0

0
0

文字

分享

0
0
0

光纖越遠,心,則近 — 無遠弗屆的空氣光纖

昱夫
・2014/07/25 ・913字 ・閱讀時間約 1 分鐘 ・SR值 597 ・九年級

creatingopti
Credit: Howard Milchberg

弗朗基的激光炮有可能實現嗎?現在有了最新的「空氣光纖」,說不定真的有可能被實體化喔!

在資訊化時代,許多訊息都是透過光纖來傳遞,可以避免光線在長距離過程中散失能量,即使是雷射,若沒有光纖保護,也很容易在遠處失焦,或是和環境作用而造成訊息精確度降低;但在世界上,仍有許多地方是實體光纖無法架設到的(像是高空或是地洞),當我們需要取得這些區域的資訊時又該如何是好呢?馬里蘭大學(University of Maryland)的Howard Milchberg團隊研發出了不受地形與空間限制的「空氣光纖」來解決這個問題!

傳統的光纖,是以高折射率的透明內芯加上低折射率的外膜所組成,當光線由內芯打入,由於內外層的折射率差,使得光線能不斷在內部全反射傳遞,而不會穿出折射率較低的外層。Howard Milchberg團隊的空氣光纖也利用了一樣的原理,只是他們不使用實體的材質,單獨運用空氣來完成這件事:他們以較低密度的空氣(具有低折射率)作為外層、一般空氣當作內芯(相對高折射率),當光線通過時,便可以達到束縛光線的效果。

在製作低密度空氣包層的方法上,研究團隊用四道高能雷射以方形排列同時射出,每道雷射軌跡上的空氣會因為受熱而膨脹,進而降低密度,四道雷射間形成的區域便成為較高密度的空氣光纖內芯。空氣光纖形成後,其密度狀態大致可以維持數個毫秒(千分之一秒),對之後要傳遞的光線來說綽綽有餘,使用者可以不用擔心空氣光纖會在資訊到達前就「壞掉」。

-----廣告,請繼續往下閱讀-----

目前,實驗上利用空氣光纖可以在1公尺的距離下收集到比過去強1.5倍的訊號,這數字看似不大,但若考慮長距離時,增加的效率便會很顯著;未來這項技術若能持續發展,將光線傳輸的有效距離提升至50公尺以上,便能實際應用在許多科技上,像是長距離雷射通訊、利用空氣光纖測量高空的大氣組成,甚至發展雷射武器都不再只是漫畫裡的情節。

 

延伸閱讀:

參考資料:

  1. Demonstration of Long-Lived High-Power Optical Waveguides in Air, N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, Physical Review X dx.doi.org/10.1103/PhysRevX.4.011027

資料來源:Creating optical cables out of thin air [PHYS.ORG, July 22, 2014]

-----廣告,請繼續往下閱讀-----
文章難易度
昱夫
57 篇文章 ・ 2 位粉絲
PanSci實習編輯~目前就讀台大化學所,研究電子與質子傳遞機制。微~蚊氫,在宅宅的實驗室生活中偶爾打點桌球,有時會在走廊上唱歌,最愛929。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
195 篇文章 ・ 299 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

17
5

文字

分享

2
17
5
水的性質國中不是學完了嗎?竟然還跟「量子效應」有關?
linjunJR_96
・2021/10/03 ・2111字 ・閱讀時間約 4 分鐘

圖/Pixabay

水這種物質看起來再平凡不過。人們每天洗澡、澆花、游泳、沖咖啡,無時無刻不跟水相處在一起。人體中還有地球表面上大部分都是水,事實上,它可是宇宙中第三多的分子。

不過,時至今日還是有許多頂尖的科學家在進行水的前沿研究。你以為他們領了政府與學校的研究經費,是為了探索未知的星系或癌症的解藥,但他們其實在研究無聊的水。這可不是因為他們是薪水小偷,而是水分子雖然十分常見,但它的許多獨特性質在科學上還未有定論。

三態間的未解之謎

你可能會覺得:「水的性質不是國中就都教過了嗎?」。不過就跟所有其他東西一樣,事情並沒有課本寫得這麼簡單。從固態的冰講起,就有十幾二十種結晶型態。就像石墨加壓會變成鑽石,普通冰塊在高壓下也會轉變成其他的結構。另外,關於過冷(低於冰點卻不結冰)這種奇怪的現象,至今也還沒有完全清楚的實驗和理論圖像。

結冰的過程已經這麼捉摸不定,蒸發更是如此。雖然我們知道衣服晾在外面會乾,但對於水蒸發的速率,卻沒有一個精準的描述。水的蒸發是源自分子碰撞時,某些分子被撞出液態的水,因此蒸發速率可以寫成分子碰撞的多寡乘上某個實驗常數。要決定這個實驗常數聽起來像是個簡單的高中科展題目,但以往的許多結果卻時常出現分歧,差距高達三個數量級(也就是一千倍)!

-----廣告,請繼續往下閱讀-----
我們經常以水作為物質三態變化的例子,但其中的細節其實還有待研究。圖/WIKIPEDIA

如果想用電腦進行理論模擬則會出現另一個問題,例如我們模擬 18 公克的水如何蒸發(喝水一口都比 18 克還要多),就必須同時計算 6 × 1023 個水分子的狀態,以目前的電腦運算力難以負擔。想要解決蒸發的難題,需要一些相當進階的實驗與理論方法,而這也是科學家目前正在努力的方向。

除了轉變至固態與汽態的過程之外,就連最普遍的液態水也有許多捉摸不定的型態。科學家在瞬間結冰的水中發現兩種結構,兩者密度高低不同。由於瞬間凝結的冰沒有時間排列成整齊的固態晶格,所以能夠保留原本液態時的分子排列模式。也就是說,原本的液態水也有分兩種結構。這種結構上的差異被認為與過冷機制密切相關,相關的實驗不久前也剛登上 Nature 期刊 [1]

水分子間的量子效應

要對水的這些奇特性質建立更好的理解,得先了解水分子微觀上的交互作用。水分子是由一顆氧跟兩顆氫組成一個米奇形狀,其中氧帶較多負電,氫帶較多正電,所以相鄰的水分子會感受到來自鄰居的吸引力,也就是所謂的「氫鍵」。靠著分子間的氫鍵,水才能夠組成上面提到的各式結構。

水分子間的氫鍵(標示 1 處)3D 模型。圖/WIKIPEDIA

不過,用來解釋氫鍵的質子與電子,都是量子力學適用的尺度,而氫原子的嬌小身材,讓其中牽涉到的量子效應變的特別顯著。有許多人認為,如果將量子效應納入水分子結構理論模型,或許就能解釋水展現出的諸多特性。近期,史丹佛直線加速器中心(SLAC)的實驗團隊首次對水分子氫鍵的振動進行直接觀測,從實驗上踏出了重要的一步。

-----廣告,請繼續往下閱讀-----

發生在皮秒間的氫鍵震盪

這次實驗首先得射出一道比頭髮細一千倍的迷你水柱,作為探測的樣本。在這麼細的水柱中,每個截面可能只有幾萬個水分子。水柱中的分子間氫鍵被外加的雷射刺激並進行振動,實驗團隊接著便能用高能量的電子束作為「探測槍」,利用電子束散射的結果,分析水分子每個瞬間的分子結構。

圖/Pexels

這種觀測方法可以達到分子等級的解析度,而這次實驗直接聚焦在三顆水分子之間的拉動牽扯。受到雷射刺激時,氫原子會先將鄰近的氧原子拉近,再拉開距離,一切都在幾皮秒(10-12 秒)內發生。針對氫鍵長度的這種收縮震盪,研究團隊進行了一系列的探索。

透過電腦模擬,他們發現氫鍵拉扯的幅度比較符合加入量子力學的模型,為水分子結構的量子效應提供初步的證據。

拉開水分子量子性質的研究大門


以往研究分子結構需要仰賴光譜學的間接轉換,而以皮秒為單位在進行震盪的微小氫鍵,在實驗觀測上是一大挑戰。這次的裝置首次對液態水的氫鍵距離震盪做出直接的測量,也為科學家開啟更多的機會,去檢驗氫鍵的量子性質對於水的結晶和蒸發等過程有什麼影響。

-----廣告,請繼續往下閱讀-----

關於水,我們還有許多不知道的事。也因為如此,網路上常常能看到「小分子團水」,「能量水」等等的健康廣告,讓大家看得不知是真是假。隨著目前研究持續進行,或許很快就要有「量子水」上市了。

參考資料:

  1. https://pansci.asia/archives/194118
  2. Yang, J., Dettori, R., Nunes, J.P.F. et al. Direct observation of ultrafast hydrogen bond strengthening in liquid water. Nature 596, 531–535 (2021).
  3. https://www.sciencedaily.com/releases/2021/08/210825113614.htm
  4. https://nautil.us/issue/25/water/five-things-we-still-dont-know-about-water
所有討論 2
linjunJR_96
33 篇文章 ・ 832 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

2

15
5

文字

分享

2
15
5
真正的隨機:史上最速亂數產生器
linjunJR_96
・2021/04/12 ・2451字 ・閱讀時間約 5 分鐘 ・SR值 521 ・七年級

-----廣告,請繼續往下閱讀-----

圖/wikipedia

隨機性,在許多領域都扮演了不可或缺的角色。例如電腦信息的加密,還有模擬複雜物理系統等技術,都需要用到巨量的亂數資料。不過,這些隨機是怎麼來的呢?

當電腦計算 1+1 是多少時,它可以遵從既定的程序算出正確答案;但如果叫電腦隨便給你一個數字,它肯定不知道該怎麼辦。畢竟電腦不像人,可以隨便「想到」一個數字。電腦只能根據你的命令,算出你要的結果。

要得到「真正的隨機」並不如想像中簡單。當我們到廟裡擲筊,或是玩桌遊時丟骰子,得到的結果看似沒有規律,但其實不然。它們可以用簡單的電腦計算來預測,像是丟硬幣的結果,便早已被研究透徹。只要對初始條件有足夠良好的掌握(像是丟出的速度與角度等等),這類物品的行為都能用兩百年前確立的力學定律來精準預測,因此稱不上是「真正」的隨機;另外一個缺點在於,這類方法產生隨機結果的速度實在太慢,跟不上現代社會對於隨機資料的龐大需求。

對於丟硬幣的結果,只要對初始條件有足夠良好的掌握,這類物品的行為都能用力學定律來精準預測,因此稱不上是「真正」的隨機。圖/Giphy

至於使用電腦計算的結果呢?常見像是串流平台的隨機播放功能,以及粉專抽獎會用的亂數產生器,它們所呈現的隨機是演算法算出來的。隨機播放功能利用特殊的演算法,排列出一個讓你聽起來很隨興的歌單;一般的電腦亂數,只是將特定的「種子」數字丟進一個超複雜的算式,算出成串毫無規律的數字。這些方法雖然快速又實用,但終究是可以預期的。當亂數數量夠多時,往往可以發現某些規律;而可被預期的亂數若是用於加密或認證,便會成為駭客眼中的肥羊

-----廣告,請繼續往下閱讀-----

由量子世界尋求真正的隨機!

既然手邊的物品和電腦都不管用,科學家於是轉向微觀的量子世界。量子物理對世界的描述本身就是機率性的,因此物理學家可以從實際測量結果中汲取「正港的」隨機亂數。像是物質的放射性衰變或電路中的雜訊,都是常見的選項。這類過程雖然可以確保隨機性,但效率還是稍嫌太差,相關的實驗架設也相當費工。

不過就在今年二月,研究人員利用半導體雷射技術,打造出有史以來最快的亂數產生器:每秒 250 TB 的隨機位元,比先前的紀錄高出一百多倍。

雷射的產生牽涉到原子內的「電子躍遷」。在一般狀態下,大部分原子中的電子會按照高中化學課本中提到的「電子軌域」排列,這種排列方式稱為「基態」,代表原子中的所有電子,都處在最低能量狀態。

在原子接收一定的能量後,會有部分電子跳入高能量的軌域中,變成「激發態」,這時原子內的電子組態不穩定,電子會跳回低能量軌域中回到「基態」,並以光(輻射)的形式放出能量。圖/wikipedia

在原子接收一定的能量後,會有部分電子跳入高能量的軌域中,變成「激發態」,這時原子內的電子組態不穩定,電子會跳回低能量軌域中回到「基態」,並以光(輻射)的形式放出能量。

-----廣告,請繼續往下閱讀-----

而這些跳回的電子,如果都從同一個激發態回到基態,就會釋放出特定「頻率」與「能量大小」的光,以愛因斯坦的說法,從相同的激發態回到基態,會得到固定的「光子」,這是舊量子論的重要發現之一。提供原子特定的能量,讓原子放出光子,就可以激發出雷射。

利用電子躍遷的隨機性

但這件事情跟隨機性有什麼關係呢?電子躍遷本身就是具有隨機性的。

要激發雷射,其實事情並沒有那麼簡單,需要克服這個機率性。讓我們回頭看上面的敘述,「『大部分』原子中的電子會按照……」、「在原子接收一定的能量後,『有部分』電子跳入高能量的軌域中」,這些「大部分」、「有部分」,使得我們就算給原子固定能量,也未必能平穩釋放出特定光子,讓雷射光的強弱不穩定,也不會朝同方向射出。

因此雷射技術的重點之一,就是「光學共振腔」,將激發光子的物質放在共振腔中,放出的光子會在共振腔中來回游走,再次激發原子放出更多的光子,來增強雷射強度,並讓雷射光往特定方向射出。

-----廣告,請繼續往下閱讀-----

但是,「光學共振腔」強化雷射強度以及方向,但實際上雷射光的強度,仍然是由量子力學的隨機性所決定!如果我們能用感光元件捕捉雷射光線起伏不定的強度,再轉換為數位訊號,就能獲取珍貴且無法破解的隨機亂數。

蝴蝶結狀「光學共振腔」

這種想法雖有十幾年的歷史,不過由於技術上的限制,產率一直相當有限。而且一般方形共振腔產生的雷射,容易讓光強度陷入特定的規律,產生的隨機性也較低。為了解決這個問題,研究人員將共振腔的形狀改良為蝴蝶結狀。如此一來,在其中反彈的雷射光便能保有其當初紊亂的特性,且往特定方向射出。

隨機的雷射光源被 254 像素的高速攝影機拍下,每個像素受到的光強度也被證實為相互獨立,因此成就了 254 條同步生產線,一同產出隨機亂數,使效率遠遠勝過以往一次只能記錄一個像素的做法,創下每秒 250 TB 的紀錄。

現今電腦運作的時間尺度最快不超過幾 GHz,因此這次的 250 THz 創舉難以發揮全部的實力。如果犧牲一些效率,用較簡單的偵測裝置來取代高速攝影機,可以讓整個裝置變得更加輕巧,提升實用性。在不久的將來,史上最速的亂數產生機制,或許可以直接容納於單一晶片之上。

-----廣告,請繼續往下閱讀-----

參考資料:

所有討論 2
linjunJR_96
33 篇文章 ・ 832 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。