0

0
0

文字

分享

0
0
0

電晶體新秀走混搭風,威脅矽元素主導地位!

羅紹桀
・2014/06/29 ・1314字 ・閱讀時間約 2 分鐘 ・SR值 561 ・九年級

-----廣告,請繼續往下閱讀-----

viterbi-june24
混合奈米碳管(CNT)和氧化銦鎵鋅(IGZO)的混合電路鑲嵌在聚二甲基矽氧烷基板的聚酰亞氨薄膜上。 Credit: USC Viterbi, Chongwu Zhou

說到電子產業,矽元素恐怕不再獨占鰲頭。

近日在《自然通訊期刊》(Nature Communications)上發表的研究報告指出, 南加州大學維特比工程學院(USC  Viterbi of Engineering)研究團隊開發出一種混合電路,整合奈米碳管和其它薄膜電晶體,克服了奈米碳管的弱點、更加節能且具有延展性。

奈米碳管具有透明、高延展性而且製作成本低的特性,這種新式混合電路可以取代矽元素作為製作電子蕊片時的電晶體素材。

南加州大學維特比學院電氣工程教授周崇武博士(Dr.Chongwu Zhou)和研究生Haitian Chen(譯名)、Yu Cao和Jialu Zhang整合了奈米碳管薄膜電晶體和氧化銦鎵鋅薄膜電晶體研發出這種高效能的電路。

-----廣告,請繼續往下閱讀-----

周崇武表示:「我在2013年一月的時候想到了這個概念,在這之前,我們竭盡心力想把奈米碳管轉化成N型電晶體,有一天,我突然靈光一現,想到與其勉強奈米碳管做它不擅長的事,何不尋找另一種N型電晶體(這裡指氧化銦鎵鋅)素材來製造互補電路呢?」

這次的混合之所以成功,在於結合了奈米碳管和氧化銦鎵鋅兩者分別是P型電晶體和N型電晶體的特性,以製造種可以互補運行的電路,減少能量損耗並提升效率,如果只有奈米碳管發生作用,無法達到真正的高效能,氧化銦鎵鋅的參與提供了能源效率以增加電池壽命,藉由混合這兩種素材,它們各自發揮了優點並隱藏了劣勢。

周崇武教授以中國陰陽調和的哲學來比喻奈米碳管和氧化銦鎵鋅的結合,他表示:「兩者的結合就像對天造地設的夫妻,我們對於這個互補電路的概念感到興奮,我們相信它有很大的潛力。」

這種混合電路事實上有許多實際運用的潛力,包括有機發光二極體(OLEDs)、數位電路(digital circuits)、射頻辨識(RFID)標籤、感測器(sensors)、穿戴式電子產品(wearable electronics)、快閃儲存器(flash memory device)甚至汽車儀表板上的抬頭顯示器(head-up display)可能很快就會問世。

-----廣告,請繼續往下閱讀-----

這項新的技術在醫療方面也具有相當大的潛力,為了從病人身上得到如心跳速率或腦波數據等醫療資訊,以往硬性的電極會被安裝在病人身上的特定部位,現在利用這種新的整合電路,或許可以只安裝一個較大、延展性較強的電極探測病人的全身。

在這個研究中,周崇武博士與他的研究團隊避開了製造N型奈米碳管電晶體與P型氧化銦鎵鋅電晶體的難題,卻整合了P型的奈米碳管電晶體和N型的氧化銦鎵鋅電晶體,此舉大大地展現了電路整合的可能性。為了証實他們的理論,他們完成了包含1000個電晶體的刻度環振盪器。目前為止,所有以奈米碳管為基礎的電晶體佔大多數,共有200個電晶體。

「我們相信這是科技的一大突破,因為以前從來沒有人做過這件事。」周崇武的研究助理Haitian Chen表示:「這次的成功證明了我們可以進行更大尺度的電路整合,此法可以製造更複雜的電路。」

「數位電路可以應用在任何電子產品,具有無限的可能性。」Haitian Chen進一步說:「有一天印製電路會像印製報紙一樣簡單!」

-----廣告,請繼續往下閱讀-----

周崇武與Haitian Chen師徒都認為,奈米碳管相關科技,包含奈米碳管和氧化銦鎵鋅的整合技術會在將來的五到十年內商業化。

「我相信這只是一個開始,」周崇武表示:「我們期待看到更多有趣的成果。」

資料來源:

Move over, silicon, there’s a new circuit in town. phys.org [June 17,2014]

-----廣告,請繼續往下閱讀-----

 

文章難易度
羅紹桀
19 篇文章 ・ 3 位粉絲
目前在美國一家數位行銷公司當SEO分析師,特別愛Google的What People Also Ask功能所以還特地開了一個Youtube頻道專門分享各種關鍵字會觸發什麼PAA。 影片皆有中文字幕歡迎訂閱:https://www.youtube.com/channel/UClgRDretD9XNp3ydod8TIlA/videos

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
通信三本柱:通信模型大解密
數感實驗室_96
・2024/06/30 ・654字 ・閱讀時間約 1 分鐘

想像一下,你和朋友在咖啡廳聊天。這看似簡單的互動,其實包含一個基本的通信模型喔。你是傳輸端(transmitter),朋友是接收端(receiver),而環境中的其他聲音則構成了通道(channel)。這三者共同組成了基本的通信模型。在接下來的文章中,我們將深入探討這個模型的每一個部分,並了解它們如何影響我們日常的通信體驗。

以上就是數位通信系統的三大支柱:傳輸端、通道和接收端的簡單介紹。實際上,它們的功能遠不止於此,整個通信系統的複雜程度超乎想像。除了數位物理層的演算法和電路設計外,還涉及類比電路、網路層等不同面向,真的是一門博大精深的領域。

通信技術致力於解決全球數十億人每天遇到的實際問題。如果你對於挑戰高難度的數學、物理、演算法問題感興趣,這將是一個充滿寶藏的領域。成功解決這些挑戰,不僅具備巨大的商業價值,更能推動通信科技的進步,提升全人類的通信體驗。你是否已經躍躍欲試了呢?

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

參考資料

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 49 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

1
0

文字

分享

0
1
0
筆耕卅五載,洞鑒電路板春秋——專訪PCB切片權威白蓉生
顯微觀點_96
・2024/03/30 ・4463字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

低調的電子產品之母

拆開任何現代電子產品,都可以發現印刷電路板(Printed Circuit Board, PCB)的踪影。從地球外的人造衛星、最新款 iPhone 到傳統桌上型電話,印刷電路板都在其中乘載元件、傳遞訊號,因此也被稱為「電子產品之母」。

臺灣是舉世聞名的 PCB 出口大國,儘管出現廠商逐廉價勞動力外移的趨勢,臺灣企業的市占率依然超過三成,位居全球第一。

在追求精密化、提高良率的產業進步過程中,分析 PCB 切片顯微影像是不可或缺的步驟。要看得細膩真確,則有賴 PCB 樣本製備及影像判讀,兩項需要精密操作、耐心和敏銳判斷力的技術。

-----廣告,請繼續往下閱讀-----

從拋光臺到編輯臺

現年 85 歲的白蓉生,是兩岸 PCB 業界備受尊敬的分析技術權威,曾獨立經營《電路板資訊雜誌》8 年,並擔任臺灣電路板協會《電路板季刊》總編輯 25 年。他磨練 PCB 切片檢驗與判讀能力 40 餘年,持續對業界分享他的獨門 PCB 顯微分析心得。

影像來源:顯微觀點

自 1980 年代以來,白蓉生公開發表超過 800 篇圖文並茂的 PCB 檢測技術文章,並擔任國內外重要廠商的技術顧問。他不藏私的經驗分享,促成 PCB 製造商的技術躍進與營業成長。

PCB 檢測過程中,光學顯微檢驗是最為基礎,也提供最多資訊的步驟。進入顯微載物台之前,PCB 需要經過切片取樣、封膠、研磨、拋光、微蝕等步驟。其中切片與研磨、拋光需要格外細緻的操作能力,才能在顯微鏡下呈現清晰平整的切面。

良好的 PCB 切片樣本,可以將整個切面維持在同一個焦平面,均勻呈現孔道的鍍銅品質、不同金屬間介面的良窳,整個水平面上的顯微景觀都維持清晰對焦。透過尋找細微瑕疵,來改進 PCB 的製造過程。

-----廣告,請繼續往下閱讀-----

「在放大 1000 倍、3000 倍後,都可以維持切面對焦的樣本,才是合格的切片樣本。」

—在每一篇技術文章都分享數十張顯微影像的白蓉生如此強調。
平焦與起伏對比切片小圖20231013163621
圖 1 與圖 2 是常見 QA 等級的切片,同一個視野中就出現失焦。圖 3 與圖 4 則整個視野都能清晰成像,符合白蓉生要求的 FA 切片標準。影像來源:白蓉生

精細樣本製備與多重顯微技巧

白蓉生以業界檢驗分級 QC(Quality Control, 品質管理), QA(Quality Assurance, 品質保證), FA(Failure Analysis,故障分析)為案例,「合格的 FA,追求整個切片視野的焦聚一致,一覽無遺。一般 QC 或 QA 人員,慣於接受觀察球面樣品,對於看不清楚的部分不了了之。」

他指出,業界常見的球面切片無法得到清晰的全面影像,是研磨與拋光的技術與耐心不足。焦點起伏不定的切面無法展現細節中的魔鬼,工程師自然也無法精進製程、更換材料以祛除瑕疵,。

現任職欣興電子技術顧問的白蓉生,在廠內建立 FA 切片師的培訓與考試機制,30 年來僅有 20 多人合格。製備合格切片之後,影像判讀是分析製程的必須能力,因此白蓉生設立與 FA 切片師並行的 FA 判讀師制度,迄今也只有 20 多人合格。

白蓉生感嘆,「切片與判讀都需要下苦功練習,30 年來只有 3 個人獲得切片師與判讀師雙料合格。」

—來向他學習切片與判讀技術的,往往是 PCB 業界的資深工匠或管理階級,要放下既有經驗與身段並不容易。

白蓉生笑說,「來學切片判讀的,常常是經理或副理,對專業經驗自視甚高。但他們所學愈深,就愈是謙遜。登堂入室,才發現前方學海無涯。」

-----廣告,請繼續往下閱讀-----
白蓉生善用多種顯微技巧,樣本中的細微差異都無法逃脫他的法眼。影像來源:白蓉生

隨著顯微技術演進,業界流行使用電子顯微鏡觀察切片,認為看愈小愈好。白蓉生卻堅持以光學顯微影像作為判讀依據。因為在電子顯微鏡下,只有黑白影像,無法利用顏色分辨不同材質。

白蓉生說「用電顯判讀的結果,無法分析顏色。我認為都是胡說,像是文盲在看書。儘管能看到很小的顆粒,分析人員也只能看著黑白影像說:『那是雜質』。」

切換明視野、暗視野、偏光干涉等光學技術,再搭配透視與立體顯微鏡的組合,PCB 切片中不同金屬在白蓉生鏡下呈現明顯對比,相同金屬也會因為歷經不同處理而呈現不同顏色。電鍍銅與化學銅的差異、電鍍與焊接的品質,都在白蓉生的顯微影像中一覽無遺。

領導業界規格 畢生追求精進

除了基本的明場自然光,白蓉生也分享他常用的顯微技巧:以明場光源搭配干涉,在最暗與最亮的偏光下可獲得透視效果。明場兼用偏光與干涉可以使銅面呈現立體效果,且電鍍銅會呈現藍色易於分辨。採用偏光與干涉的單純暗場則能呈現最佳的材質對比效果。

-----廣告,請繼續往下閱讀-----

白蓉生強調,「因為能看出金屬介面的細緻型態,我們才能知道技術要如何改進。」

—「而不是把顆粒都標籤為『異物』,說服自己製程、材料很完美,失去進步的機會。」

在白蓉生指引的工藝改革下,原本表現平庸的欣興電子成為精密載板的重要國際供應商。他得意地說,「我們製作的 Daisy Chain 載板佈線連貫強韌,承受 500 次熱漲冷縮測試之後,電阻增加不到 5%。技術紮實到連 Nvidia 這種頂級客戶都大吃一驚。」

欣興電子雇用白蓉生為顧問後,他追求精進的態度製程水準帶來革命般的改變。白蓉生回憶,早先欣興電子的產品良率不到八成,「或許剛好可以維持公司運作,但也無利可圖。」

現在欣興電子的高階 IC 載板良率已穩定超過 9 成 5,股價也成長超過十倍。白蓉生笑說,「我沒有因為公司股票賺錢!我原本就不想要賺大錢,因為錢多了沒用,只是徒增煩惱。」

電鍍銅細微變形
電動車用的 5G 通訊電路板,在 50 次回焊之後必須維持電阻值變化在 5% 之內。圖中的細小變形就會導致電阻值增加。影像來源:白蓉生
電鍍銅在50次回焊後軟化變形
電路板回焊 50 次後,電鍍銅軟化變形,可能導致電阻增加。業界進行品質管控時經常忽略這種細節。需要細緻的顯微觀察技術才能發現。影像來源:白蓉生

以紙上技藝傳遞電路板工藝

話雖如此,白蓉生也坦承,「當年創立《電路板資訊雜誌》是生活所需,因為從安培離職,沒工作就沒收入啦!」

-----廣告,請繼續往下閱讀-----

從資深工程師轉為科技月刊發行人兼總編輯,白蓉生的生活更加忙碌,全副精神都浸泡在 PCB 技術知識的研讀和傳遞中。

他回憶,當時他自己擔任總編輯兼送報生,手稿交由妻子與另一位打字員處理,在沒有網路的時代,每一期要繳出 5 萬字圖文並茂的稿子。除了努力訪問國內廠商、專家,也要大量編譯國外刊物內容。當年雜誌收入以廣告費為主,每個月可以得到超過 20 份廣告委託,在沒有前例的科技月刊市場上,開拓出意外佳績。

《電路板資訊雜誌》從 1988 年發行至 1996 年,白蓉生在 8 年間自力編譯、採訪、寫作,從早晨六點到午夜睡前,都在蒐集資料、勤奮筆耕。

「我一周六天都在編雜誌,沒有應酬娛樂,也沒請過病假,因為連生病的時間都沒有!」

—月刊生涯的辛勤讓白蓉生難以忘懷。

雜誌停刊之後,白蓉生享受了兩年退休生活,發現自己閒得發慌。他受邀擔任臺灣電路板協會(Taiwan Printed Circuit Association, TPCA)的顧問及《電路板季刊》總編輯,繼續研究、傳授電路板顯微影像的判讀方法,以及細緻的製程改善技巧。

-----廣告,請繼續往下閱讀-----
白蓉生老師 小圖

《電路板季刊》迄今已發行 100 期,白蓉生也成為華語世界最重要的電路板知識傳遞者。

懷有珍貴 PCB 分析知識與技術的白蓉生,在兩岸業界深受重視,是各大廠商極力邀請的講師。他的判斷力不是來自學校或公司的教育體系,而是靠著多年來的勤奮自學。

好學、勤奮與謙虛的自我養成

白蓉生說,他少時家貧,因此就讀師範學校以省下學費,還能領錢和白米幫助家境。但師範學校學歷不如一般大學(當時師範學校專門培育小學校教師,僅需 3 年教育),心有不甘的白蓉生在小學任教三年後,考上中興大學化學系,同時擔任小學老師和大學生。

白蓉生在大學畢業後進入中華航空擔任化學工程師,反覆的電鍍工作並未帶給他成就感,他於是轉職美商安培電子(Ampex)。1969 年起,白蓉生在安培電子大量接觸 PCB 製造與檢測的第一線作業,開啟了鑽研 PCB 分析判讀的專業道路。

-----廣告,請繼續往下閱讀-----

1969 年,安培電子於桃園設廠,是臺灣 PCB 生產王國的發軔時刻。白蓉生在此接觸到國內最先進的 PCB 工藝。他樂於在下班之後繼續研究檢測材料,探索各種慣例外的顯微方法,逐步建立自己的 PCB 切片檢查技巧。

手動拋光使刮痕消失
樣品拋光也是白蓉生長年執著而深入的技術。他對學生一概要求手動拋光,以免電動轉盤拋光機的力量導致表面起伏不平。他強調,要用衣物布料等級的棉質針織布輕柔拋光,才能得到平坦無刮痕的樣品。影像來源:白蓉生

除了 PCB 製造工藝的獨到見解,對文學的喜愛也是白蓉生筆耕不輟的動力來源。他說,自己求學時力求節儉,一直步行上學,超過 40 分鐘的漫漫路途是他背誦古文的時間,對文學的興趣、寫作的欲望隨著路程逐漸滋長。

對於中年轉行,成立沒有前例可循的專業技術雜誌,白蓉生笑稱,「當初發行頭幾期雜誌就燒完 6 萬塊積蓄,我還真不知道能不能回本。」

從技術專家、顧問到專業刊物總編輯,白蓉生拓展並傳承 PCB 分析工藝將近半世紀。他至今保持30年前「永晝方塊每隨飯,長夜蟹文伴枕眠」的強韌動力,投入 PCB 檢測、寫作與講課,建構低調踏實的臺灣電路板工藝文化。

他認為,電子產業是臺灣立國基礎,業界訓練可以彌補產學落差,但好學、勤奮與謙虛的心態是學校或企業不能代勞的,得要由年輕世代主動保持。端正的學習心態結合不藏私的深入技術指導,能養成更多專業人才,使電路板工藝精進,提升業界整體價值。

查看原始文章

討論功能關閉中。