0

0
1

文字

分享

0
0
1

【紀錄】M.I.C.╳科技大觀園:能源──從核能的那些骯髒事開始說起

Peggy Lo
・2014/07/10 ・12657字 ・閱讀時間約 26 分鐘 ・SR值 607 ・十年級

文 / 羅佩琪

唰──地脫下外套,露出胸前閃爍著耀眼藍光的弧形反應爐[1],講者廖英凱還沒開口,就清楚揭示了今晚的演講主題:核能。

曾在《廢核大遊行》擔任公民審核四的講者,也曾主持網路社群《核能流言終結者》的對談,長期協助國內反核、擁核團體釐清核能議題中的科學論述,PanSci專欄作者廖英凱再次登陸PanSci M.I.C.[2],嘗試放下社會火熱的反核、擁核對立,以「科學」為立場,分享(其實是澄清?)核能議題中的那些骯髒事。

適逢林義雄先生的反核四禁食行動,這次的M.I.C.在講者一貫的風趣生動中,似乎也夾帶了一抹沉重。而我們也不得不去思考:面對敏感複雜、佈滿對立荊棘的社會議題,除了科學真理,還有什麼是科學人可以 / 應該做的呢?

-----廣告,請繼續往下閱讀-----

(雖然老梗但也真切,或許「尊重」就是那把開啟對話的鑰匙吧!)


https://www.youtube.com/watch?v=skQ_IPkrsB8

劃定守備範圍:今晚,我們談的是「核能議題中的科學」

2

「該不該要核四、核五六七八?」「假設我們不要核能,又該選擇什麼樣的能源?」面對能源議題的大哉問,廖英凱一開場,就明白指出須考量的面向是相當多元的:

● 經濟面:例如,哪一種發電比較便宜?
● 科學面:例如,哪一種發電比較安全?
● 社會政治面:例如,哪一種發電對蘭嶼人、對台灣人或對地球人比較好?

-----廣告,請繼續往下閱讀-----

其中,「發電方式、發電產物的安全性」應該是自然科學最有能力處理的,也因此,今晚我們將從攸關核能安全、常被視為核能潛在風險的骯髒事們開始探討。

核能的骯髒事#01:核電廠核爆?
──科學家:「讓我們從鈾235濃度、連鎖反應、臨界質量談起。」

3

五月天的《入陣曲》網友Kuso的《連核爆》……在各種流行文化中,美麗(?)的蕈狀雲與核爆,似乎與核電廠畫上了等號。但,在現實世界,「核電廠核爆」真的會發生嗎?甚至,我們給定最極端的情況,例如:核電廠施工者是像X統沙拉油般的不肖商人,施工品質極差,在這樣嚴苛的條件下,核電廠是否可能核爆?[3]

要科學地回答這個問題,我們必須從「連鎖反應」的概念談起。

-----廣告,請繼續往下閱讀-----

核電廠與核彈的能量來源,都來自鈾原子的核分裂:一顆中子打到一顆鈾原子,分裂成氪和鋇這兩個蠻重的原子及三顆中子;如果這三顆中子繼續打到三顆鈾原子,就會繼續產生九顆中子……這,就是傳說中的「連鎖反應」,利用三倍數的指數成長,讓能量短時間內快速膨脹。

你可以想見,製造核彈者會希望這個連鎖反應產生的能量大、效率高,因此會把核彈的質量加大,並提高核彈彈頭的濃度,以讓所有被分裂出來的中子,都能有效地碰到下一顆鈾原子,讓連鎖反應持續發生;更先進的做法是,在核彈外圍包覆金屬,讓中子反彈,產生更有效率的連鎖反應──由此可知,「質量」與「濃度」,正是能否達成連鎖反應的關鍵。

4
▲提升核分裂能量、效率的方法:加大質量(中),提高密度、加上金屬外殼(右)。

也因此,我們稱達到連鎖反應所需的質量為臨界質量;而不同濃度下,臨界質量亦會不同。以鈾235為例,當濃度是100%,只需要47.5公斤就可以達到連鎖反應;但,當濃度下降到10%,臨界質量將超過一公噸;至於核電廠使用的,濃度介於3~5%鈾235,臨界質量是:無窮大。

5 (2)

至此,我們可以肯定地回答「核電廠會核爆嗎」這個問題了:不可能。核電廠所使用的鈾235濃度過低,所需臨界質量是人類無法企及的無窮大;既然不可能達到連鎖反應,自然也無法產生核爆。(既然低濃度的鈾235無法產生連鎖反應,核電廠的能量從哪來?核電廠的核分裂怎麼發生?請看這份延伸閱讀。)

-----廣告,請繼續往下閱讀-----

註:那福島核災的爆炸是怎麼回事?那不是核爆,是比核爆等級小得多的氫爆[3]。

核能的骯髒事#02:台灣的輻射值超標?
──科學家:「讓我們從輻射的組成談起。」

即使核電廠不會核爆,我們依然要面對已經存在的核廢料、核能輻射以及福島事故的意外的問題,這正是核能與其他發電方式最大的差異:核能發電的產物是有輻射的。奠基於對輻射的警覺與擔憂,許多環保團體、倡議組織近期也自發性發起「測量生活周遭的輻射值」行動:

6

上圖即是一例,2014年某場研討會中,與會者在立法院測量到每小時0.12μSv(微西弗);相對於此數值,知名反核人士劉黎兒女士曾撰文宣導「超過0.07μSv就是超標」,指稱全台測量到的輻射值普遍超標三至五倍以上。難道,這就是台灣核能輻射危機的醜陋真相?

-----廣告,請繼續往下閱讀-----

試圖解答這樣問題,我們可以從「輻射組成」來一步步驗證上述的說法。日常生活中我們會接觸到的輻射來源其實相當多樣:(數值單位:mSv/yr 毫西弗/年)[5]

7

  • 宇宙射線(0.26)、氡氣(0.435)、地表體外曝露(0.64)、地表體內曝露(0.28):都屬於背景輻射。
  • 醫療輻射(0.81):包括X光、斷層掃描等,是我們一生接受輻射的最大宗來源。
  • 其他人造輻射(0.01):過去人類在地球上投放的兩千餘顆核彈所產生的放射性落塵、職業曝露如放射治療師/核電廠員工會接觸到的輻射、核能及雜項設施如核廢料處置場的輻射。

由於醫療輻射僅見於醫療處所,背景輻射如宇宙射線則無所不在,WHO、ICRP及我國的原能會在設定輻射相關建議、規定時,多以「其他人造輻射」為規範項目,並以每人每年1mSv為上限。

帶著輻射組成的背景知識,我們重新檢視輻射量測的意義:假設我們跟蔡康永一樣,在遊行時拿著一支輻射偵測器,我們會量到什麼呢?

街頭不是醫院,不會有醫療輻射,氡氣要計算吸入人體內的影響值,跟體內曝露一樣無法量測,我們能偵測的數值其實僅剩宇宙射線、體外曝露及其他人造輻射三部分。根據上述調查,三者合計為0.91mSv/yr,約莫是0.104μSv/hr,這個數值與全球平均0.097μSv/hr[6]相距不遠。(更具體的形容:這大概是「吃一根香蕉獲取的輻射量」)

-----廣告,請繼續往下閱讀-----

不論台灣或全球,以輻射偵測器隨處量到的數值,顯然都大於0.07μSv;那,為什麼還會有劉黎兒女士「超過0.07μSv就是超標」的論述呢?我們試著重現劉女士的推導過程:

  • ICRP說每年超過1mSv超標:1mSv/yr = 0.11μSv/hr
    ➝正確。
  • 劉女士依8比2的體內、體外曝露拆分:體外曝露約佔0.02μSv/hr。
    ➝喔歐,出錯了!ICRP的1mSv是規範其他人造輻射,體內/外曝露都屬於背景輻射,兩者是沒有交集的。
  • 0.02μSv/hr再加上台灣沖積平原地帶的自然值0.05μSv/hr = 0.07μSv/hr,故超過0.07μSv/hr即為超標。
    ➝喔歐,出錯了!錯誤的上一步,推導出錯誤的結論。

對原始文獻的解讀偏誤,造成與大自然現狀相悖的結論。至於,台灣輻射值的現狀究竟如何?較允當的評斷及量測方式又為何?想了解更多,建議閱讀講者廖英凱在泛科學發表的專文做更深入的了解。

核能的骯髒事#03:核電廠逃命圈?
──科學家:「讓我們從LNT、線性無閾值模型談起。」

除了輻射偵測,核能議題中另一項引起眾多關注與非議的,正是逃命圈的距離標準。

-----廣告,請繼續往下閱讀-----

原能會目前核定的緊急應變計畫區範圍為八公里,雖然亦有是否增設為十六公里的討論[7],但無論如何,皆遠低於日本福島核災時的二十公里撤離圈……是台灣人命比較不值錢嗎?明明事關人命,撤離圈難道不是越大越好、越大越安全?

要審慎地回答這個問題,我們必須一步步追溯逃命圈法規制定時,應考量的科學基礎。流行病學統計發現[8]:當照射到100mSv以上的輻射,每再增加100mSv的輻射,罹癌的機率會增加0.55%。緊接著我們會問,那,照射到100mSv以下呢?由於目前尚無100mSv以下具統計意義的實驗數據,有三種常用的模型,作為輻射量與罹癌機率關係的可能詮釋:

8

【模型一】線性無閾值模型 Linear No Threshold(黃線)

這個模型認為:100mSv以下的規律會與100mSv以上相同,呈「每增加1mSv輻射、罹癌率增加0.55%」的線性關係。從字面拆解,「閾」是門檻的意思,「線性無閾值」是線性、沒有門檻;更白話的說,人類只要照射到輻射,不論劑量多低,都一定會增加致癌的機率。(重申:即使100mSv以下我們是沒有實驗數據可以佐證的)

【模型二】線性閾值模型Linear Threshold(藍線)

相反地,線性閾值(a.k.a.有門檻)模型認為,既然100mSv以下沒有實驗數據佐證,那顯然地,當人類被0~100mSv的輻射照射時,是不會增加任何致癌率的;一直要累積到100mSv,才會有0.55%的線性關係。

【模型三】毒物反應模型Hormesis Theory Effects(綠線)

這個有點反骨的模型則認為,在0~100mSv、這樣低劑量的輻射照射下,反而是會「降低」致癌率的。類似於現實世界中,台灣某些住在輻射鋼筋屋中的人、伊朗高原這個高背景輻射的居民,他們罹癌率反而比較低。[9][10][11]

補充:當然,這樣的推論有其限制,是否罹癌的原因很多,或許純粹只是因為這群人的社經地位較高、生活品質較好,致使其罹癌率較低。而原能會針對輻射屋居民的流行病學調查也發現,輻射屋居民在甲狀腺、乳房與婦科病等疾病明顯高於一般大眾,且對健康狀況的不確定性所產生耽憂的負面影響,更是難以估量。[12]

輻射值0~100mSv間,[致癌率以0.55%增加] vs [致癌率=0] vs [致癌率反而下降] ── 仔細比較三種模型,我們會發現,模型一(LNT模型)是最保守的,任何輻射劑量都會增加致癌率。

好,帶著這樣的認知,現在讓我們再次審視福島核災的二十公里逃命圈。

根據Ten Hoeve等人的研究[13],依最保守的LNT模型推算,日本政府二十公里逃命圈、共十六萬人的撤離決定,總計讓245人免於罹患癌症;這無疑地是好事。然而,我們同時必須理解,在這十六萬人的撤離過程中,卻有570人因心理不適、延誤治療、孤獨自殺等原因而死亡。

「假如你是核災時的日本政府,你會希望災民們留在原地、三十年後死於癌症……還是冒高一倍的立即死亡風險,依然撤離二十公里範圍內的居民?」這個兩難抉擇或許過於煽情,但也凸顯出:單以距離長短來判定逃命圈的適當性是不夠的,逃命圈並不能以「越大,就越安全」的思維論之

非核家園的想像:台灣的自然資源、再生能源

核爆、輻射量測、逃命圈,雖然民間對核能骯髒事的解讀有些許誤解,我們依然必須承認:核能輻射確實是棘手難解的問題,核廢料的處理也必須以「遠離人類、遠離生物圈」為原則。

那,如果我們往核能的反方向望去……在「非核家園」的世界中,台灣究竟握有多少自然資源的籌碼,能讓我們發展再生能源?

9

其實,依據2008年開始的《國科會能源國家型科技計畫》,台灣再生能源整體的潛力上限,是應付尖峰時期用電量25GW(GW=百萬瓩)仍綽綽有餘的31.19GW(編按:25GW是今年四月的數據,今年七月尖峰時期則已高達35GW了);亦即,如果未來我們能把台灣所有有潛力的自然資源都完全開發,別說核四,核一二三、所有火力發電廠都可以被取代。

怎麼做到的?正是憑藉著台灣的壯麗山川、豐隆物產。

陸、海、空齊備,再生能源遍地開花

從能源的「陸」軍看起:台灣本島多山,使水力發電得以發展,利用高低差產生位能,轉化成動能推動發電機產生電力。而在新竹至彰化沿海、墾丁一帶擁有較高的風能,這些地區也正是風力發電機陸續建置的區域。又,在小油坑、大屯山、宜蘭清水等溫泉區,我們得天獨厚地可以發展地熱發電,將冷水打到地底,並用地底的熱加溫,過程產生的能量即能轉化為電能;1980年代落成的宜蘭清水地熱發電廠雖在1993年因高故障率、低發電效率而停止運轉,但預計今年也將重新啟動,為台灣貢獻12MW(MW=百萬瓦)、約莫兩萬六千四百戶的電力。[14]

「海」軍則有兩大勢力,台灣西南海域蘊藏有可燃冰,可燃冰是一種甲烷水合物,亦即海中可開採的天然氣;東部海域則有黑潮,可以帶動海底架設的螺旋槳進行發電。

至於常被視為能源明日之星的「空」軍:太陽能,則分布在太陽能能量較高的嘉南平原及恆春,前者正好坐落於嘉義布袋至高雄佳冬,台灣古代曬鹽場的所在位置(可見咱們的祖先就已經知道太陽能發展的最佳場域了啊……);而四季如春的恆春,也正是因為太陽夠辣、太陽能量夠穩定,才成為比基尼辣妹雲集的春吶場地。

依照台灣所擁有的陸、海、空自然資源,我們可以標幟出台灣的再生能源地圖:

10 11

呼應前段所述,當這些再生能源完全開發,總發電量將是可以完全支撐起台灣用電量的31.19GW,我們可以成為一個只依賴再生能源、就能生存的國家。

但,再生能源完全開發的美好世界……真的會降臨嗎?

「接下來,我要殘酷地戳破大家對再生能源的美好想像。」

才剛為在場觀眾建構美好的、非核家園的未來樣貌,廖英凱話鋒一轉,將大家從想像拉回現實。真實世界中,2014年4月份再生能源實際的發電量約為2.193GW,僅為完全開發的31.19GW的十五分之一:

12

當然,現在2.193GW,不代表未來沒有機會走到31.19GW;但是,這中間的差異,除了政府是否投注足夠資源、是否用心發展再生能源外,或許,還有一些(與核能輻射一樣)從根本地、棘手難解的問題。

【水力】環境危害(案例:萬里水力電廠開發案)

水力電廠的開發,代表需要阻斷一條河流來建置水壩與水庫,輕則改變河流的流量、流速,重則改變河流中的生態系(直白的想:魚顯然不可能跳過水庫的高牆……必須變更棲息處所、進行遷徙)。想進一步了解水力電廠開發對環境的危害,花蓮萬里水力電廠目前正在進行第二階段環評,《地球公民基金會》的花東辦公室投注了許多心力與研究在這個議題上,值得大家一同關注。

【風力】季節效率差異、低頻噪音(案例:苑裡風機開發案)

根據經濟部能源局、工研院的千架海陸風力機計畫,2030年有望建置1050架風機、供應約4.2GW,比核四的2.7GW還大的發電量,顯見風機的潛力。然而,受限於台灣的地理位置與地形,夏天風小冬日風大,容量因數[15]相差3-6倍,但偏偏,夏天卻是吹冷氣、用電量最高的尖峰時期。

13

風力發電的另一個問題是「噪音」。關注社會運動的朋友可能聽過的《苑裡反瘋車》行動,正是因為英華威風力發電集團在苗栗苑裡進行風機架設,而巨大風機所產生的低頻噪音波長長,繞射效果好,隔絕的困難度很高,也因此造成相當大的噪音公害。

註:風機有多巨大?具體地說,它是進擊的巨人中超大型巨人的一倍大!(嚇)

【地熱/黑潮】自然區開發、管路結垢與海水侵蝕

地熱發電多存於偏遠的森林山區,亦即,地熱電廠建置時我們勢必開發到我們最需要保護的自然區;而進行地熱發電、我們把水打到地底下再抽起時,管路中將溶有許多地底礦物,造成水管結垢──這個看似簡單的問題,卻是過去幾十年的地熱發電進展中,就連發展最快的美國、菲律賓也難以解決的。

14

與地熱發電碰到的問題雷同,分布於東部海域的黑潮發電在設置海底裝置時也會遇到防水、侵蝕問題,再加上東部海底地形崎嶇,施工難度甚高,電力從海上傳輸到岸上時又會碰到颱風侵擾。綜觀全世界,洋流發電尚未有成功商轉的案例。

【可燃冰】國際情勢問題

西南海域蘊含了豐富的可燃冰資源,但,也埋藏了最多的國際海域紛爭。一年前的廣大興案仍歷歷在目,西南海域涉及中國、菲律賓等國的複雜海域主權問題,讓可燃冰短期內可能淪為看的到、吃不到的自然資源。

15-16

【太陽能】晝夜/季節效率差異、製程汙染(案例:日月光K7廠)

太陽能在先進的高科技產業頗受重用,例如國際太空站就是使用太陽能。然而太陽能在地球的應用則存在了根本的限制:太陽會下山,而下山後我們還是得用電。晝夜發電效率的差異如下圖所示。

17

發電效率的巨大差異不只存在於晝夜間,也在季節間。與風力發電相反,夏天太陽大、冬天太陽小,太陽能似乎正好適合應付夏天的尖峰用電量:

18

然而(筆者OS:聽到這兩個字,就知道廖英凱又要來摧毀我們的想像了……),如果仔細研究上圖的縱軸,一樣是容量因數,風力發電的數值是0~100%,但在太陽能上限卻僅25%。簡易的解讀這相差四倍的級別:一天中有一半是黑夜,發電效率先打對折,再者,清晨、黃昏的發電效率也是低落的,折算下來,太陽能的發電效率最高目前僅達23.26%。

太陽能的另一個問題,again,又是環境汙染。太陽光電、太陽能電池的本質是半導體,雖然在此無法敘述半導體的整體製程,但至少我們可以利用近期的新聞做聯想:去年底爆發的日月光K7廠事件,正是因為製造半導體過程中排放大量汙水,造成嚴重的環境汙染;而在製造太陽能的主要製造國中國,許多太陽能電池的產地也爆發了大規模的汙染事件

「其實我們的科技,已經足夠先進來克服半導體製程的汙染……」帶著些許無奈,廖英凱說:「但科技無法解決的,是不良商人無止盡的貪婪。」

我們必須無奈地承認,這才是真實世界的樣貌

帶著對再生能源開發限制的了解,讓我們再次面對這個問題:台灣的再生能源,真的有機會從目前2.193GW發電量,走到「完全開發」的31.19GW嗎?除了風力季節差異、地熱結垢、太陽晚上會下山……等難解的根本性開發限制,所謂的完全開發,又將附帶多少我們不樂見的環境汙染、生態破壞與居民抗爭呢?

水力發電的案例或許可作為上述現象的註解。2008年《國科會能源國家型科技計畫》其實也預估了2025年的再生能源發電量,針對潛力上限5.04GW的水力發電,2025年的發電量預估卻與2014年是相同的1GW。雖然無奈,但我們似乎必須承認:再生能源的「完全開發」在各種自然、人為的現實限制下,的確存在了無法跨越的難解鴻溝。

19

當然,以上討論都奠基在「預估」上。基於對國科會、政府預估數據的質疑,台灣再生能源推動的關鍵組織《綠色公民行動聯盟》也曾在核四真實成本與能源方案報告中提出2025年發電量、電量需求的兩個版本預估:版本一,與能源國家型科技計畫的預估數據相近,以2010年的電量需求成長48%為預測基準;而相較下較樂觀的版本二,則以節能省電推行順利為前提,預估電量需求將呈零成長,維持2010年的水平:

20

綜觀能源國家型科技計畫、綠盟的預估版本,截至2025年為止,再生能源的比重將落在20%,以及一個極為理想的69%間──也就是說,不管悲觀或樂觀,在2025年以前的這十年間,我們是不可能單獨依賴再生能源生存的。

所以,剩下的差額(不管是80%或31%),該怎麼辦?

不得不的選擇:火力發電

延續非核家園的中心思想,排除掉核能,當再生能源仍不敷使用,我們的選項僅剩火力發電一途。而不論是台灣、或是廢核路上的典範德國,火力的確也都是難以割捨的發電來源。

21-22

23

上排的兩張圖,分別是台灣早上六點、晚上六點各發電廠的發電量,除去核能,保持一天恆定電力供應的仍是火力發電;下排則是德國2013年7月第一週的電力供應圖,每日規律波動的黃色區塊正是白天活躍、晚上歸零的太陽能(註:我們常聽到的「德國太陽能佔電力供應的一半」就是指白天的這個部分),最下方的紅色、藍色分別是核能與水力,而穩定佔據發電主力的,依然是咖啡色的火力發電。

回到我們先前提的差額電量來源問題:不管是悲觀的80%或樂觀的31%,這些再生能源無法負荷的部分,如果不使用核能,完全使用火力替代,又會是什麼樣的光景呢?按照台中火力發電廠的發電量換算,這31%~80%的電力約莫需要二~五座的火力發電廠。這聽起來似乎值得一試?如果未來十年我們有一個明確的政策目標,兩年蓋一座火力發電廠,十年我們就會有五座,來實現非核家園的夢想。

然而(Oh No…又是這個粉碎夢想的起手式……),透過火力發電來實現非核家園,是否也會帶來其他問題?這會是一個值得的投資嗎?

火力發電的美麗與哀愁

顯然,要解答這個問題,我們需要更了解火力發電。就從台灣的驕傲,也是全世界最大的火力發電廠:台中火力發電廠看起吧!

24-25

左圖是我們熟悉的台中火力發電廠正面外觀,轉180度、繞到圍牆後的世界,右圖是電廠內部的實際樣貌:黑色堆積如山的正是火力發電廠的燃燒原料:煤炭。這可以解答為什麼火力發電廠大多設置在海邊,因為只有船能運算這麼大量的煤炭;而擁有廣大內陸的國家如美國,就必須把火力發電廠蓋在鐵路旁,方便煤炭運送。

回到我們關心的核心問題:使用火力究竟會有什麼問題?除了空氣汙染造成火力發電廠附近居民較高的支氣管病變比例[16][17][18],火力發電最嚴重的產物依然是溫室效應,及其所連帶造成的氣候暖化。

26
▲二氧化碳濃度(藍線)與地球溫度(紅線)的變化趨勢圖。

除了北極熊可能會沒有地方住,氣候暖化與我們人類何干?舉一個與人類比較切身相關的例子。印度與孟加拉邊界的無人島嶼South Talpatti(或稱New Moore)長久存在兩國領土糾紛,然而就在2010年,這個島嶼被發現沉沒了,兩國因此激烈地指責是對方動用武力將此島炸沉(OS:我得不到的,你也別想要……?)。最後,經印度加爾各答學者Sugata Hazra分析衛星圖片,向BBC發布新聞稿,才指稱此島是因全球暖化,海平面上升淹沒的。除此之外,描述極端氣候的《明天過後》、前美國副總統高爾的紀錄片《不願面對的真相》,也都不斷提醒我們,溫室氣體、全球暖化可能潛藏的恐怖危機。

火力發電也有這麼多問題,看似走投無路的我們,到底該怎麼辦?這個全世界都在憂慮的問題,奸巧又厲害的商人比爾蓋茲提出了自己的見解。

蓋茲方程式:Innovating to zero

「這是我近年來學到最重要的一條公式。」廖英凱慎重的強調。

27

這條公式是由比爾蓋茲在2010年的TED演講提出,他估算人類未來會製造出來的二氧化碳量,將等於[人數]、[每人會使用的服務量]、[每單位服務需要的能源]、[生產每單位能源所製造的二氧化碳]的乘積。相同的分子、分母消去後,兩邊相等,這條公式的確成立。

仔細探究這四項變數:

  • P(↑):在可預期的未來,全球人數必然會繼續上升。
  • S(↑):每人可使用的服務也會上升,例如娛樂服務,從智障型手機到智慧型手機、從貪食蛇到itune store,以及醫療服務的日新月異。
  • E(↓):單位服務使用的能源是下降的,例如,從燈泡,到白熾燈泡、省電燈泡,再到LED,技術的進步正讓服務需消耗的能量下降,用電效率提高。
  • C(?):這將是左右這條公式的關鍵。

若以降低二氧化碳為目標,我們需要將C,每單位能源所產生的二氧化碳降到最低;而目前,其實存在一些發電方式是可以將這個變數降到零的,例如:剛才所提的再生能源、核分裂,以及科學家們心中的美好夢想:核融合。

根據這條公式,一個很棒的理念誕生:如果我們可以在能源產生的二氧化碳量努力,降低到零,理論上,我們可以將不會再產生任何二氧化碳。又,人類世界中必然還是有一些產業必須製造出二氧化碳,例如肥料製造、耗燃油的高空運輸,此時,我們就可以將二氧化碳的額度較無後顧之憂地留給他們。

尊重不同價值觀,看清「能源是有限的選擇題」

回顧上述介紹的台灣自然資源與再生能源,以及填補發電量差額所必須選擇的火力發電或核能發電,我們會哀傷的發現:面對未來,我們擁有的選擇並不多。能源的議題,至少在台灣,並不是一個開放式的問答題,而是一個非常、非常有限的選擇題。

既然選擇這麼有限、但每種能源又都有人反,該怎麼辦?戲謔的網友說:那不如請皮卡丘、雷神索爾用閃電來拚經濟好了:

28

「不論反對的理由你是否認同,或你認為有更好的選擇,我都必須鄭重呼籲:請尊重這群與你意見不同的人。」

一反淘氣詼諧的演講風格,廖英凱鄭重嚴肅地提醒在場MIC的夥伴:玩笑歸玩笑,但未來當我們遇到苗栗苑裡反風機、花蓮萬里反水庫、或是明天要開始為核能無限期絕食的林義雄先生時(編按:本場MIC恰好是2014/4/20,林先生絕食前一天),請千萬、千萬不要用戲謔的方式面對他們,請給予他們絕對的尊重──因為,他們是真正在用自己的生命在反對,在捍衛自己的價值觀的。

面對核能議題,除了互相尊重,廖英凱也推薦了另一個開啟對話空間的方法:自己來做預估吧!或許你不認同上述國科會、綠盟的能源預估,你對台灣能源的未來有自己的獨特想像,目前坊間其實有一些工具,是可以讓你進行個人化能源預測的,例如資料視覺化設計師李慕約製作的《發電成本計算機》。在這個計算機上,你可以自行設定你期望的未來GDP、人口成長率、用電量,並指定你希望有幾座火力、核能、風力電廠,搭配出屬於你的模擬國家中,專屬的能源配置。

總結

從核電廠核爆、輻射量測、逃命圈等核能骯髒事(?)的科學面釐清,到台灣的自然資源、再生能源的選項與限制,以及這樣的限制下使用火力將遇到的阻擾、比爾蓋茲對二氧化碳Down to Zero的想像……這場MIC的超時程度堪稱史上之冠,但,卻也只是核能議題中非常、非常少的一小部分。

帶著科學人的爛漫,廖英凱再次引用比爾蓋茲的話,作為結尾:

The barrier to change is not too little caring; it is too much complexity.
改變世界的阻礙,不是人類的冷漠,而是因為這個世界實在太複雜。

~Bill Gates  2007

螢幕截圖 2014-07-06 13.41.01

畢竟是爭議不斷的社會議題,本次M.I.C.的Q&A時段提問異常踴躍,有的直白尖銳、有的充滿憂懼,有的PanSci夥伴也試圖提出有建設性的問題:

Q:DIY的輻射量測,在什麼樣測量情況下會是有效的?
A:以演講中提到蔡康永用的輻射偵測器Air Counter_S來說,僅能量測Gamma射線,誤差值為±20%,實測上又容易受微波、溫度影響。以這樣的實際效果來說,可能只有在大量輻射外洩(例:核災真的發生時),測到足夠恐怖的數值、提醒我們逃難時,才能有具體實效了。

Q:是否有模型在計算核災發生後,輻射的擴散速度?
A:請參考中興大學環工系莊秉潔老師的FB

Q:可以簡介一下「頁岩油」嗎?是否可能取代石油?
A:(本題由也在現場的地科資深媒體人潘昌志代打回答簡單的說,過去我們採集石油的地點會有特定的封閉儲油條件,多在孔隙較大的地層;但因技術的進步,目前我們也可以在孔隙較小的地方採集榨油。但無論如何,頁岩油同樣會碰到排放二氧化碳的問題。

Q:恕我直白的問,以您的專業判斷,核四的風險是否可被接受?
A:(回答前,廖英凱先止血強調:「或許聽起來有點規避,但這是我真實的想法」)台灣目前並沒有一個合適的方式評斷各種發電方式的風險;能源的選擇是「兩害相權取其輕」,但怎麼判斷發電方式「有害」?依著不同的價值觀,每個人會有不同的判斷。

例如:蘭嶼居民會反對核廢料置放於蘭嶼,因為那是他的家園;但同時,也會有環保人士認為,需要在意北極熊的存續更優於人類的生存……北極熊、蘭嶼人、台灣人、地球人,誰比較重要?該用哪一種維度來思考能源議題是沒有正解的,端看你的價值選擇。


後記

本次M.I.C.在PanSci臉書上的即時討論熱絡程度並不亞於現場,甚至,多了一絲煙硝味。一張標註為「科學大腸花英凱大帝開講,談核能的骯髒事」的現場照片貼文,意外引發大批網友們的撻伐及討論,為「核能其實不骯髒」發聲護航。

作為在現場全程聆聽演講的聽眾,回家後看到PanSci臉書上的討論串其實是訝異的,除了因本次演講其實是釐清民眾對「骯髒的核能」做科學面釐清,另一方面,也對於以一張照片、一句註解來揣測演講內容的現象感到驚詫。但,轉念一想,或許這也正凸顯出當今社會對核能議題的重視、敏感及其難解的本質;在拾起反對 / 支持立場的盾牌前,先一步放下名為尊重與傾聽的城門吊橋──這,或許是我們都更該學習的吧!

29

註:

[1] 感謝道具復刻師馬可多 精心打造弧形反應爐。

[2] 廖英凱第一次擔任M.I.C.講者的紀錄文:M.I.C. IV之「未來」

[3] 講者強調:這部分的討論排除了「被真正的核彈打到」的情形。

[4] 福島核災氫爆的延伸閱讀:福島核災該是廢核的理由嗎?Fukushima Nuclear Disaster

[5] 資料出處:輻射防護簡訊34–財團法人輻射防護協會 (1998)。該調查的時間係1980至1995年,缺乏至今約二十年的資料。由於自然背景輻射不會有太大的變化,有較大進步幅度的醫學技術帶來的醫療輻射,其今日的數據可能與此份調查有較大差距;但講者廖英凱也強調,以上僅係他的個人推測。

[6] 數據引自台灣地區天然背景輻射介紹

[7] 「核能電廠緊急應變計畫區內民眾防護措施分析及規劃檢討修正」完成報告核子事故緊急應變計畫區範圍檢討報告

[8] ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4)

[9] Chen, W. L., et al. “Effects of cobalt-60 exposure on health of Taiwan residents suggest new approach needed in radiation protection.” Dose-Response 5.1 (2007): 63-75.

[10] Ghiassi-Nejad, M., et al. “Very high background radiation areas of Ramsar, Iran: preliminary biological studies.” Health Physics 82.1 (2002): 87-93.

[11] Borzoueisileh, Sajad, et al. “The assessment of cytotoxic T cell and natural killer cells activity in residents of high and ordinary background radiation areas of Ramsar-Iran.” Journal of medical physics/Association of Medical Physicists of India 38.1 (2013): 30.

[12] 「輻射屋居民流行病學調查及研究」委託研究計畫期末報告

[13]  Ten Hoeve, John E., and Mark Z. Jacobson. “Worldwide health effects of the Fukushima Daiichi nuclear accident.” Energy & Environmental Science 5.9 (2012): 8743-8757.

[14] 在國外還有一些滿成功的地熱發電實例,在自己的家後面挖約莫100公尺深的井,即可應用地熱提供家裡的暖氣、熱水等,詳見:Heat From The Earth: How To Heat With Near-surface Geothermal Energy.

[15] 容量因數的定義

[16] Nel, Andre. “Air pollution-related illness: effects of particles.” Science 308.5723 (2005): 804-806.

[17] Coal Ash-The toxic threat to our health and environment

[18] 媽祖請您要保祐:彰工火力發電廠說明會與會雜感

 

【關於 M. I. C.】

M. I. C.(Micro Idea Collider,M. I. C.)微型點子對撞機是 PanSci 定期舉辦的小規模科學聚會,約一個月一場,為便於交流討論,人數設定於三十人上下,活動的主要形式是找兩位來自不同領域的講者,針對同一主題,各自在 14 分鐘內與大家分享相關科學知識或有趣的想法,並讓所有人都能參與討論,加速對撞激盪出好點子。請務必認知:參加者被(推入火坑)邀請成為之後場次講者的機率非常的高!

本場演講由科技部「科普資源整合運用推廣計畫」支持,PanSci泛科學與國家高速網路與計算中心共同舉辦。歡迎大家到科技大觀園閱讀更多科學內容。

-----廣告,請繼續往下閱讀-----
文章難易度
Peggy Lo
23 篇文章 ・ 2 位粉絲
非典型的人生迷茫組,對資訊整理有詭異的渴望與執著。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
「護國神山」越高 電力壓力越大:臺灣海洋能是解方?
PanSci_96
・2024/11/07 ・3548字 ・閱讀時間約 7 分鐘

半導體廠和資料中心的耗電量巨大,隨著護國神山的持續壯大,台灣的電力供應是否還能承受這種壓力?

或許,大海能夠給予我們答案。

在我們的周遭,有一個龐大且源源不絕的能源,但卻長期被我們所忽視——大海。太平洋上的鄰居夏威夷,已經部署了一座 1.25 百萬瓦特(1.25MW)的波浪能發電示範裝置,並即將併入夏威夷的電網。雖然這個發電量看似不大,但一台裝置只需要 38 公尺長、18 公尺寬的空間。想要放置更多的裝置,需要更大的空間嗎?大海有的是空間。

看來從海洋中擷取能源,或許就是台灣能源的終極解答。但為什麼還沒有人大力投入這個領域呢?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從海洋擷取能源

事實上,從海洋中獲取能量的想法並不新鮮。利用海洋的物理或化學特性所開發的能源,稱為海洋能。海洋能可以大致分為多種不同的形式,每種原理各有不同。

首先是波浪能。夏威夷建設的波浪能示範電廠,就是利用波浪的上下運動所產生的位能變化,或者是利用波浪中海水運動所帶有的動能,來產生電力。值得一提的是,無風不起浪。波浪的產生及其動能的來源,來自於風吹過海面時所產生的摩擦力。而風的出現,可能來自地球自轉,或者是太陽加熱地表和空氣所產生的氣壓差,空氣從高壓區流向低壓區,進而產生風。因此,波浪能的源頭其實是地球和源源不絕的太陽能,被視為永續能源。

其次是潮汐能。月球的引力是潮汐漲退的主要原因。潮汐造成海洋水位的變化,產生位能;同時,漲潮和落潮的水流也帶有動能,這兩種能量都可以用來發電。

另一種是海流能。這是利用海洋中洋流流動的能量。例如,台灣附近的黑潮,水流方向不論冬夏,都是由南向北,而且流速相當快,約每秒 1 至 2 公尺。只要在海流中放置水輪機,就能驅動發電機發電。

-----廣告,請繼續往下閱讀-----

接下來是較為特殊的兩種方式。溫差能(OTEC,Ocean Thermal Energy Conversion)利用海水表面和深海之間的溫度差來發電。我們知道,海水表面因為受到太陽照射,溫度較高;越往深海,溫度越低,一般溫差可達 14 至 25 攝氏度。我們可以利用這個溫差來發電,原理類似地熱發電。OTEC 系統除了發電外,還可以結合海水淡化、海洋養殖和空調冷卻系統等多種用途,可謂一舉多得。

最後是鹽差能。這是利用鹹水和淡水之間的鹽度差異所產生的化學電位差來發電。發電廠通常建設在河水和海水的交界處,將海水和淡水當作一個巨大的化學電池的兩極。

台灣適合發展海洋能嗎?

海洋每年蘊藏的能源遠超全球發電需求,潛力無窮。 圖/envato

地球表面約有 70% 是海洋,蘊藏著無窮的潛力。國際能源總署(IEA)在 2007 年發布的報告預估,海洋每年蘊藏了 21,100 到 93,100 太瓦小時的發電量。作為對比,根據統計公司 Statista 的資料,2022 年全球總發電量為 29,165 太瓦小時。也就是說,海洋蘊藏的能源,足以供給全球所需,甚至可能多出數倍。

海洋能除了蘊藏量龐大之外,發電不需要佔用陸地,又屬於不會造成環境污染的可再生能源,具備多重優勢。既然如此,為什麼我們不大力發展海洋能呢?畢竟台灣四面環海,感覺應該非常有利於開發海洋能。但事實上,不是每一種發電方式都適合台灣。

-----廣告,請繼續往下閱讀-----

根據工研院於 2018 年整理的資料,台灣的地理環境較有潛力發展的是波浪能、溫差能和海流能。在詳細介紹這些能夠發多少電之前,我們先有個概念作為對照。2023 年,台電系統(不包括民營電廠)發電總裝置容量約為 55 吉瓦(GW),而目前封存的核四,兩部機組的總裝置容量為2.7 GW。

首先,波浪能發電適合的區域包括東北角外海、富貴角一帶,以及澎湖和雲林、彰化外海,發電功率有望達到 2.4 GW。溫差能發電適合的範圍則在花蓮、台東外海,具有 2.8 GW 的發電潛力。至於海流能發電,適合的地區在富貴角、澎湖水道(台澎海峽),以及東部外海的黑潮,共有 4.2 GW 的發電潛力。此外,在金門和馬祖,也有一些潮汐能發電的潛力。

總計而言,台灣的海洋能蘊藏量至少有 9.4 GW 的潛力,相當於七部核能機組的發電量。這樣的發電潛力也意味著巨大的經濟價值,估計海洋能市場的產值可達數兆台幣。

發展海洋能的困難之處

既然海洋能蘊藏量龐大,為什麼我們至今未見台灣有大規模的海洋能開發計畫呢?

-----廣告,請繼續往下閱讀-----

首先,海洋能的技術發展仍存在許多挑戰。在各種海洋能中,潮汐發電目前最接近成熟的商業化階段,且已有正在運作的商業發電廠。例如,全球有十多座潮汐發電廠在運作中,其中韓國的始華湖潮汐發電廠是全球最大的,發電容量達 254 MW。此外,還有一些潮汐發電廠處於規劃或建造階段。

然而,潮汐發電的效益取決於潮差(滿潮和乾潮之間的水位差)的大小。一般而言,需要潮差達到 5 公尺以上才有經濟效益。台灣除了金門、馬祖等外島之外,潮差均不足5公尺,因此潮汐發電的潛力較低,並非首選。

至於台灣適合發展的波浪能、溫差能和海流能,目前全球的發展進度都較為遲緩。以波浪能發電為例,雖然蘇格蘭曾有過小規模的商業化案例,但已經退役。不過,最近也有新的波浪能計畫正在進行,包括本文開頭提到的夏威夷案場,這是愛爾蘭公司 OceanEnergy 在夏威夷設置的波浪能轉換器 OE-35,裝置容量為 1.25 MW。另外,瑞典公司 CorPower Ocean 在葡萄牙設置了 C4,裝置容量為 600 kW。雖然規模不大,但已達到商業化的程度,有望在不久的將來成為新的商業化發電方式。

至於溫差能、海流能和鹽差能,都還處於技術發展或小規模實驗測試階段,距離成功商業化發電還有一段路要走。

-----廣告,請繼續往下閱讀-----

那麼,海洋能發展緩慢的原因是什麼呢?技術層面是一大挑戰。首先,海水對電器設備具有腐蝕性。同時,海上的強風大浪可能造成設備損壞。海洋生物也會附著在設備上,影響其運作效能。因此,打造耐用且抗生物附著的海洋能發電設備,本身就是一個巨大挑戰。

海洋能發展緩慢因設備易腐蝕、受強風大浪及生物附著影響。圖/envato

此外,即使我們能夠製造出能夠承受各種海洋環境的發電裝置,是否能長期高效地發電也是一個問題。如果無法建立耐用且具有一定規模的海洋能發電設施,成本將無法下降,進而阻礙海洋能的開發。

台灣在海洋能開發的進展

波浪能方面,工研院開發了「懸浮點吸收式波浪發電」系統,包含具有運動模組和浮筒模組的上浮體,以及具有穩定作用的下浮體。當波浪經過時,上、下浮體會產生相對運動,能量擷取系統藉此吸收波浪的能量。

國家海洋研究院則與台灣海洋大學合作,進行「振盪水柱式波浪發電系統」的研究。該系統利用波浪的上下擺動,擠壓空氣艙內的空氣,將空氣擠出至口徑較小的排氣口,造成空氣流速加快,進而驅動排氣孔中的扇葉發電。成大也有實驗室透過數值分析軟體,進行發電裝置最佳化設計的研究。

-----廣告,請繼續往下閱讀-----

海流能方面,國家海洋研究院、台灣大學、中山大學和台灣海洋大學均參與了「浮游式洋流發電機組」的研發。發電機艙採流線型設計,類似一台風箏。機艙後方的葉片在受到洋流衝擊後轉動,驅動發電機產生電力。目前,20 kW 級的發電機組「錨碇」已在90公尺深的海中初步測試成功。中研院也正在研發 100 kW 等級的渦輪機,預計今年在台東外海下水測試。

在進度較慢的溫差能發電方面,台泥預計在和平火力發電廠打造台灣第一個溫差能發電系統。

未來展望與政策目標

不知不覺中,台灣在海洋能的開發上已經投入了不少資源,雖然還需接受海洋環境的考驗,但前景可期。根據目前的政策目標,台灣將從技術較為成熟的海洋能開始,分階段推進。目標是在 2030 年完成 10 萬瓦特到 100 萬瓦特等級的示範發電機組,並於 2035 年設置 100 萬瓦特到 1000 萬瓦特的商業發電機組。根據屆時的技術發展狀況,期望在 2050 年達成裝置容量 1.3 至 7.5 GW 的目標。

在政策執行方面,海洋能開發涉及多個部會的管轄,如環境部、農業部漁業署、內政部國土管理署等。為簡化申請流程並促進開發,設立單一窗口相當重要。值得一提的是,根據最近的消息,台灣已有民間公司提交了 100 kW 的波浪能示範電廠申請,預計最快在 2025 年完成台灣首個海洋能示範場。

-----廣告,請繼續往下閱讀-----

台灣作為四面環海的島國,有機會在這個領域取得突破,為未來的能源供應找到新的解決方案。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1258 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

4
1

文字

分享

0
4
1
為什麼會被陽光曬傷?光有能量的話,為什麼照日光燈沒事?
PanSci_96
・2024/05/05 ・3185字 ・閱讀時間約 6 分鐘

唉!好曬呀!前兩集,一些觀眾發現我曬黑了。

在臺灣,一向不缺陽光。市面上,美白、防曬廣告亦隨處可見,不過,為什麼我們會被陽光曬傷呢?卻又好像沒聽過被日光燈曬傷的事情?

事實上,這也跟量子力學有關,而且和我們今天的主題密切連結。

之前我們討論到量子概念在歷史上的起點,接下來,我們會進一步說明,量子概念是如何被發揚光大,以及那個男人的故事。

-----廣告,請繼續往下閱讀-----

光電效應

在量子力學發展過程中,光電效應的研究是非常重要的轉捩點。

光電效應指的是,當一定頻率以上的光或電磁波照射在特定材料上,會使得材料發射出電子的現象。

在 19 世紀後期,科學家就已經發現某個奇特的現象:使用光(尤其是紫外線)照射帶負電的金屬板,會使金屬板的負電消失。但當時他們並不清楚背後原理,只猜測周遭氣體可能在紫外線的照射下,輔助帶負電的粒子從金屬板離開。

光電效應示意圖。圖/wikimedia

於是 1899 年,知名的英國物理學家 J. J. 湯姆森將鋅板放置在低壓汞氣之中,並照射紫外線,來研究汞氣如何幫助鋅板釋放負電荷,卻察覺這些電荷的性質,跟他在兩年前(1897 年)從放射線研究中發現的粒子很像。

-----廣告,請繼續往下閱讀-----

它們是比氫原子要輕約一千倍、帶負電的微小粒子,也就是我們現在稱呼的電子。

1902 年,德國物理學家萊納德發現,即使是在抽真空的玻璃管內,只要照射一定頻率以上的光,兩極之間便會有電流通過,電流大小跟光的強度成正比,而將光線移除之後,電流也瞬間消失。

到此,我們所熟知的光電效應概念才算完整成型。

這邊聽起來好像沒什麼問題?然而,若不用現在的量子理論,只依靠當時的物理知識,很難完美解釋光電效應。因為根據傳統理論,光的能量多寡應該和光的強度有關,而不是光的頻率。

-----廣告,請繼續往下閱讀-----

如果是光線把能量傳給電子,讓電子脫離金屬板,那為什麼需要一定頻率以上的光線才有用呢?比如我們拿同樣強度的紫外線跟紅外線去照射,會發現只有照射紫外線的金屬板才會產生電流。而且,當紫外線的頻率越高,電子的能量就越大。

另一方面,若我們拿很高強度的紅外線去照射金屬板,會發現無論如何都不會產生電流。但如果是紫外線的話,就算強度很低,還是會瞬間就產生電流。

這樣難以理解的光電效應,使得愛因斯坦於 1905 年一舉顛覆了整個物理學界,並建立了量子力學的基礎。

光電效應的解釋

為了解釋光電效應,愛因斯坦假設,電磁波攜帶的能量是以一個個帶有能量的「光量子」的形式輻射出去。並參考先前普朗克的研究成果,認為光量子的能量 E 和該電磁波的頻率 ν 成正比,寫成 E=hν,h 是比例常數,也是我們介紹過的普朗克常數。

-----廣告,請繼續往下閱讀-----

在愛因斯坦的詮釋下,電磁波的頻率越高,光子能量就越大,所以只要頻率高到一定程度,就能讓電子獲得足以逃脫金屬板的能量,形成電流;反過來說,如果電磁波的頻率不夠高,電子無法獲得足夠能量,就無法離開金屬板。

這就像是巨石強森一拳 punch 能把我打昏,但如果有個弱雞用巨石強森百分之一的力道打我一百拳,就算加起來總力道一樣,我是不會被打昏,大概也綿綿癢癢的,不覺得受到什麼傷害一樣。

而當電磁波的強度越強,代表光子的數目越多,於是脫離金屬板的電子自然變多,電流就越大。就如同我們挨了巨石強森很多拳,受傷自然比只挨一拳要來得重。

雖然愛因斯坦對光電效應的解釋看似完美,但是光量子的觀點實在太過激進,難以被當時的科學家接受,就連普朗克本人對此都不太高興。

-----廣告,請繼續往下閱讀-----

對普朗克來說,基本單位能量 hν,是由虛擬的「振子」發出的;但就愛因斯坦而言,電磁波本身的能量就是一個個光量子,或現在所謂的「光子」。

然而,電磁波屬於波動,直觀來說,波是綿延不絕地擴散到空間中,怎麼會是一個個攜帶最小基本單位能量的能量包呢?

美國物理學家密立根就堅信愛因斯坦的理論是錯的,並花費多年時間進行光電效應的實驗研究。

到了 1914 年,密立根發表了世界首次的普朗克常數實驗值,跟現在公認的標準數值 h=6.626×10-34 Js(焦耳乘秒)相距不遠。

-----廣告,請繼續往下閱讀-----

在論文中,密立根更捶心肝(tuî-sim-kuann)表示,實驗結果令人驚訝地與愛因斯坦那九年前早就被人拋棄的量子理論吻合得相當好。

這下子,就算學界不願相信愛因斯坦也不行了。愛因斯坦也因為在光電效應的貢獻,獲得 1921 年的諾貝爾物理獎。

1921 年,愛因斯坦獲得諾貝爾物理學獎之後的官方肖像。圖/wikimedia

光電效應的應用

在現代,光電效應的用途廣泛。我們日常生活中常見的太陽能發電板,利用的就是光電效應的一種,稱為光生伏打效應,材料內部的電子在吸收了光子的能量後,不是放射到周遭空間,而是在材料內部移動,形成正負兩極,產生電流。

而會不會曬傷也跟光子的能量有關。

-----廣告,請繼續往下閱讀-----

曬傷是皮膚受到頻率夠高的太陽光,也就是紫外線裡的 UVB 輻射造成的損傷。這些光子打到皮膚,會讓 DNA 分子裡構成鍵結的電子逃逸,引起皮膚細胞中 DNA 的異常變化,導致細胞損傷和免疫反應,這就是為什麼曬傷後皮膚會出現紅腫、疼痛和發炎的原因。

而頻率較低的光線,因為光子能量偏低,所以就不太會造成傷害,這也是為什麼我們沒聽過被日光燈曬傷這種事。

結語

從 17 世紀後半,惠更斯和牛頓各自提出光的波動說和微粒說開始,人們就聚焦於光到底是波動還是粒子的大哉問;19 世紀初,湯瑪士.楊用雙狹縫干涉實驗顯示了光的波動性,而到 19 世紀中後期,光屬於電磁波的結論終於被馬克士威和赫茲分別從理論和實驗兩方面確立。

經過約莫兩百年的研究發展,世人才明白,光是一種波動。

怎知,沒過幾年,愛因斯坦就跳出來主張光的能量由一個個的光量子攜帶,還通過實驗的檢驗——光又成為粒子了。

物理學家不得不承認,光具有波動和粒子兩種性質,而會呈現哪一種特性則依情況而定,稱為光的波粒二象性。

愛因斯坦於 1905 年提出的光量子概念,顛覆了傳統認為波動和粒子截然二分的觀點,將光能量量子化的詮釋也被實驗印證,在那之後,除了光的能量之外,還有其他物理量被發現是「量子化」的,像是電荷。

我們現在知道,電荷也有個基本單位,就是單一電子攜帶的電荷大小。

儘管之後又發現組成原子核的夸克,具有 -1/3 和 +2/3 單位的基本電荷,但並沒有改變電荷大小是不連續的這件事,並不是要多少的電量都可以。

如果你覺得很奇怪,不妨想想,我們用肉眼看會覺得身體的每一個部位都是連續的,但其實在微觀尺度,身體也是由一個個很小的原子和分子組成,只是我們根本看不出來,才覺得是連續的。

光子的能量和電荷的大小,其實也是像這樣子,細分下去就會發現具有最基本的單位,不是連續的。

事實上,量子力學在誕生之後,一直不斷地為人們帶來驚喜,簡直就是物理學界突然闖進一隻捉摸不定的貓。我們下一個故事,就要來聊量子力學發展過程中,打破世間常識的某個破天荒假說,而假說的提出者,是大學原本主修歷史和法律,擁有歷史學士學位,但後來改念物理,並憑藉博士論文用 5 年時間就拿到諾貝爾物理學獎的德布羅意。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1258 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。