0

0
0

文字

分享

0
0
0

機器戰警的左右手──仿生義肢

活躍星系核_96
・2014/05/14 ・1225字 ・閱讀時間約 2 分鐘 ・SR值 515 ・六年級
相關標籤: 義肢 (4)

-----廣告,請繼續往下閱讀-----

deka-arm

文 / 施柔安

在《機器戰警》裡,主角因爆炸受了重傷,被改造成半人半機械的超級警察。而真實世界裡,有更多的人,因為戰爭、意外、疾病,永遠地失去了身體的一部份。幾十年來,從虎克船長的鐵勾、美觀大於實用的假肢,到殘障奧運短跑選手使用的碳纖維義肢,科學家們一直不斷地研究與改善義肢的功能,創造出許多使用不同原理和應用目的的義肢,希望能讓這些失去肢體的人們生活更安全便利。

上週,美國食品藥品管理局宣布批准了一款新型的義肢手臂上市銷售[1]。這款代號Luke(和《星際大戰》裡被砍掉手後、裝上一隻幾可亂真假手的天行者 Luke同名)的義肢,是一款能夠以意念操控的仿生義肢,由曾發明知名2輪電動車Segway的Dean Kamen所在公司DEKA研發。它的大小、重量和外觀都與真實的手臂相仿,並可做出高達十種不同的動作,從最簡單的喝水、進食、梳頭、刷牙,到開鎖、撿硬幣、拿雞蛋,甚至是操作器械,許多是目前的義肢無法完成的。

mg_9909

不同於目前廣泛使用的跨肢體牽引連動系統,Luke使用的DEKA arm system是經由電極來偵測殘餘肢體末端肌肉群的活動,再把信號轉換成相應的動作。這種方式讓使用者可以依照過去的經驗操作義肢,不需要一個關節接著一個關節地控制,使用上更自然也更直觀。

-----廣告,請繼續往下閱讀-----

這看起來已經足夠厲害了,但是科學家們並沒有滿足。他們還希望可以「感覺」到物體的冷熱、形狀、硬度和質感。

今年二月,一篇相關的文章發表於Science Translational Medicine期刊[2]。這些神經科學家、工程師、醫生和機器人專家,將四個電極手術植入實驗參與者的上臂。這四個電極,會連接到特製的義肢上,將義肢表面受到的壓力資料,經電腦計算,改變成神經可接受的訊號,回傳給大腦。測試時,參與者不必盯著義肢,就能夠感覺到手正在做什麼,從而調整力氣拿起一些易碎的物品。

因為體積、重量和精準度的問題,讓它目前離實際應用還有很長一段路要走,且初期的價格肯定會無庸置疑地高昂。

當然,科幻小說中逼真靈活又普遍的機械仿生手臂永遠是科學家努力的方向──但我真心希望你我都沒有需要用到它的一天。

-----廣告,請繼續往下閱讀-----

https://www.youtube.com/watch?v=uhOjRBGzUa0

 

 

作者施柔安:台灣人,出身長庚的物理治療師,現為新加坡 Villa Francis Home for the Aged 復健部主任

參考資料:

  1. Brandon Griggs FDA approves ‘Star Wars’ bionic arm. CNN [May 12, 2014]
  2. Stanisa Raspopovic, Marco Capogrosso, Francesco Maria Petrini, Marco Bonizzato, Jacopo Rigosa, Giovanni Di Pino, Jacopo Carpaneto, Marco Controzzi, Tim Boretius, Eduardo Fernandez, Giuseppe Granata, Calogero Maria Oddo, Luca Citi, Anna Lisa Ciancio, Christian Cipriani, Maria Chiara Carrozza, Winnie Jensen, Eugenio Guglielmelli, Thomas Stieglitz, Paolo Maria Rossini, Silvestro Micera “Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses” Sci Transl Med, Vol. 6, Issue 222, p. 222ra19, 2014.

—————————–

-----廣告,請繼續往下閱讀-----

延伸科學再發現@科技大觀園

更多內容也可以上科技大觀園搜尋「機器人」,或每週六上午8點收看民視53台科學再發現

文章難易度
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

2
0

文字

分享

0
2
0
找回走路的「鈦」度!3D 列印技術重建貓咪四肢
言蓁
・2020/03/13 ・886字 ・閱讀時間約 1 分鐘 ・SR值 487 ・五年級

2018 年 12 月,有名司機在西伯利亞新庫茲涅茨克的雪地中,找到了一隻大約四歲的俄羅斯貓貓 Dymka(俄語為「霧」),並將牠帶至新西伯利亞的診所。雖然牠因凍傷而失去了所有的爪子,但獸醫們 3D 列印材質的義肢代替牠失去的四條腿,所以現在 Dymka 可以重新生龍活虎地追趕跑跳蹦,甚至爬樓梯了!(灑花)

Dymka 用牠的新腳站著。圖/© Kirill Kukhmar/TASS/Getty

義肢獨秀——3D 列印技術重建貓掌

根據《莫斯科時報》報導, Dymka 獲救時爪子、耳朵和尾巴都已經凍傷了,獸醫 Sergei Gorshkov 不得不幫牠截肢。Gorshkov 說,在西伯利亞嚴酷的冬季裡,每間診所的獸醫至少會治療五至七隻爪子、耳朵和鼻子等部位被凍傷的貓,倘若凍傷情形嚴重,皮膚組織會死亡並需要截肢。

Gorshkov 和診所同事與俄羅斯托木斯克理工大學 (TPU) 的研究人員合作,為 Dymka 製造了一套義肢。 TPU 的代表表示,科學家開發了磷酸鈣製成的塗層,使鈦製義肢可以更順利地安裝並嵌入、融合進動物的腿骨中,同時讓感染和排斥的風險降到最低。

-----廣告,請繼續往下閱讀-----

冬季的西伯利亞。圖/Pinterest

走出態度!恍若新生的鈦製義肢

研究人員對 Dymka 的腿進行電腦斷層掃描 (CT) 建模,並依此 3D 列印出鈦棒。根據《新西伯利亞新聞》報導 ,Dymka 於 2019 年 7 月植入了義肢,前腳為先,後腿次之。2019 年 12 月,獸醫診所在 YouTube 上傳了影片,內容記錄牠安裝義肢七個月後的生活,還有特寫鏡頭拍到了一些關於義肢的細節,可以從畫面中看出來,牠的「 腳掌」以柔軟的黑色材料製成,底部帶有紋理。

不過,Dymka 可不是世界上唯一一隻四腳都是金屬義肢的「鋼鐵貓貓」,第一隻接受類似手術的貓出現在 2016 年,當時,新西伯利亞有診所替一隻名為 Ryzhik(俄語為「紅」)的貓進行了凍傷截肢的手術,並在牠身上植入了鈦製物體。未來,是不是會有更多貓咪受益於鈦製義肢呢?讓我們繼續看下去。

資料來源:

言蓁
7 篇文章 ・ 212 位粉絲
喜歡貓但不敢紮實去摸,像對所有喜愛的事物,嚮往也懼怕。依賴文字,生存於不被看好的文組,走著忽焉變成資訊的雜食動物。

0

0
0

文字

分享

0
0
0
外骨骼輔助義肢,讓身障者享受走路帶來的健康和快樂
PanSci_96
・2016/03/13 ・1352字 ・閱讀時間約 2 分鐘 ・SR值 500 ・六年級

本文由科技部補助,泛科學獨立製作

文/李允誠 | 台灣數位文化協會

在以往,身心障礙者只能倚靠輪椅或是助行器協助行走,但這些器材往往過於龐大,攜帶不便,而且對於顛頗地形適應不佳。ReWalk Personal 6.0 是一套外骨骼輔助義肢,能夠幫助身障者以接近原始走路的方式行走,讓身障者享受再次走路的感動。

ReWalk 將外骨骼輔具帶上街頭

外骨骼義肢
外骨骼輔助義肢的使用者 Robert Woo 示範運用 ReWalk Personal 6.0 走上街頭。(圖片來源: Eliza Strickland)

Rewalk 系統的創始者亞米特高佛(Amit Goffer)不希望這些外骨骼義肢只使用於物理治療或是家中,他總是不停的想:「該如何才能讓這些器具融入社區?甚至走上街頭?」。ReWalk 機器人義肢公司的 CEO 賴瑞亞辛斯基(Larry Jasinski)也表示:「我們的目標就是讓外骨骼等輔助工具融入日常生活。」

美國已經通過先前 ReWalk 系統在臨床及個人的使用資格,讓脊隨損傷的身障者能夠使用外骨骼義肢協助行走。這也是第一套獲准如此多種使用權的外骨骼義肢,代表它將是第一個「走出醫院」的機器人義肢。亞辛斯基表示,已經有 66 位使用者將 ReWalk 買回家中使用。

 更符合人體需求

在基本機械運作上,新一代的 ReWalk 6.0 相較前代的差異不大:同樣用位於臀部與膝蓋的伺服馬達供給電源,並透過加速度器偵測使用者的移動。但在硬體上則有幾項重要的升級:腿部支撐器變得更為精簡,支撐帶能將身體重量更均勻的分布於義肢上,而原先放置處理器的背包,也被換成更迷你的腰包

羅伯特是前幾代 ReWalk 的使用者,也給了許多改良建議給原廠。例如說先前的外骨骼支撐帶,其實很容易擦傷使用者的膝蓋。而新版的 ReWalk 設計,透過調整身體重量分配,已經成功改善這個問題。顯示了科技如果要進步,除了追求材料、製程或是微型化的進步,其實很多時候更需要的是聆聽使用者回饋的各種小問題,去調整、改善科技產品伴隨的副作用。

既然如此,外骨骼義肢的「好穿易脫」也就變得更重要了。ReWalk 把原先內外支柱的造型,改成只有外在支柱,並搭配環繞帶扣緊腿部,這種改良腿部支撐的方式,讓使用者能更容易穿上 ReWalk。使用者羅伯特表示透過增加腹部的支撐,他現在可以在盤腿坐時彎腰,不用再怕會往前倒,「我隨時都可以在 10 分鐘內站起來。」

除了硬體,ReWalk 6.0 也在軟體上做了改良。ReWalk 6.0 提供更平順的步行功能、更簡單的止步機制、以及更方便的上下樓梯動作。使用者也能透過穿戴式手錶,控制外骨骼的動作,像是坐下、站立、行走及爬階等。

除了輔助行走,還有更多益處

使用外骨骼義肢不是為了炫,相較於過去只能選擇坐輪椅,羅伯特發現他的身體機能在可重新走路之後獲得許多改善,他不再需要麻醉藥物,肌肉痙攣減少許多,消化、循環系統也都變得較健康。

和許多科技的誕生一樣,外骨骼最早應用於軍事用途,透過外骨骼裝置,能讓人跑得更快、跳得更高,甚而抬起重物、背負更多的裝備。現在,外骨骼義肢已經從醫院裡的物理治療室,逐漸走向街頭,也許未來會有越來越多的身障者,能在外骨骼義肢的幫助下,再度從輪椅、病床上站起,腳踏實地的感受每一步。

(本文由科技部補助「新媒體科普傳播實作計畫-智慧生活與前沿科技科普知識教育推廣」執行團隊撰稿)

責任編輯:鄭國威
審校:陳妤寧