0

0
1

文字

分享

0
0
1

時間旅行(六)拓展與封閉 — 分析時間循環觀點

活躍星系核_96
・2014/08/21 ・1631字 ・閱讀時間約 3 分鐘 ・SR值 562 ・九年級

-----廣告,請繼續往下閱讀-----

credit: Gioia De Antoniis via Flickr
credit: Gioia De Antoniis via Flickr

文/陳培興,部落格書寫隨興

上一篇文章,我們已分析過歷史一致性原則能否解決時間悖論,並且指出了只要肯定「回到過去」是可能的話,無可避免會衍生矛盾時態。來到最後這篇分析文章,我會再介紹另一個試圖解決時間悖論的觀點:時間循環。這觀點與也頗常見於時間旅行的討論,在介紹這觀點之後,本文會分析並評價它是否成功應對質疑。

時間之矢與時間循環

通常人們會認為時間的進展是朝單一方向無窮延伸,比如像一條直線,在這條直線時間上,過去、現在、未來,就像賽跑 100 米的直道,我們可以顯而易見誰在前、誰在後,事件之間的因果關係很清楚。然而,有些科學家和哲學家並不同意這觀點。他們提出「時間」的進展未必合乎人們的直覺常識,時間線有可能是一個閉合的圓圈,就像賽跑 400 米的跑道。在這個圓圈上,某些事件既可能是原因,亦可能是結果。且看看以下這幅圖解:

555

這幅圖解顯示了兩種時間線的觀念:對於直線上的某人來說,他要麼在某個人的前面,要麼在某個人的後面,我們能清楚分辨哪一點是過去,哪一點是現在和未來。但對於圓圈上的人來說,他既可能在某人的前面,亦可能在某人的後面。時間循環的觀點就如這圓圈所表達的概念,某些事件既可能是原因,亦可能是結果,事件之間的因果關係就不那麼清楚。

-----廣告,請繼續往下閱讀-----

根據這個觀點,時間循環的主張者認為「回到過去」和「過去不會改變」是可能同真的。假設當時間旅行者去到某一個時間點,就突然回到與過去的某一刻,並且毫無變化地再一次經歷這些事件,最後發展至同一個既定結果。如此往復。這樣一來,就沒所謂改變歷史的事情發生,所有宇宙時空都是不斷重演。這個觀點與歷史一致論很相似,甚至可能比起歷史一致論更苛刻。

然而,這個觀點真的成功解決時間悖論嗎?本文認為仍可提出以下質疑:

時間循環的觀點並不算實現了時間旅行

怎樣算是實現了「回到過去的時間旅行」呢?我在第二篇文章曾經說過「回到過去」和「越到末來」這兩種時間旅行的意思將會是判斷它們是否可能的關鍵。但之所以沒有接著說明,一來是因為「怎樣算是實現了回到過去的時間旅行」並沒有公認的說法,二來是因為即使不詳細分析,在一般情況下我們都能憑直覺判斷怎樣算是「回到過去」,除了在某些容易混淆的語境才有必要進一步區分:「回到過去的時間旅行」與「返回更早的時間點」。

-----廣告,請繼續往下閱讀-----

時間循環的觀點雖然滿足了「返回更早的時間點」這項條件,但我認為並非任何「返回更早時間點」的情況都算是實現了時間旅行。因為人們對「回到過去的時間旅行」的界定,似乎包含著某些額外條件才合乎意思(這可能是某種程度的自由或者記憶保留,視乎我們的看法)。然而這種觀點所構想的情況與一般人心中的「回到過去」都相去甚遠,因此未必合乎「回到過去的時間旅行」的意思。

因為若要證明「回到過去」和「過去不會改變」是可能同真,至少這種觀點所提出的情況是要合乎「回到過去的時間旅行」的意思。所以即使退一步說時間循環的觀點證明了「過去不會改變」,但根據一般對「回到過去的時間旅行」的界定,我認為這觀點不能夠成功解決時間悖論。

參考資料

  • Hospers, John. An Introduction to Philosophical Analysis. 4th Edition. London: Routledge, 1997, pp. 121–122. 
  • Smith, Nicholas J.J. 2013. Time Travel.

延伸閱讀

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

4
2

文字

分享

1
4
2
時空旅行有可能嗎?我們如何感受時間?談談那些神秘的時空理論!
PanSci_96
・2023/06/25 ・3872字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

時空旅人存在嗎?霍金的未來派對

回到過去不只是科幻迷的夢想,每個人或多或少,都有一兩件想要改變或挽回的事。可惜的是,我們在空間中可以自由移動,甚至走到馬路對面再走回來,回到起點。(當然,也有人走個斑馬線就到了異世界)然而在時間軸上,我們卻不斷地向前進,不能倒頭。這是為什麼呢?

物理大師史蒂芬.霍金,對時間的研究可說是不遺餘力,他也透過著名的《時間簡史》、《大設計》等著作,向我們闡述宇宙與時空的奧妙。霍金是位時空旅行的夢想家,為了驗證世界上是否真的有時空旅人,他甚至曾經做了一個有趣的實驗。

2009 年 6 月 28 日中午 12 點,霍金認真地在劍橋大學舉辦一場盛大派對,桌上擺了美食與香檳,一旁的柱子上還綁了三色氣球。霍金仔細地準備好公開邀請函,上面寫著「誠摯地邀請您參加時空旅行者派對」,附上時間、地點甚至是準確的經緯度,希望時空旅人沒有迷路的藉口。

邀請函對外公開時間是派對結束「之後」,他確保這個訊息可以流傳數百年,並希望有時空旅人能看到邀請函,回到過去參加這個派對。可惜的是,無人響應、無人到場。霍金認為這證明了他的推論——時間旅人不存在。當然,如果當時有時空旅人跳出來打臉他,他也會感到非常開心。還是你認為,這只是因為時空管理局下明令,禁止未來人透露各種訊息給過去的人類,對於結果其實不需要感到意外呢?

-----廣告,請繼續往下閱讀-----

為何我們不能讓時間倒轉?霍金的三支箭矢

在研究時空旅行之前,我們先來了解,為什麼我們總無法倒轉時間。

對於時間的流向,霍金提出了「三支箭矢」的構想,這不是安倍晉三的經濟學箭矢,而是時間箭矢。這三支時間箭矢,分別為心理學箭矢、熱力學箭矢、和宇宙箭矢

心理學箭矢,就是我們生物感受到時間的流向。熱力學箭矢,則是熱力學中「熵」越來越大的方向,也是世上一切現象運行的方向。

所謂「熵」,是我們用來評估一個狀態的混亂程度的物理量。熵越大越混亂;例如,髒亂房間的熵比整齊的房間還大、摔成碎片的杯子熵比完整的時候還要大。根據熱力學第二定律,世間一切現象都會朝著熵變大的方向發展:杯子一定會摔碎、裡面的水一定會灑滿一地。但是,我不是可以把髒亂的房間整理整齊嗎?沒錯,但熱力學告訴你,在你整理房間的時候,你可能為世界增加了 20 點的秩序量,但你身體因為運動放出的熱能,可能會為整個宇宙增加 100 點的混亂量,整體的熵還是增加的。

-----廣告,請繼續往下閱讀-----
熱力學告訴你,在你整理房間的時候,你可能為世界增加了 20 點的秩序量,但你身體因為運動放出的熱能,可能會為整個宇宙增加 100 點的混亂量,整體的熵還是增加的。圖/envatoelements

至於最後一根箭,宇宙箭矢,則是宇宙膨脹的方向。宇宙在膨脹過程中,粒子會越加分散,熵也會持續增加,因此宇宙箭矢會與熱力學箭矢同方向

回到體感時間,既然熱力學箭矢代表世界運行的方向,如果熱力學箭矢與心理學箭矢的方向相同,那我們就會看到杯子掉到地上摔破、水灑出來。但如果反過來,熱力學箭矢跟心理學箭矢反向飛行,那我們就能看到天能中的逆熵,我們會看到杯子從碎片修復、回到桌上,水也跟著回到杯子之中。

既然如此,那我們要怎麼讓這兩支箭矢反向飛行呢?遺憾的是,因為我們的這具肉身限制,要感受環境、需要外界訊號刺激,並且轉為神經訊號到大腦;要思考,神經細胞必須透過呼吸作用,取得能量來持續運作。我們的一舉一動,建立在生物與化學反應上,也因此必須遵守熱力學第二定律。如果不遵守,我們甚至無法獲得能量,生命根本無法維持。這種現象也被稱為「弱人擇原理」。

為何心理學箭矢和熱力學箭矢必須同向?因為不同向,我們就無法存在,也就無法思考這個問題。

超光速可以連接過去?

在 DC 宇宙的影視作品中,能穿越時間的閃電俠肯定是經典代表。在 DC 宇宙,透過神速力的加持,閃電俠可以突破光速,回到過去。這會發生什麼事情呢?

-----廣告,請繼續往下閱讀-----

根據相對論,在速度接近光速時,時間會變為相對,對於不同速度的觀察者來說,也會產生歧異。舉例來說,如果閃電俠在路上與粉絲打招呼,卻被蝙蝠俠催著去開會。無奈的他,只好與粉絲說掰掰,接著以超光速前往蝙蝠俠基地,準時趕上會議。如果粉絲這時候用望遠鏡看著這一切,他們會看到,閃電俠先跟自己說了掰掰,接著才趕上遠處的會議,而且以距離計算,閃電俠肯定超越了光速。

粉絲的時空視角:閃電俠先跟自己說了掰掰,接著才趕上遠處的會議。圖/Pansci

然而神奇的事來了,如果此時蝙蝠俠等得不耐煩,突然想回高譚市與小丑敘敘舊,他拿出了從沒有任何人知道的特製蝙蝠車,一台可以以接近光速移動的蝙蝠車,從基地離開。就在這個時候,從他的角度觀察閃電俠,他會發現,閃電俠先到達了會議室,接著才發生遠處閃電俠與粉絲說掰掰的場面。蝙蝠俠和粉絲們看到的情景大不相同,不同觀察者的時間產生歧異了。

蝙蝠俠的時空視角:閃電俠先到達了會議室,接著才發生遠處閃電俠與粉絲說掰掰的場面。圖/Pansci

甚至對於獲得高速移動能力的蝙蝠俠來說,如果他的蝙蝠車也能以超光速移動而且速度夠快,他甚至能在閃電俠到達會議室前,就先跑去正在與粉絲說掰掰的閃電俠旁邊,告訴他開會的會議結論,你不用再跑一趟了。

看來透過超光速回到過去,還真的是有可能的。但別忘了相對論施加的限制,要將物體越加速到接近光速,所需要的能量就越大。如果要將有質量的物體加速到等於光速,就需要無限大的能量。或許閃電俠的神速力確實能辦到,當然這也就代表,閃電俠或許是DC宇宙中無敵的存在了。

-----廣告,請繼續往下閱讀-----

顯然,沒有神速力,也不是超級英雄的我們,把自身加速到超光速來時間旅行,顯然不是一個好選項。但如果我們能扭曲時空、建立捷徑,達成超光速呢?

就算兩地相隔數公里,如果我們能將時空對折,並在中間打一個洞,創造出一個任意門,只要跨過一步就能跨越原本要走上半天的路程,不就超光速了嗎?事實上,不能超光速移動的我們,跨越時空的「蟲洞」,很有可能就是我們最後的選項。

蟲洞有辦法被製造嗎?

蟲洞的概念不只是存在於科幻小說的情節,1935 年,愛因斯坦與羅森發表一篇論文,指出根據廣義相對論的計算,在某些條件下,宇宙中可能出現連接不同時空區域的「蛀孔」,稱為愛因斯坦——羅森橋,也就是我們說的「蟲洞」。

蟲洞在地面可能的樣子。圖/wikipedia

正常來說,宇宙中的能量或有質量的物質,會在宇宙中產生如同球面的正時空曲率,產生引力。如果想要產生負時空曲率,將時空向內凹陷,創造出蟲洞,我們就需要創造出負能量或具有負質量的物質。

-----廣告,請繼續往下閱讀-----

那麼要怎麼做出負能量或負質量的物質呢?

接下來我們進入到腦洞大開的環節:還記得我們在量子系列第五集,介紹薛丁格的貓時提到的不確定性原理嗎?根據這個理論我們可以預測,就算在空無一物的「真空」中,其實非常熱鬧。在真空中,會不斷出現正粒子反粒子組成的虛粒子對,他們一起出現,又重新碰撞、互相湮滅,這個過程被稱為量子漲落。雖然兩種粒子會互相湮滅,但不論正、反粒子都是擁有正能量與正質量,在量子漲落的過程中,為了維持整體的能量穩定,某些地方出現正能量密度,某些地方就會出現負能量密度。以此架構延伸,我們便能在真空中設計兩塊金屬板,能透過卡西米爾效應,在兩塊金屬板中,創造出負能量的區域。而這個卡西米爾效應,也在 1996 年在實驗中被實際觀測到。

卡西米爾效應示意圖。圖/wikipedia

透過蟲洞時間旅行有可能嗎?

那麼通過蟲洞時間旅行是可能的嗎?根據後來的計算,愛因斯坦——羅森橋,也就是蟲洞的存在時間非常短,會在太空船通過之前,就塌縮成奇異點。而蟲洞的通道大小,也不足以讓任何粒子大小的物體穿過。

但霍金沒有將可能性說死,或許將來,會有技術可以撐開並維持蟲洞的存在,足以讓人類穿梭而行。或許時空旅行,將成為現實。除此之外,超弦理論也有一些說法證實蟲洞可能存在,但目前弦理論都還僅止在數學計算,還未能應用在實際現象中。

-----廣告,請繼續往下閱讀-----

但你說,霍金不是已經透過時間旅人派對證實,沒有時空旅人了嗎?霍金解釋,根據時間悖論問題,我們看不到時空旅人,是非常正常的。至於為何無法修改過去,產生時間悖論,有可能是當過去已被「測量」,那宇宙就不能再被更改,又或是真的有某種有形或無形的時空管理局,在維持這個世界的安全呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
時空洪流中,一些可能有用的旅行資訊── 《我們都是時間旅人》導讀
時報出版_96
・2019/02/04 ・5752字 ・閱讀時間約 11 分鐘 ・SR值 563 ・九年級

-----廣告,請繼續往下閱讀-----

  • 卜宏毅(加拿大圓周理論物理研究所博士後研究員)

迷人的時間旅行

我們都是時間旅人?我們已經可以時間旅行了?!我們都對哆啦 A 夢的時光機不陌生,但時間旅行與時間機器的這個想法,原來是在上個世紀英國作家威爾斯(H. G. Wells)的科幻作品中才首次露面。「時間旅行」確實是個引人入勝的概念,光是提到這個名字,每個人心中或許都浮現出自己的故事與畫面,卻又難以道盡:也許是因為我們總不免懷念過去,也許是後悔某些決定,又也許是對充滿未知變數的未來好奇。或多或少,我們也都想像過如果能時間旅行會是什麼樣的場景。

當然無數的小說與電影,例如:《風雲人物》It’s a wonderful life, 1946、《回到未來》Back to the future, 1985/1989/1990、《接觸未來》(Contact, 1997、《救世主》The one, 2001、《蝴蝶效應》The Butterfly Effect, 2004、《真愛每一天》About Time, 2013、《超時空攔截》Predestination, 2014、《星際效應》Interstellar, 2014,都曾在時間旅行的主題上譜出動人的故事,有些故事甚至能使我們更反思當下生活的點滴。這就是時間與時間旅行的魅力,但同時,我們卻常忘記自己其實是會隨著時間流逝而變化、衰老,不由自主地在時間中旅行──屬於我們自己的時間旅行。

電影《回到未來》的時光車。圖/wikipedia

作者葛雷易克用他個人的品味與廣泛探究,綜合歷史、哲學、文學、科學、文化等不同面向來探討時間旅行這個主題。從第一章開始,作者以時間旅行的始祖開頭,接著娓娓道來和時間相關的想法和概念,包括第四維度、未來學、未來主義(第二章)悖論、黑洞、蛀孔、相對論、同時的相對性、光(第三章)、記憶(第四章)、自由意志、宿命論、決定論(第五章)、熱力學、時間箭頭、熵(第六章)、時間之河、量子力學、量子電動力學、薛丁格的貓、多重世界(第七章)、佛教、永恆、幻象(第八章)、時間膠囊(第九章)、蝴蝶效應、多重宇宙(第十章)、因果論、封閉類時曲線、時序保護猜想(第十一章)、量子引力(第十二章)、非自主記憶、精神時間旅行(第十三章),到最後一章(第十四章)作者提到時間是個殺手,時間旅行是躲避死亡的一種手段,並給出活在當下的忠告。

-----廣告,請繼續往下閱讀-----

書中隨意的輕重分配比較像是作者在飽覽時間與時間旅行的相關作品和研究後,思緒與心得恣意奔馳的作品──有時是概念的匆匆一瞥以及在不同章節的跳躍出現,有時是突然大量描述引用小說的劇情;作者這樣的安排或許增加了讀者對書中提到的各個領域理解的困難度,但也確實激發讀者對某些從未耳聞的主題或作品有一探究竟的動機。本書像是一次出航,讓不同背景的讀者在不同的章節中找到共鳴而流連(讀者可以看看是否你對時間旅行的聯想也被納入書中,而作者又是用什麼樣的角度去描述)。本書又或是更像一張地圖或是一袋種子,讓讀者的思緒或好奇心在某個午後發芽。

時間與空間的觀念革新

在開始閱讀本書之前,或許以下額外的物理資訊會對你有所幫助:

時間和空間,像是兩個擁有截然不同特性的東西。在日常生活中,我們可以在空間中相對自在地移動,但在時間中我們只能往前。在十七世紀牛頓的時代,人們認為存在著絕對的時間與空間:它們提供了萬事萬物存在互動的舞台。想像一下,在這樣的絕對時間與空間中,有位在地面上的觀察者 A,和相對於 A 在等速運動的火車裡的另一位觀察者 B。如果觀察者 B 丟出一個球,那麼觀察者 A 將會看到這顆球的速度是火車相對於 A 運動的速度加上 B(相對於火車不動)丟球的速度。

然而,到了十九世紀,人們漸漸注意到時間和空間並非獨立運作,他們以一種巧妙的方式一起合作,讓即使是相對運動速度接近光速的兩位觀察者(例如在地面上的觀察者 A,和相對於 A 在一個接近光速且等速運動的火箭裡的另一位觀察者 B),居然量測到的光速都是一樣的!如果你還記得描述速度概念時我們同時運用到了時間空間的概念(例如:火車的速度是每小時一百公里),意味著時間和空間的建構在不同的座標系統(即是兩位觀察者各自存在的座標系統)並不一樣,使得觀察者 A 與 B 能測量到同樣的光速!甚至對觀察者 A 來說,兩個「同時」發生的事件對觀察者 B 來說並非同時(相對論就是指這樣「相對」的概念)。

-----廣告,請繼續往下閱讀-----

一九○五年愛因斯坦提出的狹義相對論即是描述與規範了時間和空間(還有質量)的相對性。因為時間和空間的共同合作,時間和空間也一併稱為時空(spacetime):三維空間加一維時間(而不是指把時間當成空間的四維空間描述)。這就是書中隨處可見的第四維度,第一章提到的時空就像是個「塊體」(block)的結構,以及在第四章中特別提到的光和時空的背景故事。

時空是可以彎曲的。圖/JohnsonMartin @pixabay

理解時空的故事還在繼續。狹義相對論雖然有了時空的概念,但在狹義相對論中所討論的時空,是個處處均勻的「平坦」時空。人們接著發現時空可以彎曲,而且物體在彎曲時空中的表現,就等同於重力對物體的影響。同時,物體本身的存在也造成了時空的彎曲。

一九一五年愛因斯坦提出的廣義相對論即是描述上述的時空彎曲與能量(與質量)的關係。而黑洞(在廣義相對論中被理解成一種時空結構)附近的奇怪性質是最經典的一個例子:黑洞的內部被定義成是光都無法往外逃出的區域,而在黑洞外部,空間在黑洞附近會沿著半徑方向被拉長,而越靠近黑洞時間流逝得越快,而且光線還會被彎曲(黑洞內部的時空結構則又更奇怪了)。因此,的確可能利用時間流逝速率的差別來做時間旅行。如果太空船有機會靠近黑洞,待一陣子再離開的話,太空船裡的人經歷的時間會比沒有靠近黑洞的人要慢許多,就等於是到達了那些沒有靠近黑洞的人的未來(電影《星際效應》裡也有這樣的劇情)。書中的第三章與第十一章簡短提到了這樣的想法。

-----廣告,請繼續往下閱讀-----

在提出廣義相對論之後約一百年的今天,我們開車導航所仰賴的全球定位系統(Global Positioning System,其原理是接收在高空至少四個人造衛星送出的訊號,再根據時間差來計算在地表上的位置),就必須要考慮在地表的時間流逝比在人造衛星所在高空的時間流逝要慢的相對論效應(就像是在黑洞附近一樣,只是效應要小許多:GPS 需要考慮到 10-9 秒的時間修正),才能做到精準的定位,這些在書中的第二章也曾提到過。

配備 GPS 讓你開車不迷路。圖/pxhere

時間旅行有可能嗎?

探索廣義相對論所允許與預測的時空結構讓人意外連連。時空不但可以彎曲,還可以旋轉、誕生,甚至有些時空能允許觀察者在不超過光速的情況下,在時空中不停「旅行」,最後卻能回到當初出發的時空點(這樣的奇怪宇宙由第十一章提到的哥德爾[Kurt Godel]所發現)。這樣的時空旅行在時空中呈現一個閉合的曲線,也就是在十一章提到的封閉類時曲線(closed timelike curve;這裡的「類時」[timelike]指的是旅行過程中從時空的每一點到下一點都在光速的限制內)。在這理論下允許的時空雖然吸引人,但我們的宇宙似乎沒有這樣的特性。

另外,根據廣義相對論,時空也可能允許形成一種蛀孔(wormhole)的結構(在第三章與第十一章提到),在時空中的兩個地方建立捷徑。讀者不妨把時空想成蘋果表面,而蛀孔就像是在蘋果上蛀的一個洞。蛀孔的時空結構並不穩定,無法穩定存在到真的有生物可以穿越過去。因此我們特別稱呼可以穿越過去的蛀孔稱為可穿越蛀孔。想像某個先進文明可以自由控制著蛀孔兩端的入口,將一端放在黑洞附近,另外一端放在遠處,根據洞口兩端的時間流逝的不同(之前提過的相對論效應),經過一段時間後,就可以建立起一個洞口兩端連接起穿越過去與未來的時間機器。

-----廣告,請繼續往下閱讀-----

然而,假如時間機器與時間旅行真的能實現,那又會如何?雖然到達未來的時間旅行在因果關係上比較沒有問題,但如果是回到過去,就會出現一些讓人頭疼的問題。當歷史已經確定,我們有可能回到過去改變歷史嗎?第三章與第十一章提到的祖父悖論,就是時間旅行中經典的問題:如果回到過去殺害自己的祖父(甚至是殺害自己),你還會存在嗎?

的確有些物理學家認真探討過這種問題,大致上有兩種觀點:第一種是無論你怎麼嘗試,絕對無法成功,甚至你回到過去的所作所為就是造成你出發前的歷史。在這種情況下,歷史只有一個,而且因果律被保存下來。這就是時序保護猜想(第十一章)。雖然這樣解決了時間旅行中因果矛盾的問題,但又衍生出另一個問題:如果回到過去的我們沒有辦法做出或完成某些決定,那麼自由意志在哪裡(第五章)?另一種觀點,是你真的有可能成功殺害過去的自己。這種情況下,自由意志被保存下來,卻又產生了因果矛盾。其中一個解套的方法,就是允許有另一個歷史,但是不同的歷史卻各自存在於不同的世界中。這樣的想法源自於下面要提到的量子力學所提供的另一種觀點。

如果你回到過去殺了祖父,那還會有你的存在嗎?如果你不存在,又怎麼能殺了祖父?圖/pxhere

科學家仍然在奮鬥的難題:時空結構可能更複雜

時間再拉回十九世紀,當相對論為時間與空間帶來新的生命時,人們對分子尺度以下的微觀世界的認識也從發現光量子(光的能量不是連續的,而是一個個可以分開數的「光子」;這樣非連續的本質稱為「量子」)誕生的量子力學而徹底改變。量子力學描述的微觀世界是個充滿魔法的世界:系統的狀態只能允許呈現不連續的物理特性,粒子可以穿牆,也能呈現波的性質,而且對粒子的位置測量的越精確,就越不能確定其運動狀態。

-----廣告,請繼續往下閱讀-----

在量子的世界中,粒子性質在被測量前呈現隨時間演化的機率分布,直到測量時粒子性質才被確定下來。人們雖然找到描述量子世界中機率隨時間演化的數學描述,卻對這些描述產生不同的理解與詮釋(儘管這些理解不影響數學公式的運作以及對實驗的預測)。其中一種觀點是沒有被觀測到的結果,其實在另一個世界中被觀測到,而那個世界和我們這個世界彼此各自獨立。這就是在第七章和第十二章提到的多世界詮釋(many-worlds interpretation)。

在相對論與量子力學在各自的領域獲得空前成功的同時,狹義相對論與量子力學結合成了一個新的分支,稱為量子場論。量子場論中最先被推導出來的部分是(第六章提到的)描述電磁作用的量子電動力學。量子場論適當地描述了基本粒子與它們之間交互作用,唯獨重力還未能包含在這個大架構之下。時至今日,物理學家還在努力朝這個方向前進,希望由一個更廣泛的理論來概括廣義相對論和量子力學。這個企圖將重力量子化的理論稱做量子引力。合併量子力學和廣義相對論是一個艱難的工作,甚至物理學家們對考慮量子力學後的黑洞表面(廣義相對論中最經典的時空結構之一)的本質,至今過了四十多年還是各有看法,懸而未解。

無論如何,量子引力將能回答諸如「時空在極小的尺度下是否是不連續?怎麼不連續?」的艱難問題,並帶給我們對時空更加深刻的理解。在發展量子引力理論的過程中,對於時間空間的維度有了新的猜測,時空也許不只是相對論中所考慮的四維,而有更多的維度(十維甚至更多!)。這些可能存在的高維度世界也許共存著我們宇宙之外的平行宇宙(parallel universe),在某些狀況下這些平行宇宙也可能互相影響。這些概念與十二章提到平行宇宙的分類其中幾種相關聯(前面提到的多世界詮釋也是平行宇宙的分類之一)。這些「隱藏」的維度是否真的存在或者只是數學上的概念,是物理學界的大哉問。無論如何,在葛雷易克的穿針引線下,讀者將會在一路上隱隱約約看見這些風景。

更高維度是否真的存在或者只是數學上的概念?圖/geralt @pixabay

-----廣告,請繼續往下閱讀-----

熱力學定律能指出時間的方向

最後,我們再來認識一個和時間有關的物理領域:熱力學。熱力學是探討溫度(能量的一種形式)、系統與環境的能量轉移的一門科學,從八○年代開始,為了增加蒸汽機效能的了解而發展。在熱力學中有些過程一旦發生是無法回到之前狀態的(例如將一杯水倒入大海中),稱為不可逆過程。了解不可逆過程的一種看法是觀察系統的微觀狀態的統計性質──在各種可能的微觀系統組合中,系統的狀態會趨於最可能出現的狀態。不同的系統狀態根據不同微觀系統組合的可能程度,擁有不同的「」值。

熱力學中的其中一個定律就是,系統的熵值只會保持不變或是變得越大。後者的陳述描述了不可逆過程,也讓時間有了一個能分辨的方向。就像第六章裡提到的,這讓時光旅行的討論變得更加複雜。

「時間」,我們對它為何那麼熟悉又陌生的可能原因之一是,它有太多的名字:很久很久以前、小時候、當初年輕時、長大後、下一世代、未來……。另一個原因是它也有太多的身分:時間是金錢、是沉澱、是養分、是變化、是河、是箭頭,也是通往永恆的起點(也或許是終點)。書中的最後一章,是我最有共鳴的章節。面對永遠,也許在我們的時間旅行中,都有過這樣的時刻:

Millions long for immortality who don’t know what to do with themselves on a rainy Sunday afternoon.(人們渴望永生,卻又不知道在下雨的周日午後要做什麼。)

──英國小說家蘇珊‧艾耳茲(Susan Ertz)

你最喜歡書中的哪個章節?如果你可以時間旅行,你想要做什麼呢?

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。