是 A 型」就省略。即使以前在同一家醫院接受過血液檢查,確切知道血型的狀況下,也一定要做交叉配合試驗(除了術前檢查等例外)。

為什麼呢?理由很單純。如果誤用了不同血型的血液,會引起危及性命的「溶血反應」,這麼重大的資訊,不能光靠患者自我表述。

在輸血前一定會進行將患者血液與一部分血液製劑混合,觀察是否出現有害反應的「交叉配合試驗」。圖/Pixabay

另外,很多人是以出生時受檢的結果當作自己的血型,但新生兒的血液檢查不一定正確。有些人以為自己是 A 型,第一次手術時接受檢查才知道是 B 型,不能依賴自我表述的血型也有這個層面的考量。

什麼都不知道的緊急狀況下,到底該怎麼辦?

那麼,如果遇到不知道血型的患者大出血,也來不及做血型檢查的緊急狀況,該如何處置?這個時候就只能相信本人的自我表述嗎?

-----廣告,請繼續往下閱讀-----

當然不能。這個時候就只能用 O 型血了,因為不管對方是什麼血型,應該都不會引起嚴重的反應。即使是緊急狀況,也不可能只利用自我表述的血型情報。

近年來因為有這樣的案例,所以出生時很多醫療機構不會驗血型。正在閱讀此書的你,或許不知道自己小孩的血型,完全不用擔心,需要的時候再去檢查即可。

順道一提,我也不知道自己小孩的血型。

緊急情況時,為什麼 O 型血能輸給所有人?

在 1900 年,奧地利人蘭德斯坦納發現「血液有不同類型」前,錯誤輸血的事故頻傳。

-----廣告,請繼續往下閱讀-----

蘭德斯坦納注意到人的血清和他人的紅血球混合後,有的會凝結破裂,有的不會。在經過確認很多樣本配對的反應後,歸納出人有 A、B、C 三種血液類型的結論。之後的研究又發現了第四種 AB 型,C 型被改稱為 O 型。

人有 A、B、O、AB 型四種血液類型。圖/Pixabay

所謂的血型,就是指紅血球表面的抗原種類。你可以想像細胞表面有很多棘刺狀物,輸血的時候最重要的「棘刺」有 ABO 和 Rh 二種系統。

A 型紅血球有 A 抗原,B 型紅血球有 B 抗原,AB 型則同時有 A 抗原和 B 抗原,O 型的沒有抗原;另一方面,A 型血清有抗 B 抗體、B 型血清有抗 A 抗體、O 型血清兩種抗體都有,AB 型則是兩種都沒有。

看起來非常複雜,但結論很簡單,我們只會有對自己的抗原不反應的抗體。

-----廣告,請繼續往下閱讀-----

抗體和抗原就像鑰匙和鎖孔,如果 A 抗原對抗 A 抗體、B 抗原對抗 B 抗體就會產生凝集反應,紅血球就會被破壞。

抗體和抗原就像鑰匙和鎖孔,例如把 A 抗原對抗 A 抗體,紅血球就會被破壞。圖/Pexels

因此如果把 B 型的紅血球輸給 A 型患者、把 A 型紅血球輸給 B 型患者,紅血球抗原和抗體會相互結合,凝結破裂。

另一方面,O 型的紅血球不管對方是誰都不會凝結,是因為 O 型紅血球沒有 A 抗原也沒有 B 抗原。不管是稱為 C 或 O,都是代表「沒有」抗原,也就是「零」的意思。

此一發現在安全輸血普及上扮演極重要的角色。1930 年,蘭德斯坦納以此成就獲得諾貝爾醫學生理學獎。

-----廣告,請繼續往下閱讀-----

血型不只有 ABO,Rh 也有超過 40 種抗原

如同 ABO 有 A 和 B 二種抗原,Rh 也有 C、c、D、E、e 等超過四十種抗原。其中有 D 抗原的統稱為 Rh 陽性、沒有的稱為 Rh 陰性。錯誤輸血會引起強烈反應的,是 D 抗原。

發現 Rh 的還是蘭德斯坦納,是在發現 ABO 後四十年的 1940 年。

Rh 是取恆河猴(Rhesus monkey,德語為 Rhesusaffe)頭兩個字母。因為 Rh 是恆河猴共通的抗原。順道一提,日本人罕有 Rh 陰性者,大約只有 0.5%,台灣人為 0.3%,但白人則有 15%。

血型還有很多其他分類。MNS 血型、P 血型、Lewis 血型、Kell 血型、Diego 血型等不勝枚舉。如果是罕見血型,即使 ABO 和 Rh 一致,也有可能發生錯誤輸血。

-----廣告,請繼續往下閱讀-----

明明知道自己的血型沒什麼用,為什麼大家都很在意?

「血型」本來是沒有必要知道的醫學資料,但為什麼很多人都會記得呢?而且不只是自己的血型,有的人連家人、朋友、同事、上司的血型都一清二楚,實在是很驚人。

理由恐怕是很多人都認同血液性格學說。當然,血液和個性之間的關聯毫無科學根據,只要想到血型的機制,就會知道紅血球表面抗原跟個性有關的說法有多無稽。

當然,也不能受到「你是 O 型所以會有〇〇個性」的暗示,因而影響到人格形成。如果真的是這樣,那對本人是有害的。

不管如何,還是有很多人期待用血型將人歸類。現在電視或雜誌上「O型的人一板一眼」「A 型和 B 型速配指數?」等不可思議的企畫仍舊源源不絕。

-----廣告,請繼續往下閱讀-----

人與人之間,要靠直接對話、一起相處,才能初步互相認識。很遺憾的,這真的不是靠血型就可以了解的事。

——本文摘自《了不起的人體:如此精妙,如此有趣,說不定還能救你一命》,2022 年 7 月,如何出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
如何出版
8 篇文章 ・ 2 位粉絲

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
今天的星座運勢是……不宜相信占星術?——《數盲、詐騙與偽科學》
大牌出版.出版大牌_96
・2024/01/07 ・2000字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

占星術的背後

占星術是極普遍的偽科學,書店架上塞滿了談占星的書,而且幾乎每一份報紙都會發布每日星座運勢。蓋洛普(Gallup)1986 年發布的一項調查報告指出,52% 的美國青少年相信星座,而各行各業中,認同占星學中某些亙古流傳說法的人,也多到讓人難過。我說讓人難過,是因為如果那些人相信占星師和占星術,當你進一步思考他們還可能相信哪些人事物,會讓人不寒而慄。一旦那些人手握大權(比方說雷根總統)、卻根據這類信念行事,特別可怕。

占星術主張,人出生那一刻的各星球牽引力,會影響一個人的個性。但這個論點很難讓人接受,理由有二:(一)占星學完全沒有提到這種牽引(或是其他)力道,到底要透過哪一種生理或神經生理機制運作,更別說解釋了;(二)負責接生的產科醫師施加的牽引力,遠高於各個星球。請記住,一件物體對於身體(比方說,新生兒)施加的牽引力,和物體的質量成正比,但和物體與身體的距離平方成反比。這是否代表比較胖的產科醫師接生的寶寶,會有一組人格特質;比較瘦的產科醫師接生的寶寶,會有另一種不同的人格特質?

占星理論中有很多缺陷,但數盲視而不見。他們不太關心運作的機制,也不太想去比較數值大小。話說回來,即使沒有清晰明瞭的理論基礎,但如果占星術有用、有實務證據撐腰,還是應該獲得尊重。只可惜,一個人的出生日期,與標準人格測驗的得分之間,沒有任何相關性。

圖/envato

一直以來,都有人找占星師做相關的實驗(最近是加州大學的蕭恩.卡爾森﹝Shawn Carlson﹞)。研究人員會給占星師看三個匿名的人格特質側寫,其中一個是當事人的。當事人提供所有占星要用到的數據(透過問卷,而非面對面),占星師必須從人格特質側寫中挑出哪一份是當事人。實驗中總共有 116 位當事人,而負責檢驗的是歐洲與美國 30 位最頂尖(由同業判定)的占星師。實驗結果如下:占星師約有三分之一的機率,可以挑出正確的當事人人格特質側寫,也就是說,和隨機猜測沒什麼區別。

-----廣告,請繼續往下閱讀-----

凱斯西儲大學(Case Western Reserve Univer sity)物理學家約翰.馬蓋文(John McGervey)檢視《美國科學名人錄》(American Men of Science)上,超過 1 萬 6,000 位科學家,以及《美國政治名人錄》(Who’s Who in American Politics)上,超過 6,000 位政治人物的出生日期,發現他們的星座是隨機且均勻分布在十二個月中。密西根州立大學(Mi chi gan State University)的伯納德.西弗曼(Bernard Silver-man)取得密西根州 3,000 對夫婦的紀錄,發現他們的星座和占星師預測相配的星座之間,沒有相關性。

那麼,為何這麼多人相信占星之說?一個明顯的理由是:在通常語焉不詳的占星預言中,人們會去讀他們想讀到的一切,然後為預言添加根本不存在的真實性。他們也比較可能記得有成真的「預言」,過度看重巧合,忽略其他。其他理由還包括,占星術的歷史悠久(當然,人祭﹝ritual murder﹞和獻祭也同樣古老)。或是因為,它原理很簡單、但操作起來有一定的複雜度,會讓人感到安心。或者是,堅稱這個月能不能墜入愛河和天上的浩瀚星海有關,很能寬慰人心。

圖/envato

我猜,此外還有最後一個理由,那就是在一對一諮詢期間,占星師會從臉部表情、儀態、肢體語言等等,尋找和人格特質有關的線索。我們來看看知名的案例:聰明的漢斯(Clever Hans)。漢斯看來是一匹會算數的馬,牠的訓練師會擲骰子,問牠骰子上面的點數是多少。而漢斯會用馬蹄踏出正確答案,然後停住,旁觀者都大為驚異。但人們看不出來的是,訓練師原先都站定不動,等到馬兒敲到正確的次數,會有意無意地動了一下,就是這樣的反應讓漢斯停了下來。所以,不是這匹馬知道答案,牠只是反映了訓練師知道答案。人常無意間在占星師面前扮演訓練師的角色,占星師就像漢斯一樣,反映出客戶的需求。

美國天文學家卡爾.薩根(Carl Sagan)就說過,要破解占星術以及更廣義的偽科學,最好的辦法就是真正的科學。真正科學的奇妙之處也同樣神奇,不過多了一項優點:這些奇妙之處很可能是真有其事。說到底,偽科學之所以成為偽科學,並不是因為得出的結論稀奇古怪。畢竟,運氣好猜中、機緣巧合、奇特的假說,甚至是一開始的誤信,都在科學上扮演過一定角色。偽科學失當,是因為其結論經不起檢驗,以及無法和其他經過檢驗的主張之間,建立起一致的關係。我很難想像,像演員莎莉.麥克琳(Shirley MacLaine,按:麥克琳是推動新時代運動的先驅)這些人會因為證據不足、或有更好的替代解釋,就去否定通靈等超自然現象。

-----廣告,請繼續往下閱讀-----

——本書摘自《數盲、詐騙與偽科學》,2023 年 11 月,大牌出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

大牌出版.出版大牌_96
3 篇文章 ・ 0 位粉絲
閱讀的大牌不侷限於單一領域, 視野寬廣,知識豐富,思考獨立。

2

2
1

文字

分享

2
2
1
【貓心專欄】星座 / 血型 / 性格,哪一個影響了你顏色偏好?
貓心
・2022/06/26 ・3049字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

12星座圖。圖/envato

許多人對於星座和性格的關係,都有著一些既定的印象:天蠍座就是可怕、雙魚座就是多情、水瓶座就是怪、牡羊座就是火爆⋯⋯。甚至,有一些人在選交往對象時,還會特別篩選掉某些星座,或是熱愛某些星座。

然而,星座和性格之間,到底有沒有關係呢?恰好我大學時期的一份研究當中,曾經順手收集了相關的資料,現在就帶大家一起來看看這份研究,以及星座和性格到底有沒有關係吧!

一份關於色彩偏好與人格特質的研究

這份研究主要要探討的是「不同人格特質是否有色彩偏好上的差異性」,但除此之外,我們也跑了一些有趣的統計,其中包含了「血型和星座和色彩偏好的關聯性」,以及與色彩完全無關,但你我都很好奇的「人格特質和星座的關聯性」。為了蒐集研究的基礎資料,我們透過網路問卷,徵求受試者參與測驗。

測驗內容首先,受試者必須從 37 個色塊當中,挑選出自己喜歡的顏色。挑選的數量沒有上限,只要喜歡都可以選。此外,我們也透過五大人格測驗,蒐集了受試者的性格。

(色表圖)

另外他們也必須填上自己的基本資料,生理性別、職業或學校、出生年月日、血型、教育程度,居住區域、興趣、族群、母語、宗教信仰與是否相信星座或血型等等,可能對個性有影響的題目。

-----廣告,請繼續往下閱讀-----

最後,我們蒐集到 743 份問卷,其中獲得 728 份有效問卷,受試者年齡介於 14~68 歲之間,有 438 位女性,290 位男性。

不同性別、星座、血型的人,都選了什麼顏色?

那麼,首先就先來看看大家都選了什麼顏色吧!可以發現在所有受試者當中,對於黑色與白色的偏好是最高的,而灰色則是大家普遍不喜歡的顏色。

各顏色偏好數量統計表。

在性別上,無論是男性或女性,都特別喜歡藍色和紅色;但男性喜愛藍色的比例比女性還要多,而女性喜愛紅色的比例比男性還要多。

性別與色彩偏好比例。

那麼,不同星座與血型的人,喜好的色彩是否有所差異?根據卡方檢定,不同星座,在選顏色的時候,並沒有喜好上的顯著差異;至於血型倒是有兩個顏色特別受到偏好。其中一個是「薰衣草色」(色表圖第 30 號),A 型的人比 B 型的人,更喜歡這一個顏色;另一個是藍綠色(色表圖第 23 號),A 型的人比 O 型的人更愛這個顏色。

-----廣告,請繼續往下閱讀-----

顏色與性格有關嗎?

而本份研究的重點,其實是色彩偏好和個性是否有關。

在過去,心理學家主要都是以「五大人格測驗(Big Five)」來做為研究研究人格的主要依據。而所謂的五大人格,則分別包含了以下五大類別:

  • 開放性(Openness)──對於一個新經驗、新事物的開放程度。
  • 盡責性(Conscientiousness)──是否能夠嚴謹地管理自己達成目標。
  • 外向性(Extroversion)──喜歡交際、喜愛與人接觸。
  • 宜人性(Agreeableness)──對待他人是否善解人意、親切帶人。
  • 神經質(Neuroticism)──情緒是否容易因為外在而有所起伏。
五大人格特質。圖/wikipedia

根據我們研究的結果發現,喜歡第 11 號(土黃色)的人裡面,外向性高及開放性高的人佔多數;喜歡第 12 號色(棕色)的人裡面,外向性、開放性,及嚴謹自律性高的人佔多數。

而當我們採用 PCA 分析,去看不同性格與喜好色彩之間的關係時,更得出了許多顯著的結果

-----廣告,請繼續往下閱讀-----
  • 神經質程度較高的人偏好偏好高彩度、低明度的顏色(例如5、30、26號色)。
  • 外向性和盡責性程度較高的人偏好高彩度、低明度的顏色(例如26、25、27號色)。
  • 開放性程度較高的人彩度部分沒有明顯的偏好,另外則偏好低明度的顏色(例如1、2、3 6號色)。
  • 親和性程度較高的人偏好高彩度、高明度的顏色,除神經質程度較高的人外,大多數人偏好藍色色相的顏色(例如26、25、22、27號色)。
  • 神經質程度較高的人對於色相的偏好較不明顯。開放性程度較高的人,除了偏好藍色外,也偏好紅色色相的顏色(例如1、2號色)。

至於喜好與不喜好單色方面,就得出了更豐富的結果了:

  • 喜歡2號色的人,比起不喜歡的人,有較高的宜人性。
  • 喜歡4號的人,比起不喜歡的人,有較高的開放性(p=.013<.05)、較低的宜人性。
  • 喜歡7號色的人,比起不喜歡的人,有較高的開放性。
  • 喜歡9號色的人,比起不喜歡的人有較低的神經質傾向、更外向。
  • 喜歡10號色的人,比起不喜歡的人,有較高的神經質傾向、較高的開放性。
  • 喜歡11號色的人,比起不喜歡的人,有較高的開放性。
  • 喜歡12號色的人,比起不喜歡的人,有較高的開放性。
  • 喜歡14號色的人,比起不喜歡的人,有較高的神經質,較高的開放性,較低的謹慎性。
  • 喜歡15號色的,比起不喜歡的,有較高的開放性。
  • 喜歡16號色的,比起不喜歡的,有較高的開放性。
  • 喜歡18號色的人,比起不喜歡的人,有較高的神經質、與較高的開放性。
  • 喜歡19號色的人,比起不喜歡的人,有較高的開放性。
  • 喜歡21號色的人,比起不喜歡的人,有較高的神經質傾向、較低的宜人性。
  • 喜歡22號色的人,比起不喜歡的人,有較高的神經質傾向、較高的開放性、較低的謹慎性。
  • 喜歡24號色的人,比起不喜歡的人,有較高的開放性。
  • 喜歡28號色的人,比起不喜歡的人,有較低的謹慎性。
  • 喜歡32號色的人,比起不喜歡的人,有較高的開放性。
  • 喜歡33號色的人,比起不喜歡的人,有較低的謹慎性。
  • 喜歡34號色的人,比起不喜歡的人,有較低的外向性、較高的開放性、較低的謹慎性。
  • 喜歡35號色的人,比起不喜歡的人,有較低的外向性與謹慎性。
  • 喜歡36號色的人,比起不喜歡的人,有較高的開放性、較低的宜人性。

你金牛,我水瓶,這應該沒有什麼差別吧?

星座、血型跟性格完全無關。 圖/envato

很多人看到這邊,一定會很懷疑,為什麼我一開始破題的答案都沒有講到?好的,事實上,這方面雖然不是我們的研究重點,但我也用統計軟體跑過了相關的數據之後,得到的答案是:「星座和血型跟性格完全無關。」

就我個人的經驗來看,我甚至認識一個跟我同年同月同日生的人,但我們兩個的個性相差極大。所以說,如果以科學的話語來說的話,就是透過本篇研究,無法找到可以支持星座和性格有關的證據囉~

文末致謝

大學時期,我曾跨校到台科大修了一門課研究所的課,名為色彩心理學。此篇研究來自於該門課的課堂研究報告。在此,我要特別感謝我的組員王琪瑄、李梓含、吳典軒、李佳勳、洪維君,儘管至今我們已經沒有再聯絡了,但很謝謝他們當初一起完成了這份研究。

-----廣告,請繼續往下閱讀-----

如果你喜歡我的文章,歡迎到我的粉專「貓心—龔佑霖」來看更多的文章

-----廣告,請繼續往下閱讀-----
所有討論 2
貓心
76 篇文章 ・ 123 位粉絲
心理作家。台大心理系學士、國北教心理與諮商所碩士。 寫作主題為「安全感」,藉由依附理論的實際應用,讓缺乏安全感的人,了解安全感構成的要素,進而找到具有安全感的對象,並學習建立具有安全感的對話。 對於安全感,許多人有一個想法:「安全感是自己給自己的。」但在實際上,安全感其實是透過成長過程中,從照顧者對自己敏感而支持的回應,逐漸內化而來的。 因此我認為,獲得安全感的兩個關鍵在於:找到相對而言具有安全感的伴侶,並透過能夠創造安全感的說話方式與對方互動,建立起一段具有安全感的關係。 個人專欄粉專: https://www.facebook.com/psydetective/ 個人攝影粉專: https://www.facebook.com/psyphotographer/

1

5
2

文字

分享

1
5
2
血型不止四種!紅遍全球的「血型性格學說」,為什麼讓科學家皺眉不已?——《了不起的人體:如此精妙,如此有趣,說不定還能救你一命》
如何出版
・2022/07/26 ・2880字 ・閱讀時間約 6 分鐘

填寫血型,是為了避免被輸錯血嗎?

很不可思議的,日常生活中很多地方都會被要求填寫血型。

馬拉松的報名表和號碼牌、幼兒園或學校的文件、貼身的避難包等,都有血型註記欄位。

日常生活中很多地方都會被要求填寫血型。圖/Pixabay

但是在不少國家,如果要求市民也填寫同樣的資料,這就困難了。因為很多人根本不知道自己的血型,問了反而徒增困擾。

究竟我們填寫的血型資訊有什麼用?或許你會想,莫非是受傷需要輸血時可以派上用場?但這其實是誤會。

-----廣告,請繼續往下閱讀-----

即便患者提前告知,輸血前仍會確認患者的血型

輸血前一定會進行血液檢查確認血型。每家醫院所需時間不同,但一般來說,血型檢查結果只需要數十分鐘就能出來。還有在輸血前,一定會進行將患者血液與一部分血液製劑混合,觀察是否出現有害反應的「交叉配合試驗」。

這些不會因為病患本人主張「我是 A 型」就省略。即使以前在同一家醫院接受過血液檢查,確切知道血型的狀況下,也一定要做交叉配合試驗(除了術前檢查等例外)。

為什麼呢?理由很單純。如果誤用了不同血型的血液,會引起危及性命的「溶血反應」,這麼重大的資訊,不能光靠患者自我表述。

在輸血前一定會進行將患者血液與一部分血液製劑混合,觀察是否出現有害反應的「交叉配合試驗」。圖/Pixabay

另外,很多人是以出生時受檢的結果當作自己的血型,但新生兒的血液檢查不一定正確。有些人以為自己是 A 型,第一次手術時接受檢查才知道是 B 型,不能依賴自我表述的血型也有這個層面的考量。

什麼都不知道的緊急狀況下,到底該怎麼辦?

那麼,如果遇到不知道血型的患者大出血,也來不及做血型檢查的緊急狀況,該如何處置?這個時候就只能相信本人的自我表述嗎?

-----廣告,請繼續往下閱讀-----

當然不能。這個時候就只能用 O 型血了,因為不管對方是什麼血型,應該都不會引起嚴重的反應。即使是緊急狀況,也不可能只利用自我表述的血型情報。

近年來因為有這樣的案例,所以出生時很多醫療機構不會驗血型。正在閱讀此書的你,或許不知道自己小孩的血型,完全不用擔心,需要的時候再去檢查即可。

順道一提,我也不知道自己小孩的血型。

緊急情況時,為什麼 O 型血能輸給所有人?

在 1900 年,奧地利人蘭德斯坦納發現「血液有不同類型」前,錯誤輸血的事故頻傳。

-----廣告,請繼續往下閱讀-----

蘭德斯坦納注意到人的血清和他人的紅血球混合後,有的會凝結破裂,有的不會。在經過確認很多樣本配對的反應後,歸納出人有 A、B、C 三種血液類型的結論。之後的研究又發現了第四種 AB 型,C 型被改稱為 O 型。

人有 A、B、O、AB 型四種血液類型。圖/Pixabay

所謂的血型,就是指紅血球表面的抗原種類。你可以想像細胞表面有很多棘刺狀物,輸血的時候最重要的「棘刺」有 ABO 和 Rh 二種系統。

A 型紅血球有 A 抗原,B 型紅血球有 B 抗原,AB 型則同時有 A 抗原和 B 抗原,O 型的沒有抗原;另一方面,A 型血清有抗 B 抗體、B 型血清有抗 A 抗體、O 型血清兩種抗體都有,AB 型則是兩種都沒有。

看起來非常複雜,但結論很簡單,我們只會有對自己的抗原不反應的抗體。

-----廣告,請繼續往下閱讀-----

抗體和抗原就像鑰匙和鎖孔,如果 A 抗原對抗 A 抗體、B 抗原對抗 B 抗體就會產生凝集反應,紅血球就會被破壞。

抗體和抗原就像鑰匙和鎖孔,例如把 A 抗原對抗 A 抗體,紅血球就會被破壞。圖/Pexels

因此如果把 B 型的紅血球輸給 A 型患者、把 A 型紅血球輸給 B 型患者,紅血球抗原和抗體會相互結合,凝結破裂。

另一方面,O 型的紅血球不管對方是誰都不會凝結,是因為 O 型紅血球沒有 A 抗原也沒有 B 抗原。不管是稱為 C 或 O,都是代表「沒有」抗原,也就是「零」的意思。

此一發現在安全輸血普及上扮演極重要的角色。1930 年,蘭德斯坦納以此成就獲得諾貝爾醫學生理學獎。

-----廣告,請繼續往下閱讀-----

血型不只有 ABO,Rh 也有超過 40 種抗原

如同 ABO 有 A 和 B 二種抗原,Rh 也有 C、c、D、E、e 等超過四十種抗原。其中有 D 抗原的統稱為 Rh 陽性、沒有的稱為 Rh 陰性。錯誤輸血會引起強烈反應的,是 D 抗原。

發現 Rh 的還是蘭德斯坦納,是在發現 ABO 後四十年的 1940 年。

Rh 是取恆河猴(Rhesus monkey,德語為 Rhesusaffe)頭兩個字母。因為 Rh 是恆河猴共通的抗原。順道一提,日本人罕有 Rh 陰性者,大約只有 0.5%,台灣人為 0.3%,但白人則有 15%。

血型還有很多其他分類。MNS 血型、P 血型、Lewis 血型、Kell 血型、Diego 血型等不勝枚舉。如果是罕見血型,即使 ABO 和 Rh 一致,也有可能發生錯誤輸血。

-----廣告,請繼續往下閱讀-----

明明知道自己的血型沒什麼用,為什麼大家都很在意?

「血型」本來是沒有必要知道的醫學資料,但為什麼很多人都會記得呢?而且不只是自己的血型,有的人連家人、朋友、同事、上司的血型都一清二楚,實在是很驚人。

理由恐怕是很多人都認同血液性格學說。當然,血液和個性之間的關聯毫無科學根據,只要想到血型的機制,就會知道紅血球表面抗原跟個性有關的說法有多無稽。

當然,也不能受到「你是 O 型所以會有〇〇個性」的暗示,因而影響到人格形成。如果真的是這樣,那對本人是有害的。

不管如何,還是有很多人期待用血型將人歸類。現在電視或雜誌上「O型的人一板一眼」「A 型和 B 型速配指數?」等不可思議的企畫仍舊源源不絕。

-----廣告,請繼續往下閱讀-----

人與人之間,要靠直接對話、一起相處,才能初步互相認識。很遺憾的,這真的不是靠血型就可以了解的事。

——本文摘自《了不起的人體:如此精妙,如此有趣,說不定還能救你一命》,2022 年 7 月,如何出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
如何出版
8 篇文章 ・ 2 位粉絲