Loading [MathJax]/extensions/tex2jax.js

0

2
0

文字

分享

0
2
0

大爆炸是宇宙的起源嗎?它有沒有可能在別的地方發生?——《關於夜空的 362 個問題》

PanSci_96
・2019/07/24 ・1994字 ・閱讀時間約 4 分鐘 ・SR值 517 ・六年級

編按:本文摘自《關於夜空的 362 個問題》,蒐集了英國最長壽科普節目《仰望星空》的觀眾提問。所有你對太空宇宙會有的疑問,都將在本書中為你解答。本節討論的是「多重宇宙與額外維度」。

大爆炸有沒有可能在不同的地方發生過?

大爆炸可能曾在別處發生過,有些科學家會說可能性很高。有些高度懷疑論的理論認為,以大爆炸的本質來說,這應該曾經發生過很多次,甚至可能是無數次。有很多宇宙的這個概念稱為「多重宇宙」,其他這些擴張中的宇宙可能和我們的宇宙很不一樣,有著不一樣的物理法則。也許我們的宇宙是唯一一個條件足以讓原子──更別說恆星、行星、生命──得以形成的宇宙。

也許我們的宇宙是唯一一個條件足以讓原子──更別說恆星、行星、生命──得以形成的宇宙。圖/pxhere

想像一個二維平面的宇宙,大約就像一張紙那樣,此時如果有另外一個平行的二維宇宙存在它的上方或下方有點距離的位置,那麼在第一張紙上的人,永遠不可能知道還有第二張紙存在。在真實的三維宇宙裡,另外一個宇宙不會存在於傳統觀念的「上面」,而是可能存在於某段距離之外的第四個空間維度。

就算我們的宇宙一直以三維在擴張,也永遠不會碰到另外一個宇宙,就像兩張紙可以一直變大,但永遠也不會碰到彼此。

-----廣告,請繼續往下閱讀-----

如果真的有另外一個宇宙,我們對於宇宙末日的預測會有什麼改變?會不會因為其他的宇宙可能會和我們的宇宙「相撞」,而有不同結果?

這要看是什麼樣的相撞。如果其他的宇宙和我們居住的宇宙一樣,以三維的方式擴張,那麼兩者可能會以「傳統」的方式相撞。這麼接近我們的一個宇宙所帶來的影響,也許可以從它對我們所能見到的最遙遠的天體的影響來判斷,不過目前還沒有看過這樣的跡象。

這暗示那個宇宙整體的特質,可能和我們所能見到的區域的特質不一樣,而這些特質是會影響宇宙的最終命運的。

另外一個宇宙可能是在第四維的空間中和我們分開,這是個滿難想像的概念。這相當於兩張平行攤開的紙,只是兩者間的距離很小。霍金在更高維度空間的理論提到,三維的宇宙是「膜」(branes,我相信是從薄膜[membrane〕這個字而來的)。有一個理論是這些「膜世界」間的撞擊造成了大爆炸,不過目前還沒有辦法能證明或是推翻這個理論。

在量子宇宙學的多重宇宙解釋裡,有多少宇宙裡會是青少女偶像明星麥莉擔任美國總統?

無窮宇宙,在宇宙中存有大量的可觀測區(有著紅色十字中心的紅圈),我們的「宇宙」不過是其中的一個可觀測區而已。圖/wikipedia

關於宇宙的解釋裡,有一個可能是我們只是住在其中一個宇宙而已。事實上,的確有可能有數不清的宇宙。在數不清的宇宙裡,隨時隨地都會有各種可能的組合發生。也許在某些宇宙裡,莎士比亞的所有作品都是猴子在打字機上隨便打字而完成的;也許在其他的宇宙裡,麥莉真的就是美國總統。這些事發生的可能性高低,會影響它們發生的次數有多少,不過還是有可能發生過無數次──就算是無數次的一小部分也還是無數次!這是不是很可怕的想法?

你覺得除了大爆炸之外,關於宇宙的起源有沒有其他的科學解釋?

我認為大爆炸理論有非常穩固的科學證據為基礎,不會被推翻。然而,我們的宇宙學模型還是有其他部分的基礎沒那麼穩。比方說暗物質就還沒有真的被找出來(不過在這本書裡這樣寫有點大膽,因為在準備出版的這段時間裡,這方面的積極尋找似乎愈來愈接近成果)。因為沒有觀測結果能證明它存在,所以也很難認為這個理論可以被證實,不過和其他相關的理論相比,關於暗物質存在的證據當然還是比較多。

-----廣告,請繼續往下閱讀-----
沒有觀測結果能證明暗物質存在,所以也很難認為這個理論可以被證實。圖/wikipedia

暗能量很有可能會成為科學進展的犧牲品。我之所以會這樣評估,主要是因為我們只能說,我們認為有某個東西造成了影響,但我們不知道那是什麼東西。

很重要的一點是,科學界不會躲到角落,對其他的可能視而不見。在過去數百年裡,某些科學進展上產生重大的延誤,都是因為有些人拒絕接受新想法。就像商業界一樣,競爭會帶來很多好處。科學家用不同的方式來詮釋結果,因此會支持相反理論的意見,通常也會支持新的實驗。最重要的關鍵是,不能被個人的感受所影響。只是因為你比較喜歡這個理論,或者因為這樣可以讓事情比較簡單,就相信某些事情是真的,不是從事科學研究的適當態度。

——本文摘自《關於夜空的 362 個問題:從天文觀測、太陽系的組成到宇宙的奧祕,了解天文學的入門書》,2019 年 4 月,貓頭鷹出版

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2412 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
從太陽發光到生命突變,一切都歸功於量子穿隧效應?
PanSci_96
・2024/10/19 ・1962字 ・閱讀時間約 4 分鐘

在這個充滿光與生命的宇宙中,我們的存在其實與一種看不見的力量密切相關,那就是量子力學。沒有量子力學,太陽將不會發光,地球上的生命將無法誕生,甚至整個宇宙的運行規則都會截然不同。這些微觀層次的奧秘深深影響了我們日常生活的方方面面。

其中,量子穿隧效應是一個看似違背直覺但至關重要的現象,從太陽的核融合反應到基因的突變,這種效應無處不在,甚至還牽動著當今的高科技產業。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是量子穿隧效應?

我們可以將量子穿隧效應比作一個奇妙的穿牆術。想像一下,你身處一個被高牆包圍的城市,牆外是未知的世界。通常,如果你要越過這道牆,需要極大的力量來翻越它,或者用工具打破它。然而,在量子的世界裡,情況並不如此。

在微觀的量子力學世界中,粒子同時具有波的特性,這意味著它們並不完全受限於傳統物理的規則。當一個微觀粒子遇到能量障礙時,即使它沒有足夠的能量直接穿過障礙,卻仍有一定機率能出現在障礙的另一邊,這就是「量子穿隧效應」。粒子彷彿直接在牆上挖了一條隧道,然後穿越過去。

-----廣告,請繼續往下閱讀-----

這聽起來像魔法,但它背後有深刻的物理學道理。這個現象的發生取決於量子粒子的波動性質以及能量障礙的高度和寬度。如果障礙較矮且較窄,粒子穿隧的機率就較高;反之,障礙越高或越寬,穿隧的機率則會降低。

太陽發光:核融合與量子穿隧效應的結合

量子穿隧效應的存在,讓我們能夠理解恆星如何持續發光。以太陽為例,太陽內部的高溫環境為核融合反應提供了所需的能量。在這個過程中,氫原子核(質子)需要克服極大的電磁排斥力,才能彼此靠近,進而融合成為氦原子核。

然而,單靠溫度提供的能量並不足以讓所有質子進行核融合。根據科學家的計算,只有約10的 434 次方個質子中,才有一對具備足夠的能量進行核融合。這是一個極小的機率。如果沒有量子穿隧效應,這種反應幾乎不可能發生。

幸好,量子穿隧效應在這裡發揮了關鍵作用。由於量子粒子具有波動性,即便質子沒有足夠的能量直接跨越能量障礙,它們仍然能透過穿隧效應,以一定機率克服電磁排斥力,完成核融合反應。這就是為什麼太陽內部的核融合能夠源源不斷地發生,並且持續產生光與熱,讓地球成為適合生命生存的家園。

-----廣告,請繼續往下閱讀-----

量子穿隧效應與生命的演化

除了恆星的發光之外,量子穿隧效應還對生命的誕生和演化起到了關鍵作用。地球上物種的多樣性,很大一部分源於基因突變,而量子穿隧效應則幫助了這一過程。

DNA 分子是攜帶遺傳訊息的載體,但它的結構並不穩定,容易在外界因素影響下發生變異。然而,即使沒有外界因素的干擾,科學家發現 DNA 仍會自發性地發生「點突變」,這是一種單一核苷酸替換另一種核苷酸的突變形式。

量子穿隧效應讓氫原子隨時可能在 DNA 結構中進行位置轉換,從而導致鹼基對的錯位,這在 DNA 複製過程中,可能會引發突變。這些突變若保留下來,就會傳遞給下一代,最終豐富了基因與物種的多樣性。

量子穿隧幫助促進 DNA 突變,協助生命的演化與物種多樣性。圖/envato

半導體技術中的量子穿隧效應

除了在宇宙和生命中發揮作用,量子穿隧效應還影響著我們的日常生活,尤其在現代科技中。隨著半導體技術的發展,電子設備的體積不斷縮小,這也讓電子元件的性能面臨更大的挑戰。

-----廣告,請繼續往下閱讀-----

在微小的電子元件中,量子穿隧效應會導致電子穿過元件中的障礙,產生不必要的漏電流。這種現象對電晶體的性能帶來了負面影響,因此設計師們需要找到方法來減少穿隧效應的發生,以確保元件的穩定性。

雖然這是我們不希望見到的量子效應,但它再次證明了量子力學在我們生活中的深遠影響。設計更有效的半導體元件,必須考慮到量子穿隧效應,這讓科學家與工程師們需要不斷創新。

量子力學是我們宇宙的隱藏力量

量子穿隧效應看似深奧難懂,但它對宇宙的運作和生命的誕生至關重要。從太陽的核融合反應到基因突變,甚至現代科技中的半導體設計,量子力學影響著我們生活的方方面面。

在這個充滿未知的微觀世界裡,量子現象帶來的影響是我們難以想像的。正是這些看似不可思議的現象,塑造了我們的宇宙,讓生命得以誕生,科技得以發展。當我們仰望星空時,別忘了,那閃耀的光芒,背後藏著的是量子力學的奇妙力量。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2412 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
多重宇宙真的存在?艾弗雷特三世(Hugh Everett III)的多世界詮釋
PanSci_96
・2024/07/28 ・2651字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

在前一篇我們聊到,為了反駁量子力學的機率詮釋和疊加態的說法,薛丁格提出著名的思想實驗:「薛丁格的貓」。既然貓在現實中不可能既生又死,所以量子理論一定有不夠完備的地方。

延伸閱讀:物理學四大神獸「薛丁格的貓」,其實是在嘲諷量子力學?物理學家對波函數機率詮釋的爭辯

然而,真的是這樣嗎?有沒有既符合量子理論又能解釋這個實驗的說法呢?

測量問題:量子系統的確定性

在量子力學中,量子系統的狀態在被測量前是不可確定的,所有可能狀態以機率的形式共存,這時系統處於所有狀態的疊加態。只有當我們進行測量時,系統才會變成某個特定狀態。

-----廣告,請繼續往下閱讀-----

例如,原子裡的電子並沒有一個確定的位置,它可能出現在任意地方,像波一樣散佈於空間中。當你測量它,它有一定機率出現在某處。愛因斯坦曾問:「是不是只有當你在看它的時候,月亮才在那兒呢?」對他而言,月亮不管有沒有人在看,都懸掛在天上,他認為量子系統應該也是如此,總是有個確定的狀態,只是我們還沒搞清楚而已。

而薛丁格在與愛因斯坦討論後提出「薛丁格的貓」思想實驗。薛丁格利用貓不可能處於既生又死的疊加態來質疑量子理論,雖然引起了話題,但並未成功反駁量子理論。

量子力學的理解不斷累積,我們知道了許多愛因斯坦和薛丁格當時不知道的事情,因此在某種程度上,回應他們的質疑已經不再是問題。

多世界詮釋:分岔的宇宙

1957 年,美國普林斯頓大學的博士生艾弗雷特三世(Hugh Everett III)提出了一個大膽的想法。他認為,宇宙的一切可以由單一個宇宙波函數(universal wave function)來描述,遵循量子力學的波動方程式。當我們進行測量時,例如檢查「薛丁格的貓」實驗結果,不同的子系統(如貓、毒藥瓶和測量者)會在交互作用下彼此連動,呈現出兩組狀態:貓死亡、毒藥瓶打破、測量者看到貓死亡,或貓活著、毒藥瓶沒破、測量者看到貓活著。

-----廣告,請繼續往下閱讀-----
艾弗雷特三世(Hugh Everett III)提出的多世界詮釋,之後成為許多科幻題材的靈感來源。圖/wikimedia

延伸閱讀:首創平行世界理論,艾弗雷特三世誕辰|科學史上的今天:11/11

測量會讓宇宙波函數分岔出兩個不同的分支,或說兩個平行世界。在其中一個宇宙,貓會活著;另一個宇宙,貓則會死亡。兩個宇宙都真實存在,沒有貓既死又活的事情。

在艾弗雷特的詮釋中,宇宙波函數隨著時間演化,就像一株大樹,每當有測量發生,就會分出不同的枝幹。每個枝幹代表一個獨立的平行世界或平行歷史,這就是著名的多世界詮釋(many-worlds interpretation)。歷史上每次的測量或選擇都會分裂出不同的世界,產生超級龐大的平行世界數量,彼此之間無法溝通或交換資訊。

雖然我們在這個世界買樂透沒中獎,但在另一個平行世界裡,我們可能是中頭獎的大富翁。多世界詮釋的優點是,它與量子理論沒有矛盾,能解決薛丁格的貓等悖論。

然而,儘管有人曾提出過驗證多世界詮釋的方式,現今的科技無法做到。艾弗雷特的博士論文沒有受到學界的多大關注,他之後改從事與物理研究無關的工作。直到1970年代,多世界詮釋才開始受到注意,並在艾弗雷特於1982年去世後,變得越來越受歡迎,甚至被科幻作品挪用。

-----廣告,請繼續往下閱讀-----

量子去相干:量子特性的喪失

量子去相干(quantum decoherence)是另一種解決方法。在雙狹縫干涉實驗中,同一波源的波從兩個狹縫出來並產生干涉條紋,代表它們存在相干性(相互干涉的性質)。若對其中一道狹縫的光波進行干擾,相干性會消失,干涉條紋不會出現,這就是去相干。

在量子力學裡,微觀粒子具有波的特性,也會發生相互干涉。波函數隨外在環境存在許多不同可能狀態,彼此相干。在電子的雙狹縫實驗中,電子以波的形式通過兩個狹縫,接著彼此干涉,形成干涉條紋。當我們測量電子的路徑,就會讓系統不同可能狀態的相干性消失,這就是量子去相干。

只要一個量子系統沒有完全孤立,與外界有交互作用,就算是干擾。想像將熱水和冷水倒在一起,熱水分子和冷水分子會互相作用,交換熱能和動量,最終達到平衡——一杯溫水。原本的每個熱水分子和冷水分子可以視為孤立系統,但當它們互相作用,改變狀態,就必須將整杯水視為整體。

量子系統的測量就像這個例子,測量者和量子系統之間的交互作用會導致量子系統與外界交換資訊,無法再用原本的波函數描述,最終逐漸喪失量子特性。

-----廣告,請繼續往下閱讀-----

現實中的量子去相干

在電子的雙狹縫干涉實驗中,若要知道電子通過雙狹縫時的確切位置和路徑,就必須偵測它,與之產生交互作用,導致量子去相干,干涉條紋消失。量子去相干的概念下,測量是一種交互作用,會引起量子去相干現象。隨著交互作用程度不同,量子系統會逐漸失去量子特性。

在現實世界中,所有量子系統都不可能完全孤立,與外界互動後,時間久了必然去相干。現實生活中的所有物體,雖然由量子系統組成,但當原子構築成更大的結構,會因彼此的交互作用喪失量子特性。因此,愛因斯坦問的「是不是只有當你在看它的時候,月亮才在那兒呢?」我們可以回答:「並不是這樣。」因為月亮已經不是量子系統。

薛丁格的貓不可能存在?

在「薛丁格的貓」實驗中,當作為量子系統的不穩定原子核被偵測到衰變後,交互作用就完成了,量子系統的狀態就確定了,貓也就死定了。此外,貓自身因量子去相干的關係,不會是量子系統,不可能同時處於生和死的狀態。

目前量子相關科技,如量子電腦、量子通訊等,在研發上遇到的困難,部分來自於量子去相干現象。量子電腦使用的量子位元必須保持在隔絕於外界、不受干擾的環境中,才能維持在量子態。一旦有風吹草動,量子位元可能出錯。隨著量子位元數目變多,要同時維持全部的量子態也變得更加困難,這些就是當前技術需要克服的挑戰了。

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

3
0

文字

分享

0
3
0
藝術與科學的詩性相遇:《匯聚:從自然到社會的藝術探索》國際交流展
PanSci_96
・2024/06/04 ・3873字 ・閱讀時間約 8 分鐘

本文由策展人紀柏豪提供

想享受一場同時兼具科技與藝術的饗宴嗎?來《匯聚:從自然到社會的藝術探索》國際交流展看看吧!

在當代社會中,藝術的角色正持續演進——它創造了一種新的美學,與社會、科學以及技術變革緊密相連。當社會面臨的挑戰因其複雜性而難以僅靠單一學科解決時,藝術研究因其跨越、融合不同知識領域的能力而具有新的意義。今日,許多創作者和機構採用跨學科方法,將藝術與自然、科學與感性、想像力與現實結合,創造嶄新的經驗、知識和美學。

在藝術與科學這兩個看似迥異的領域中,存在著一個共通的追求——深入理解我們所處的世界。這一追求不僅體現了人類對知識渴望的本能,也反映了我們對於更高層次的自我認知和宇宙認識的探索。藝術家透過創作,探索人類經驗的多樣性和情感的複雜性,用畫筆、雕塑、數位媒介來表達對世界的主觀理解。這種理解可能源於個人感受,也可能反映了廣泛的社會和文化現象。

藝術提供了一種通過感知和情感來接觸和理解世界的方式,使我們能夠透過個別經驗來抵達普遍的真理。科學則通過觀察、實驗和分析來探究自然界的法則和現象,尋求對世界的客觀理解。科學方法使我們能夠系統地收集資料、建立理論並驗證假設,從而深化對物理世界的認識。不僅解答了關於自然界的問題,也幫助我們理解了人類自身在這個宇宙中的位置和作用。

-----廣告,請繼續往下閱讀-----

儘管藝術和科學在方法和目的上有所不同,但它們都反映了人類對於更加全面和深刻理解世界的共同願望。藝術讓我們透過感受和想像來擴展對世界的認識,而科學則通過理性和證據來揭示秩序和結構。由國科會指導、國家實驗研究院主辦的《匯聚:從自然到社會的藝術探索》國際交流展,邀請觀眾一同探索藝術與科學的交會,體驗它們如何共同塑造我們對世界的認識和感知,並反思這一過程如何豐富我們的文化與知識視野。

展覽單元介紹

宇宙共生 —— 科技與宇宙的多維依存

當你仰望星空,有沒有想過我們與宇宙的關係?「宇宙共生」單元展示了科技如何將人類感性延伸至浩瀚的宇宙空間。麻省理工學院媒體實驗室的太空探索倡議小組(MIT Media Lab Space Exploration Initiative)帶來了在極端環境下的實地太空模擬,研究生存策略和科技應用。與之並置的《與細菌混了三千年》(3000 Years Among Microbes)則從微生物的角度重新審視太空探索中的殖民語言,帶來全新的太空想像。藝術家利用極端地貌與顯微影像並置,模糊人與微生物的分野,探討共生體概念在星際生態系中的應用。

感官賦能 ——透過科技重塑環境感知

「感官賦能」單元探索藝術家如何通過科技媒介重塑我們對環境的感知。兩位智利藝術家妮可·拉希利耶(Nicole L’Huillier)與派翠西亞·多明格斯(Patricia Domínguez)的《全像乳糜》(Leche Holográfica)是一場冥想式祈願,透過與不同元素的共鳴和諧,讓我們得以在螺旋時空中構想未來。

值得一提的是,藝術家妮可·拉希利耶與派翠西亞·多明格斯曾透過智利與歐盟的合作,在歐洲核子研究組織(CERN)進行藝術駐村計畫,並在那裡發展她們的作品。CERN 以其在粒子物理學上的重大科研成果而聞名,但即使是最前沿的科學研究,也需要藝術家的啟發。這樣的跨域合作不僅揭示了科學現象的美麗與複雜,更為科學研究注入了新的靈感和視角。藝術家的創意與想像力,能夠以不同於科學的方法來詮釋數據與實驗結果,從而開拓更廣泛的理解和應用。

-----廣告,請繼續往下閱讀-----

拉脫維亞藝術家羅莎‧史密特(Rasa Smite)和萊提斯‧史密茨(Raitis Smits)的《深度感知》(Deep Sensing),通過拉脫維亞伊爾本(Irbene) RT-32電波望遠鏡的歷史敘事,象徵性地橋接了技術的過去與現在,探問「為何擁有地球還不足以滿足人類?」該望遠鏡被前蘇聯遺棄,而藝術家們重返此地,探索這個巨大天線在當代的價值。虛擬點雲天線追蹤從太陽到地球的宇宙粒子流動,創造出沉浸式的視覺和聲音景觀,讓觀眾更易於理解氣候變遷的影響。

羅莎‧史密特和萊提斯‧史密茨是里加RIXC新媒體文化中心的共同創辦人,他們的作品結合科學數據、聲音化和視覺化、人工智慧和擴增實境技術,創造出前瞻性的網絡藝術。他們的作品曾在威尼斯建築雙年展、拉脫維亞國家藝術博物館等地展出,並獲得多項國際獎項。

網絡交織 —— 科技與社會的複雜關係

「網絡交織」單元深入探討科技如何影響我們的社會結構和人際關係。瑪麗莎·莫蘭·賈恩(Marisa Morán Jahn)的《銅色景觀》(Copperscapes)展示了銅在全球化勞動中的角色,揭示了這一自然元素如何影響我們的日常生活。她的作品以銅色眼睛作為見證,表現出礦區社區所承受的「身體負擔」,並在影片《銅的私處史》中探討礦物經濟的複雜性,突顯採礦活動對身體及地球主權的影響。

瑪麗莎·莫蘭·賈恩是具有厄瓜多和中國血統的藝術家,其作品致力於重新分配權力,展示藝術作為社會實踐的可能性。她的作品曾在歐巴馬時期的白宮、威尼斯建築雙年展、古根漢美術館等地展出,並獲得聖丹斯電影節和創意資本等獎項。

-----廣告,請繼續往下閱讀-----

李紫彤與孫詠怡的《岔經濟》(Forkonomy)利用區塊鏈技術,重新構想財產與國家之間的連結,探討擁有權背後的政治意義。這個藝術與社會運動計畫,通過工作坊和數位契約,探討如何購買或擁有一毫升的南海,並質疑現有的性別勞動分工和所有權制度。

李紫彤是台灣的藝術家兼策展人,作品結合人類學研究與政治行動,曾在國內外多個知名展覽中展出。孫詠怡是出生於香港的藝術家和程式撰寫者,專注於數位基礎設施的文化意義及廣泛權力的不對等問題,作品曾獲得林茲電子藝術節金尼卡獎等多項國際獎項。

印度藝術家艾蒂·桑德爾(Aarti Sunder)的《深海節點故事》(Nodal Narratives of the Deep Sea)將海底電纜這一隱藏基礎設施帶入視野,探討其與現代化項目、資本主義擴張及殖民主義的關聯。她的作品通過繪畫、物件和影片,展示了數據傳輸的路徑及其對生態系統的影響。

艾蒂·桑德爾的創作涉及影像、寫作與繪畫,專注於探討科技政治和基礎設施相關議題。她的作品曾在柏林藝術學院、新加坡雙年展、世界文化之家等國際場所展出。

-----廣告,請繼續往下閱讀-----

科藝匯聚 —— 跨學科的創新邊界

「科藝匯聚」單元彰顯了藝術與科學共同探索未知領域的力量。國家太空中心的《來自遙遠的訊息》管絃樂曲選粹、麻省理工學院前衛視覺研究中心(CAVS)的歷史檔案,以及臺灣共演化研究隊的「邊界測繪學」年度計畫成果,展示了藝術家與科學家跨域合作的豐富成果和未來潛能。

跨域交流與活動

在展覽期間,策展團隊與台灣致力於促進科學家與藝術家合作的「共演化研究隊」規劃了一系列精彩的跨域交流活動,讓大家能近距離與藝術家、科學家們交流,體驗科技與藝術如何共同作用於當代社會。

活動包括圓桌論壇、藝術家講座和放映會,涵蓋了多個有趣且深入的主題。例如,在「宇宙共生」週末,觀眾可以參與討論極地科學與藝術實踐的圓桌論壇,聆聽來自麻省理工學院媒體實驗室「太空探索倡議」的成員分享他們在極端地貌探索的經驗。另一活動是國家太空中心委託製作的管弦樂曲《來自遙遠的訊息》放映會,由作曲家趙菁文進行演前導聆,帶領觀眾進入一場視覺與聽覺的雙重盛宴。

在「網絡交織」週末,藝術家李紫彤與孫詠怡將帶來一場關於區塊鏈技術應用於南海議題的討論,這場圓桌論壇將探討技術如何影響社會結構和資源分配。印度藝術家艾蒂·桑德爾則會在線上分享她對於海洋及網路基礎設施的研究與創作,揭示隱藏在我們日常生活背後的複雜科技網絡。

-----廣告,請繼續往下閱讀-----

「感官賦能」週末將邀請拉脫維亞藝術家羅莎‧史密特和萊提斯‧史密茨現場分享他們的作品《深度感知》,並探討電波望遠鏡的技術敘事,展示如何通過藝術手段使抽象的科學數據變得可以感知。這不僅讓觀眾更易於理解氣候變遷的影響,也體現了藝術在科學溝通中的重要角色。他們將分享長期研究「自然廣播」的概念,以及每年舉辦「藝術科學節」的經驗。

在「科藝匯聚」週末,觀眾可以參與科學家與藝術家的提案室,直接感受跨領域合作的火花。這些活動將展示跨學科合作如何激發創新,促進我們對世界更深層次的理解。此外,拍攝麻省理工學院前衛視覺研究中心創始人故事的紀錄片將在台灣首映,導演並將與觀眾進行映後座談,分享創作背後的故事和啟發。

藝術與科學的相互啟發,不僅僅是知識和美學的結合,更是對創新與理解的共同追求。在這個亟需跨學科解決方案的時代,這樣的合作顯得尤為重要,為我們探索未知領域提供了無限可能。這次展覽通過多樣的跨域交流活動,讓觀眾能夠親身體驗並參與其中,進一步體會到藝術與科學融合所帶來的豐富成果和未來潛力。

展覽資訊

  • 展覽名稱:《匯聚:從自然到社會的藝術探索 | 國際交流展》
  • 日期:2024/5/10 至 2024/8/10
  • 時間:週一至週五 09:00-18:00(國定假日休)
  • 地點:科技大樓一樓大廳(臺北市大安區和平東路二段106號)
  • 指導單位:國家科學及技術委員會
  • 主辦單位:國家實驗研究院
  • 策展人:紀柏豪
  • 執行單位:融聲創意
  • 協力單位:共演化研究隊
-----廣告,請繼續往下閱讀-----

討論功能關閉中。