0

2
0

文字

分享

0
2
0

2014諾貝爾化學獎–如何將光學顯微鏡變成奈米顯微鏡

諾貝爾化學獎譯文_96
・2014/10/09 ・5260字 ・閱讀時間約 10 分鐘 ・SR值 554 ・八年級

-----廣告,請繼續往下閱讀-----

本文由台大化學蔡蘊明教授譯自諾貝爾化學獎委員會公佈給大眾的新聞稿(2014/10/9)
PanSci 編輯部轉載並編輯修改自台大化學網站

艾瑞克・貝齊格(Eric Betzig),史蒂芬・海爾(Stefan W. Hell)以及威廉・莫納(William E. Moerner)等三人得到了2014年的諾貝爾化學獎,這是因為他們越過了一個科學上設想的限制,也就是光學顯微鏡的解析度永遠無法比 0.2 微米更精確。但如今,利用分子的螢光,科學家現在可以監看在細胞內部分子之間的相互作用;他們可以觀察與疾病相關的蛋白質之聚集,也可以在奈米的尺度裡追蹤細胞分裂。

紅血球細胞、細菌、酵母菌細胞以及游動精子:當科學家在十七世紀第一次開始在顯微鏡下研究活體組織時,一個新的世界在他們的眼前打開。這是微生物學出世之際,從此之後,光學顯微鏡成為生命科學家工具箱裡面最重要的工具之一。其它的顯微鏡術,例如電子顯微鏡,其所需的準備方法最終會殺死細胞。

發亮的分子越過了物理的屏障

然而,有一段很長的時間,物理條件限制了光學顯微鏡所能解析的結構的大小。在1873年,顯微鏡學家恩斯特・阿貝(Ernst Abbe)發表了一個方程式,證明了光學顯微鏡的解析度是如何受到光的波長,以及一些其它的因素所限制。這導致科學家在二十世紀的大半時間裡,相信光學顯微鏡是永遠無法用來觀察那些比所用的光之波長的一半還小的物體,也就是 0. 2微米 (200奈米;微米 = 10-6 米 = 10 3 奈米) (圖一)。在這樣的狀況下,細胞裡一些胞器的輪廓,例如細胞的發電機粒線體,雖可以看到,但是幾乎不可能分辨更小的物體,因此如果想要追蹤細胞裡蛋白質分子之間的相互作用,就無法做到,這好比能看到一個城市的建築物,但卻無法看出市民如何的生活,和如何為其生存而努力。為了瞭解一個細胞如何的運作,你必須能追蹤個別的分子如何的工作。

fig01_chinese
圖一 在十九世紀末葉,恩斯特・阿貝(Ernst Abbe)定義了光學顯微鏡的解析度約為光波長的一半,差不多是0.2微米(200奈米),這意味著科學家能夠區別一個完整的細胞以及一些細胞內的胞器,不過他們將永遠無法分辨小到如一個正常大小的病毒,或是一個單一的蛋白質分子。

儘管阿貝的方程式依然成立,但繞射極限的障礙仍被克服了。艾瑞克・貝齊格,史蒂芬・海爾以及威廉・莫納等三人之所以獲得2014年的諾貝爾化學獎,就是因為他們利用螢光分子,將光學顯微鏡帶進了另一個境界。理論上,不再存在有太小而無法觀察的結構。就結果而言,光學顯微鏡變成了奈米顯微鏡。

-----廣告,請繼續往下閱讀-----

如何規避阿貝繞射極限的故事,要分成兩條路線來說;兩個基於不同的原理所各自獨立發展出的方法,都獲得成功。讓我們回溯到1993年,在芬蘭西南部的一個學生公寓裡,史蒂芬・海爾在翻閱一本量子光學的教科書時,得到了一個很棒的點子。

對阿貝繞射極限的青春叛逆面對了懷疑

自從海爾在1990年從德國海德堡大學取得博士學位之後,他就一直在尋找方法,來規避阿貝在超過一個世紀以前所訂下的限制。挑戰一個已經建立的理論,這樣的想法雖很誘人,但是在德國的資深科學家們,以懷疑面對他的熱情,導致了海爾往寒冷的北方尋找庇護所。一位在芬蘭特爾庫(Turku)大學研究螢光顯微鏡術的教授,給了海爾在其研究小組工作的一個職位。海爾相信一定有一個機會能夠克服阿貝的繞射極限,而當他讀到那本量子光學課本裡面「受激放射」的字語時,在他的腦海裡浮現了一個新的想法:「在那個瞬間,曙光在我腦際出現,我終於找到一個實際的觀念來追求一條真正的線索。」這是他於2009年自己的說明 ,讓我們進入他的想法一探究竟。

解答:用奈米大小的手電筒掃描樣品

在特爾庫大學,海爾在進行稱為螢光顯微鏡術的研究,那是一種利用螢光分子來讓細胞顯像的技術。舉例來說,他們可以使用只與特定細胞DNA偶合之專一螢光抗體,再用一個短暫的脈衝光來激發螢光抗體,這可以讓抗體短暫並持續一段時間。而如果抗體的確與DNA偶合,它們就會在細胞當中放瑩光,因為DNA是塞在細胞核裡面的。利用這個方法,科學家們可以看到某些分子的位置,但是他們只能定出一群聚集在一起的分子之位置,例如一些糾纏在一起的多股DNA,但是因為解析度太低,而無法分辨單股的DNA,這就好像你可以看到一卷紗線,但卻無法看出紗線是如何纏繞的。

當海爾讀到受激放射時,他體認到應該可以設計一種範圍為奈米大小的手電筒,能夠對著樣品以一次一個奈米的方式掃描。利用受激放射,科學家們可以將分子的螢光淬滅(quench),當他們將一道雷射光束照在那些發光的的分子上時,它們會立刻失去能量而變暗。在1994年,海爾發表了一篇論文概略說明了他的想法,他規劃的方法稱為受激放射消去法(stimulated emission depletion,簡稱STED),利用一道脈衝光將所有的螢光分子激發(開始發光),同時利用另一道脈衝光將所有的螢光分子淬滅,但是只有在中間的一個奈米尺度大小的體積之內除外(圖二),因此只會取得在這個體積之內的螢光。透過對樣品的掃描以及同時對光線強度的測量,就可以取得一張清楚的圖像。每一次被容許放出螢光的體積愈小,最後得到的影像解析度就愈高,因此在理論上,光學顯微鏡在解析度方面就不再有限制了。

-----廣告,請繼續往下閱讀-----

fig02_chinese

在德國發展頭一個奈米手電筒

海爾的理論文章並未立刻的激起一場騷動,但是的確有趣到讓海爾在位於哥廷根的馬克斯・卜蘭克生物物理化學研究所,得到一個職位。在接下來的數年裡,他讓自己的想法開花結果;他設計了一個STED顯微鏡,於2000年,已經能夠展示真的可以實際的運用他的想法,其中之一是用來取得一張大腸桿菌的圖像,並具有用光學顯微鏡從來無法達到的解析度(圖三)。

fig03_chinese

STED 顯微鏡從收集一大堆很小的體積所放出的光,然後集合成一張整體的圖像,相對的比較,另一種原理也得到了成功,那被稱為單分子顯微鏡術,需要將許多張圖像重疊在一起。艾瑞克・貝齊格與威廉・莫納(大家都用W. E.稱呼他)各自獨立的,以不同的基礎觀念切入,促成這項技術的發展。這項技術的基礎,是在莫納成功的觀測到一個小的螢光分子時所奠定。

W. E. 莫納 ― 首先觀測到單一的螢光分子

在大部分的化學方法中,例如量測吸收和螢光,科學家們是同時觀察上百萬的分子,在這些實驗中所得到的結果,反映的只是一種典型平均化的分子表現,但科學家們不得不接受這種困境,因為沒有別的可能性。不過有很長的一段時間,他們夢想著能夠量測每一個單一的分子,因為有愈豐富愈詳盡的資訊,就愈可能去瞭解譬如疾病是如何的發展。

在1989年,莫納成為全球第一位科學家能夠量測單一分子對光的吸收,那是一項具有關鍵性的成就。當時他正在位於美國加州聖荷西的IBM研究中心工作,那個實驗打開了一扇通往新未來的大門,並且啟發了許多化學家將注意力轉移到單分子的身上,其中之一就是艾瑞克・貝齊格,接著會在稍後說明他的成就。

-----廣告,請繼續往下閱讀-----

八年之後,莫納朝單分子顯微鏡邁出了第二步,那是運用之前諾貝爾獎在2008年所表彰過的綠色螢光蛋白質(GFP)。

分子大小的燈一開一關

在1997年,莫納進入了在加州大學的聖地牙哥分校,那正是後來獲得諾貝爾桂冠的錢永健所在的學校,當時錢永健正嘗試要讓GFP放出像彩虹般的各種螢光。這個綠色螢光蛋白質是從一種螢光水母身上分離出來的,它的好處在於能讓細胞裡面的其它蛋白質顯像。科學家們先利用基因科技,將綠色螢光蛋白質偶合到其它的蛋白質上,那綠色的螢光就會暴露出這個被標記的蛋白質位在何處。

莫納發現有一種GFP可隨意點亮或關掉,當他用488奈米波長的光去激發蛋白質的時候,蛋白質就開始發出螢光,但一個短暫的時間之後就會熄滅,在這之後無論他再用多強的光去照射這個蛋白質,它也不會發光,不過他後來發現當光的波長改為405奈米時,這個蛋白質就會恢復生機,當蛋白質重新活化後,它又會放出488奈米波長的螢光。

莫納將這些可被激發的蛋白質均勻的散佈在一個膠質內,讓每個蛋白質之間的距離大於0.2微米的阿貝繞射極限,因為它們稀疏的散開來,一個普通的光學顯微鏡就可以區辨每一個發亮的分子 ― 它們就好像一堆具有開關的小燈泡,這項結果發表在1997年的“自然”期刊上。

-----廣告,請繼續往下閱讀-----

透過這個發現,莫納展示了可以透過光學的方式,控制單一分子們的螢光,這解決了一個貝齊格在兩年之前所想到的問題。

對學術感到疲乏 ― 但仍爲阿貝的繞射極限而著迷

與海爾一樣,貝齊格也爲了越過阿貝繞射極限的想法而著迷。在1990年代初期,他正在美國紐澤西州的貝爾實驗室,研究一種新的光學顯微鏡術,稱為近場顯微鏡術。在此法中,光線是從一個非常薄的尖端所釋出,這個尖端與樣品之間的距離只有幾個奈米,雖然這種顯微鏡術也可以克服阿貝繞射極限,但是此法具有一些主要的弱點,舉例來說,因為放出的光範圍太短(只能深入約一百奈米),以至於無法看到細胞表面之下的結構。

貝齊格在1995年得到一個結論,那就是近場顯微鏡術無法更進一步的改善,此外他在學術界感覺不太自在,因此決定結束他的研究生涯;即便不知下一步要何去何從,他毅然辭職,但是阿貝繞射極限仍在他的心中。步行在一個寒冷的冬天裡,他想到了一個新的點子;是否可能用具有不同性質的分子,那些發出不同顏色之螢光的分子,來克服阿貝繞射極限?

貝齊格已經能用近場顯微鏡術觀測到單分子的螢光,與許多人一樣,貝齊格受到莫納的啟發,他開始仔細考慮,如果使用幾種會放出不同螢光的分子,例如紅色、黃色和綠色,是否可以利用普通的光學顯微鏡得到相同的解析度。他的點子是讓顯微鏡每一次用不同顏色的光來記錄影像,如果同一種顏色的分子都是均勻的散佈,而且相互之間的距離大於阿貝繞射極限的規範,它們的位置將可精確的決定。接著當這些影像重疊起來時,完整的圖像將具有遠超過阿貝繞射極限的解析度,紅色、黃色和綠色的分子雖然相互的距離只不過幾個奈米,但仍能區別,如此就能克服阿貝繞射極限。不過,仍有一些實際的困難,例如缺乏那些具有不同光學性質之分子,其差異要大到足以相互區別。

-----廣告,請繼續往下閱讀-----

在1995年,貝齊格在 Optical Letters 這份期刊上發表了上述想法之理論,隨即離開了學術界,並進入了他父親開的公司。

被綠色螢光蛋白質引誘回到顯微鏡術

貝齊格完全的脫離學術界,已經有許多年了,但是有一天,一個對科學的渴望突然又復甦了。回顧科學文獻時,他第一次看到綠色螢光蛋白質的論文,體認到有一個蛋白質,能讓其它的蛋白質在細胞內顯像,活化了貝齊格對如何克服阿貝繞射極限的想法。

真正的突破發生在2005年,當時他偶然發現到那種可以隨意活化的螢光蛋白質,很類似那些莫納在1997年,於單分子的層次所觀察到的螢光蛋白質。貝齊格知道,這個分子正是可以實現他在十年前所想到的那個主意,所需要的工具。這種螢光分子並不需要具有不同的顏色,它們還是可以在不同的時間發出螢光。

藉著影像的重疊超越阿貝繞射極限

只不過一年之後,與研究可激發螢光蛋白質的科學家合作,貝齊格展示了他的想法的確可以付諸實現。在一些例子當中,他們將會發光的蛋白質接在溶體(lysosome)的膜上面,溶體是細胞裡的回收站,現在用一道脈衝光來激發出蛋白質的螢光,因為使用的脈衝很弱,所以只能讓部分的分子開始發出螢光,由於它們的數目很少,幾乎所有發光分子之間的距離均大於0.2微米的阿貝繞射極限,因此每一個發光的蛋白質之位置都可以在顯微鏡下登錄。一會兒之後,當螢光消失時,他們重新激發另一組蛋白質,同樣的,使用的脈衝弱到只能讓部分的分子發出螢光,同時這一組圖像被登錄下來,這個步驟一直不斷的重複。
fig04_chinese

-----廣告,請繼續往下閱讀-----

當貝齊格將所有的影像重疊起來時,得到了一張溶體膜的超高解析圖像,它的解析度遠遠的超過了阿貝繞射極限。接著,貝齊格將這一份開創性的工作,於2006年發表在“科學”期刊上。

fig05_chinese
圖五 中間的圖是溶體(lysosome)膜的圖像,這是貝齊格用單分子顯微鏡,最初所取得的幾個圖像之一。在左邊是相同的圖,但是用傳統的顯微鏡所取得的。在右邊則是將膜的圖像放大,請注意此圖的尺度是0.2微米,等同於阿貝繞射極限,其解析度改進了許多倍。此圖取自於 Science 313:1642-1645。

這幾位得獎者仍企圖在描繪生命最深層的奧秘

這些由艾瑞克・貝齊格,史蒂芬・海爾以及威廉・莫納等三人所開發的方法,發展出了幾個現在爲全世界各地所使用的奈米顯微鏡技術。這三位得獎者仍然活躍在這個不僅龐大,而且一直在增長的科學社群中,將創新的矛頭對著奈米顯微鏡術的領域,當他們將功能強大的奈米顯微鏡瞄準在生命中最小的零件時,他們也同時取得了最尖端的知識。史蒂芬・海爾爲了對腦突觸有更好的瞭解,窺探了活的神經細胞內部;威廉・莫納研究了與杭丁頓氏症(舞蹈症)有關的蛋白質;艾瑞克・貝齊格追蹤了在胚胎中細胞的分裂,這些只是眾多例子當中的幾個。有一件事情是肯定的,2014年的諾貝爾化學桂冠得主們,對發展人類最重要的知識,已經奠定了基石。

 

  • 本文譯自諾貝爾化學獎委員會公佈給大眾的新聞稿,原文可自官方網站取得。
  • 若有興趣閱讀進階的資料,請由此網址取得。

*特別感謝現於美國德州農工大學攻讀博士的曹一允(我2008年的專題生)熱血相挺,幫我將圖片中文化;另外感謝現於本系李弘文教授實驗室,攻讀碩士學位的林宇軒幫我校稿。多年來幫我將譯文置於台大化學系網頁的黃俊輝先生業已退休,感謝接替他的蔡明軒幫忙。

 

編按:蔡教授歷年翻譯的諾貝爾化學獎得主貢獻簡介

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
諾貝爾化學獎譯文_96
15 篇文章 ・ 23 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列

0

2
0

文字

分享

0
2
0
從「衛生紙」開始的環保行動:一起愛地球,從 i 開始
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/03 ・1592字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

你是否也曾在抽衛生紙的瞬間,心頭閃過「這會不會讓更多森林消失」的擔憂?當最後一張衛生紙用完,內心的愧疚感也油然而生……但先別急著責怪自己,事實上,使用木製品和紙張也能很永續!只要我們選對來源、支持永續木材,你的每一個購物決策,都能將對地球的影響降到最低。

二氧化碳是「植物的食物」:碳的循環旅程

樹木的主食是水與二氧化碳,它們從空氣中吸收二氧化碳,並利用這些碳元素形成枝葉與樹幹。最終這些樹木會被砍伐,切成木材或搗成紙漿,用於各種紙張與木製品的製造。

木製品在到達其使用年限後,無論是被燃燒還是自然分解,都會重新釋放出二氧化碳。不過在碳循環中,這些釋出的二氧化碳,來自於原本被樹木「吸收」的那些二氧化碳,因此並不會增加大氣中的碳總量。

只要我們持續種植新樹,碳循環就能不斷延續,二氧化碳在不同型態間流轉,而不會大量增加溫室氣體在大氣中的總量。因為具備循環再生的特性,讓木材成為相對環保的資源。

但,為了木製品而砍伐森林,真的沒問題嗎?當然會有問題!

-----廣告,請繼續往下閱讀-----
從吸碳到固碳的循環

砍對樹,很重要

實際上,有不少木材來自於樹木豐富的熱帶雨林。然而,熱帶雨林是無數動植物的棲息地,它們承載著地球豐富的生物多樣性。當這些森林被非法砍伐,不僅生態系統遭到破壞,還有一個嚴重的問題–黃碳,也就是那些大量儲存在落葉與土壤有機質中的碳,會因為上方森林的消失重新將碳釋放進大氣之中。這些原本是森林的土地,將從固碳變成排碳大戶。

不論是黃碳問題,還是要確保雨林珍貴的生物多樣性不被影響,經營得當的人工永續林,能將對環境的影響降到最低,是紙漿和木材的理想來源。永續林的經營者通常需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。木材反覆在同一片土地上生成,因此不用再砍伐更多的原始林。在這樣的循環經營下,我們才能不必冒著破壞原始林的風險,繼續享用木製品。

人工永續林的經營者需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。

如何確保你手中的紙張來自永續林?

如果你擔心自己無意中購買了對環境不友善的商品,而不敢下手,只要認明FSC(森林管理委員會)認證與 PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。並且從森林到工廠、再到產品,流程都能被追蹤,為你把關每一張紙的生產過程合乎永續。

只要認明 FSC(森林管理委員會)認證與 PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。

家樂福「從 i 開始」:環境友善購物新選擇

不僅是紙張,家樂福自有品牌的產品都已經通過了環保認證,幫助消費者在日常生活中輕鬆實踐環保。選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌,這代表商品在生產過程中已經符合多項國際認證永續發展標準。

-----廣告,請繼續往下閱讀-----

「從 i 開始」涵蓋十大環保行動,從營養飲食、無添加物、有機產品,到生態農業、動物福利、永續漁業、減少塑料與森林保育,讓你每一項購物選擇都能與環境保護密切相關。無論是買菜、買肉,還是日常生活用品,都能透過簡單的選擇,為地球盡一份力。

選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
212 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
DNA-PAINT:轉瞬標記 奈米解析
顯微觀點_96
・2024/10/03 ・3586字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/顯微觀點

DNA-PAINT:易脫落的奈米「漆」

DNA-PAINT 屬於單分子定位顯微術(SMLM)大家族一員,它突破繞射極限的途徑類似 PALM 與 STORM:以閃爍(blinking)的螢光讓多個目標分子的位置輪番呈現,最後將多次定位影像以電腦疊合重建成完整的超解析分子地圖。結合電腦運算輔助和光學成像的統計原理,DNA-PAINT 可以達成極端細緻的 RESI 定位術,清楚區別兩個距離不到 1 奈米的螢光來源。

單看字面,DNA-PAINT 給人「以 DNA 作為油漆」的印象。事實稍有不同,這種技術以 DNA 作為「點累積奈米成像術」(PAINT , Point Accumulation for Imaging in Nanoscale Topography)的探針。接上螢光染劑的短小 DNA 片段,可以靈敏標記蛋白質、染色體以及許多細胞內構造。

DNA-PAINT 的特別之處,在於利用「不牢固」的螢光標記製造閃爍效果。不同於 PALM, STORM 以光調控「固著在目標上」的螢光來源,DNA-PAINT 使用與目標連結力量薄弱的螢光探針,結合目標之後會快速分離。只有在探針與目標結合的瞬間,同時被激發光照射,探針上的螢光團才能發出螢光。目標分子與螢光探針分離後,依然保有和下一個探針結合的能力,因此不必擔心螢光團的放光能力衰退。

-----廣告,請繼續往下閱讀-----
Dna Barcoded Labeling Probes For Highly Multiplexed Exchange Paint Imaging
DNA-PAINT 原理:Docking strand(嵌合序列)附著在人造 DNA 構造上,溶液中漂浮著成像序列(Imager strand),成像序列上的螢光團不容易被激發(膚色)。成像序列與嵌合序列結合時,螢光團才會被激發(橘紅色) 圖片來源:Agasti, Sarit S., et al. Chemical science 8.4 (2017): 3080-3091.

DNA-PAINT 使用的 DNA 探針片段長度不超過 10 個鹼基,又稱寡核苷酸(oligonucleotides 或oligomers)。這些短小 DNA 片段可以附加上螢光染劑的螢光團分子,成為螢光探針。

DNA 探針的結合對象是另一段互補的 DNA 片段,此互補序列會預先透過抗體與定位目標連結,等待 DNA 探針前來結合。DNA 探針因為具有螢光團,被稱為「成像片段(imager strand)」,而牢固於目標的互補序列則稱為「嵌合片段(docking strand)」。對生物細胞進行 DNA-PAINT 時,嵌合片段與目標分子之間常有抗體或配體做為銜接,需要類似免疫螢光染色的前置作業,目標表面的抗原也可以因應實驗需求進行設計。

因為兩個短小 DNA 片段之間的結合力有限,成像片段與嵌合片段結合後會快速分離。而螢光團只有在結合目標時才容易放光,因此可以形成閃爍的螢光定位標記。經由電腦疊合閃爍的定位影像,DNA-PAINT 可以達成 10 奈米左右的超解析定位,若沒有序列成像的幫助,依然無法突破奈米以下解析度的光學障礙。

Direct Visualization Of Single Nuclear Pore Complex Proteins Using Genetically‐encoded Probes For Dna‐paint
以 DNA-PAINT 對細胞核膜上的 Nup96 核孔蛋白進行 3D 定位。在圖 a. 中,不同的螢光色彩象徵不同的空間深度。圖 b. 箭頭所指處,則是成對出現的 Nup96 蛋白。比例尺:圖 a. 2000nm, 圖 b. 50 nm. 圖片來源:Schlichthaerle, Thomas, et al. Angewandte Chemie 131.37 (2019): 13138-13142.

核孔複合體(Nuclear Pore Complex)上的 Nup96 蛋白是科學家經常探索的重要目標,即使是超解析顯微術也未能在自然狀態下呈現其構造。隆曼團隊以 RESI 對 Nup96 進行定位,不但清楚定位出符合電子顯微鏡拍攝的 8 對 Nup96 蛋白沿著核孔形成環狀結構,還能清楚呈現每對蛋白之間的 11 奈米的間距。

-----廣告,請繼續往下閱讀-----

結合序列成像(Sequential Imaging)與 DNA-PAINT 兩種技術,RESI 讓科學家得以運用一般門檻的顯微儀器、耗材,就能達到超乎以往想像的定位解析度。而 DNA-PAINT 這種巧妙的定位方法並非一蹴而就,而是數種有趣的技術累積而成。

PAINT 起源:不穩定又不專一的尼羅紅

PAINT(Point Accumulation for Imaging in Nanoscale Topography, 點累積奈米成像術)系列定位法的螢光探針由一個螢光染劑分子與一個分子探針(probe)構成。親和性抗體、寡核苷酸(短小 DNA 片段)都可作為分子探針的材料,再由此探針結合目標分子或其上的抗體。除了 DNA-PAINT, PAINT 家譜上還有 FRET-PAINT, Exchange-PAINT, u-PAINT 等不同特質的成員。

在 2006 年由沙羅諾夫(A. Sharonov)和霍克崔瑟(R. M. Hochstraser)發表的第一代 PAINT 中,僅僅使用螢光染料尼羅紅(Nile Red)為標記。這種染劑在含水溶劑中無法發光,必須進入磷脂層等非極性環境才能展現其螢光活性。

因此尼羅紅無須結合探針,只要以低濃度加入樣本溶液中,就能觀察到其進入細胞膜脂雙層、大型磷脂囊泡(large unilamella vesicles)表層等疏水性環境中,受到激發放出螢光。尼羅紅與磷脂層的親和性不強,很快就會再次脫離,也容易遭到光漂白(photobleaching)而失去螢光,因此可作為一種閃爍的螢光定位標記。

-----廣告,請繼續往下閱讀-----

尼羅紅可以結合所有疏水性(hydrophobic)的構造,無法真的標記特定分子,缺乏分子生物學重視的專一性。但它開啟了 PAINT 以「不牢固螢光染劑」增進解析度的先河。與多數螢光顯微術追求螢光團穩定性與強度的定位技巧背道而馳。

Image 2
圖 a. 以尼羅紅標記磷脂層的直接成像;圖 b. 以 PAINT 技術進行上千次成像重建後的磷脂層定位。兩者定位解析度形成強烈對比。圖 c. 為 uPAINT 概念:接受激發光(綠色)照耀的螢光探針才會發光(紅色),漂浮在激發光範圍外的螢光探針保持黯淡(粉紅),即使未結合目標的探針也能發光,且僅能標記細胞膜表面的目標。圖片來源:Nieves, Daniel J., et al. Genes 9.12 (2018): 621.

4 年後,吉安諾內(G. Giannone)和荷西(E. Hosy)以具目標專一性的配體,例如抗體蛋白,連接螢光團形成螢光探針,達成具有專一性的 PAINT 超解析定位。透過進步的生化技術製作配體,這種技術幾乎可以定位所有類型的目標,因此被命名 universal-PAINT, 簡稱 uPAINT。

uPAINT 可以提升多種目標的定位解析度,但其螢光探針即使游離在溶液中,也能接受激發、放出螢光,形成背景雜訊。且結合螢光染劑的抗體無法穿透細胞膜,因此只能定位細胞膜上的目標。

因此 uPAINT 必須限縮激發光照射的範圍,對準目標、減少雜訊,例如微調全內反射顯微鏡(TIRF)的角度,形成「高傾斜層光照明」(Highly Inclined and Laminated Optical sheet, HILO)以限定激發範圍。

-----廣告,請繼續往下閱讀-----

同在 2010 年,隆曼與史坦豪爾(C. Steinhauer)嘗試以寡核苷酸為探針,定位 DNA 摺紙構造(DNA origami structure)上的目標,達到了奈米等級的解析度。DNA-based Point Accumulation for Imaging in Nanoscale Topography 正式誕生,善用「不牢固的螢光探針」與電腦運算的輔助,以一般螢光顯微鏡就能突破繞射極限。

無限調色的虛擬油漆:Exchange-PAINT

2014 年,隆曼與同事阿凡達尼歐(M. S. Avendaño)、沃爾斯坦(J. B. Woehrstein)發表 DNA-PAINT 的巧妙變化,除了同時以不同探針標記不同構造,達成精準的多重定位(multiplexed localization),更實現以一種螢光超解析定位多種目標,讓多重標記的潛力加速實現。

這種多重標記被隆曼與同事稱為 Exchange-PAINT,同樣使用 DNA 片段作為探針。在同一個樣本的 10 種不同目標上,連結了 10 種不同的嵌合片段(docking strands),隆曼等人再以 10 種互不干涉的短小 DNA 序列(orthogonal sequences)作為成像片段(imager strands)。

他們每次只加入一種成像片段,針對一種目標進行閃爍(blinking)定位,並由電腦套上特定顏色,接著洗去既有成像片段,再加入下一種成像片段。最後將所有目標的獨立定位圖疊合起來,便能得到完整的奈米級定位。

-----廣告,請繼續往下閱讀-----
Multiplexed 3d Cellular Super Resolution Imaging With Dna Paint And Exchange Paint 2
圖 a.為 Exchange-PAINT 概念,每一輪定位針對一種目標,完成後洗去探針,再加入下一種探針進行定位,最後將每一輪的定位影像疊合起來。圖 c., 圖 d. 表現 Exchange-PAINT 的多工能力, 1 個 DNA 摺紙樣本上的 10 種不同目標可以依序定位,賦予顏色(實際上使用相同螢光染劑,不同成像片段),再以電腦重建疊合。每一種目標的定位都進行了 7500 次拍攝。圖 d., 圖 e. 中的比例尺為 25nm. 圖片來源:Jungmann, Ralf, et al.  Nature methods 11.3 (2014): 313-318.

只需要一種螢光染劑接上多種成像片段,Exchange-PAINT 便能以基本的實驗設備達到多重目標的超解析定位,不像多重標記的 DNA-PAINT 受限於染劑顏色數目,Exchange-PAINT 的門檻在於互不相干寡核甘酸片段的數目,在實驗中幾乎不可能窮盡。而可以使用一般螢光顯微鏡與螢光染劑達到埃(ångström)解析度的 RESI 技術,就是將 Exchange-PAINT 的多種目標定位應用於單種目標定位,透過不同探針標記同種目標製造發光順序落差,大幅提升解析度。

在「眼見為真」的生物學影像趨勢中,「增加偵測光子數量」是螢光顯微技術提升解析度的基礎光學原理,也是最主流的技術改良方向。而 DNA-PAINT 系列技術跳脫了對光子數量的追求,不受螢光染劑的光漂白及螢光壽命限制,以快速脫落的探針另闢蹊徑,使低成本的超解析影像得以實現,更展現生物物理學蘊藏的廣泛技術可能性。

參考資料:

  • DNA-PAINT 的最新應用:RESI序列成像解析度增強術
  • Jungmann, Ralf, et al.  Nature methods 11.3 (2014): 313-318.
  • Agasti, Sarit S., et al.  Chemical science 8.4 (2017): 3080-3091.
  • Nieves, Daniel J., Katharina Gaus, and Matthew AB Baker. Genes 9.12 (2018): 621.
  • Schlichthaerle, Thomas, et al.  Angewandte Chemie 131.37 (2019): 13138-13142.
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
18 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
0

文字

分享

0
1
0
RESI : 基礎儀器定位奈米世界
顯微觀點_96
・2024/09/14 ・3117字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

Abstract Of Digital DNA Construction.
圖/顯微觀點

電腦運算是近 20 年來生物影像突破繞射極限的可靠工具,例如 STORM(Stochastic Optical Reconstruction Microscopy), PALM(Photo-Activated Localization Microscopy),以電腦記憶、疊合,將多次拍攝的零散螢光重建成完整輿圖,解析度極限可接近 10 奈米。

現在,透過電腦輔助的序列成像解析度增強術(RESI, Resolution Enhancement by Sequential Imaging),科學家能將細胞內分子的定位解析度大幅提升到埃(Ångström, Å.等於1/10奈米)的尺度,清晰定位緊鄰的分子、觀察它們在細胞內的變化。

RESI 定位可呈現 DNA 相鄰鹼基間距,超越超解析顯微鏡,達到與電子顯微鏡同等的解析度,而且只需基本的細胞固定,近乎完全保持樣本原貌。

-----廣告,請繼續往下閱讀-----

在德國馬克斯.普朗克生化研究所率領團隊研發 RESI 的榮曼(Ralf Jungmann)認為,RESI 能填補介於光學顯微術與結構生物學之間的資訊空白,揭露更多複雜生命系統的真相,為分子生物學與藥物動力學開闢道路。

「發光順序」成為解析度新要素

使 RESI 成為「超級超解析」定位術(super-super resolution)的核心概念,是以不同 DNA 螢光探針對目標進行多次標記定位,定位過程由電腦為目標編上號碼(DNA-barcoding),使「發光順序」成為分辨目標的新維度,並以「定位次數」來大幅提升解析度、為量化分析提供充沛樣本。

Cd20
CD20 的分布在 RESI 定位下一覽無遺,透過 RESI 定位可發現,標靶藥物 RTX 使癌細胞表面的 CD20 聚集成鍊狀。圖片來源:Reinhardt et al. Ångström-resolution fluorescence microscopy. Nature 617, 711–716 (2023).

例如,淋巴癌與自體免疫疾病的關鍵標靶:B 細胞表面 CD20 蛋白﹐雖然早已發現是重要的癌細胞特徵,也確認有效藥物,但其結構與分子動力學依然曖昧不明,學界對它的了解還不足以研發進一步療法。

儘管 CD20 蛋白的結構已被電子顯微鏡呈現,但電子顯微鏡的拍攝條件會破壞細胞膜結構,導致 CD20 變形、偏移。現在透過 RESI 進行定位,CD20 的構造、藥物效果,都可以在接近生理狀態下一探究竟。

-----廣告,請繼續往下閱讀-----

在 RES I分析下,榮曼等學者發現 CD20 總是成對出現(as dimers),並且在關鍵藥物 RTX(一種抗 B 細胞的單株抗體)加入後,會在細胞膜上聚集成緊密的長鏈。這些資訊是過往電子顯微鏡與超解析光學顯微鏡都未曾展現的。

序列成像:以次序換取空間

各種超解析單分子定位術的共同難題,是兩個目標分子過於接近,連電腦運算也無法辨別。假使兩個距離 1 至 2 奈米的相同分子輪流被激發,PALM, STORM 等仰賴隨機放光的超解析定位術即使分別收到兩個光源的螢光訊號,重建時也容易將緊密的兩者混為一點。

榮曼也強調,當兩個螢光團的距離小於 10 奈米,近場光學效應會大幅影響光調控螢光染色分子(photoswitchable fluorescent dyes)的表現。分辨兩個距離數奈米甚至數埃(Å)的分子,是單分子定位技術的最後關卡。

面對諾貝爾級超解析技術也無法克服的障礙,RESI 巧妙地以「標記」技術避開了光學難關。RESI 採用進化版本的 DNA-PAINT,螢光探針與目標結合轉瞬即脫落,並能使相鄰的目標結合不同探針,避免兩者同時發光,兩個緊密的分子幾乎不會干擾彼此成像。

-----廣告,請繼續往下閱讀-----

奠基於隨機放光的單分子定位術(SMLM),序列成像(Sequential Imaging)用不同顏色、不同激發光譜的 DNA 螢光探針,標記鄰近的兩個目標,使兩者輪流發光。如此一來,發光順序便成為辨別螢光標記的新方法:兩個目標距離僅 1 奈米左右,但因為發光順序、螢光顏色不同,在重建過程中能夠被電腦清楚區分。

在真實的細胞中,若想以不同嵌合片段(docking strands)標記鄰近的相同蛋白(例如Nup96 dimer, CD20 dimer),則多少需要仰賴運氣。目前的 RESI 使用隨機標記(stochastically labelling),而非直接指定標記種類與位置。

Image 1
以 RESI 定位核孔複合體的 Nup96 蛋白(圖d.),可以達到電子顯微鏡的解析度(圖 b.)。本實驗對同一個核孔進行 4 輪標記定位(圖d.),每次得到的定位資訊將重建疊合成最終定位圖。圖片來源:Reinhardt et al. Ångström-resolution fluorescence microscopy. Nature 617, 711–716 (2023).

定位 Nup96 的實驗就是一個例子,榮曼團隊的4種嵌合片段中,需要有 2 種分別標記相鄰的 Nup96 蛋白,才能夠使兩個相鄰蛋白分別依序發光。榮曼強調,得到理想標記的機率,會隨著嵌合片段的種類提升。在榮曼團隊的定位實驗中,RESI 對 Nup96 的定位達到和掃描式電子顯微鏡同等精密的解析度。

榮曼認為:「理論上,透過發光順序的差異,RESI 技術可以分辨無限接近的兩點。」

定位次數帶來解析度新境界

基於光波繞射的性質,點光源的光線不會透過顯微鏡聚焦為理想的一點,而是呈現一個立體球狀照射範圍。這個讓科學家困擾一個半世紀的照射範圍,就是此光學系統的點擴散函數(PSF, Point Spread Function)。

-----廣告,請繼續往下閱讀-----

在顯微鏡焦平面上,PSF 會形成一個中心最亮、四周漸黯的圓形光斑(艾里斑,Airy Disk),若兩個光點的光斑大幅重疊,就會難以辨別。這也就是遠場光學顯微鏡的最大天然障礙:阿貝繞射極限的由來。

包含 PALM, STORM 等超解析技術的單分子定位顯微術(SMLM, Single-Molecule Localization Microscopy)也必須考慮 PSF。它們定位解析度(也稱定位精準度,σSMLM),接近點擴散函數的標準差(σDiff)除以每次定位偵測光子數(N)的平方根:

 σSMLM  σDiff / N1/2

解析度數值愈小,代表辨別極限的距離愈近,定位結果愈清晰。超解析定位技術不斷追求的,就是縮小 σSMLM。

-----廣告,請繼續往下閱讀-----

在點擴散函數標準差(σDiff)隨儀器性能固定的情況下,每次定位偵測的光子數 N 就是定位解析度的主要變數。多數單分子定位技術,都需要設法提升偵測光子數以看得更清晰。

與其他單分子定位術不同的是,RESI 採用的 DNA-PAINT 探針對目標分子反覆結合、脫落,不斷有新的螢光探針前仆後繼,迅速與目標短暫結合,可以對每個目標累積多次定位。

Image
DNA-PAINT 技術可達到小於繞射極限的解析度,但 10 奈米內的構造依然難以辨識。加上 RESI 以定位順序進行輔助,可以將解析度提升近百倍,達到 10 埃的尺度。圖片出處:S. C. M. Reinhardt et al., Nature 617, 711 (2023)

因此目標的「定位次數」(K)進入解析度數值核心。每個目標定位的解析度由單次定位的點擴散函數標準差(σSMLM),轉變為多次放光定位的平均值標準誤差(SEM, Standard Error of the Mean),其大小和定位次數(k)的平方根成反比。

SEM σSMLM / k1/2 ≈  Diff / N1/2) / k1/2

-----廣告,請繼續往下閱讀-----

此時只要提升定位次數(k),就可以得到更精密的定位(σRESI),毋須追求更強或更漫長的螢光來增加每次偵測的光子數(N)。再搭配以定位順序區分鄰近分子,RESI 就能得到近乎無限小的解析度。這種靈活的反覆定位模式,有賴 DNA-PAINT 技術奇特的「不牢固」結合(transient binding)搭配榮曼團隊研發的開源影像處理軟體Picasso 合力實現。

(DNA-PAINT 技術介紹請見:DNA-PAINT:短暫標記 奈米解析

參考資料

  • Reinhardt, S.C.M., Masullo, L.A., Baudrexel, I. et al. Ångström-resolution fluorescence microscopy. Nature 617, 711–716 (2023).
  • Max-Planck-Gesellshft. Ångström-resolution fluorescence microscopy. (2023)
  • Agasti SS, Wang Y, et al. DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging. Chem Sci. 2017 Apr 1;8(4):3080-3091.
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
18 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。