0

0
0

文字

分享

0
0
0

趕流行:流行病偵測與地理學

Gilver
・2014/03/03 ・5675字 ・閱讀時間約 11 分鐘 ・SR值 548 ・八年級

original-850x198

從小到大,流行性感冒、登革熱這些疾病的名稱,總是每年都要流行一次。這些流行病不但「復古」,還能不時「創新」,稍微修改一下樣貌就能捲土重來。那麼,負責疫情發布的相關人員要怎麼讓自己站在潮流最尖端,在第一時間對流行有感、通知大家疫情的來臨呢?本期 M.I.C.加開場「趕流行」邀請到台大醫院羅一鈞醫師和台大地理系溫在弘副教授共同開講,跟大家聊聊專家們怎麼趕流行!

先別說那個了,你知道最近泛科學流行些什麼嗎?

今晚的參加者們有來自敦化國小的馮小弟弟(從昆蟲的異想世界就成為泛科學的忠實聽眾)、科學人文紀錄團隊 MISC.的成員葉先生、光學儀器檢測科技公司的電機技術員,還有不少生醫領域的學生,以及研究野生動物冠狀病毒的學者前來共襄盛舉。

在切入今晚的主題之前,自稱臉書上最「搞威」的編輯Z編先和大家分享最近泛科學都流行些什麼。本月最熱門的第一篇是〈在地震之後:你第一個想到的是誰?〉,解析為什麼地震之後大家會想第一時間上臉書?熱門第二名是〈Google巴士為何引起爭議?〉,討論舊金山居民與Google巴士的愛恨糾葛;第三名則是〈貓薄荷讓貓皇帝龍心大悅的秘密〉,解答那些奴役主人的貓皇帝為何在貓薄荷的挑逗下尊嚴盡失;第四篇則是〈螞蟻也懂折射定律?!〉,探討螞蟻如何怎麼選擇牠們的路線。

那麼,PanSci最近有什麼新鮮事呢?首先,最近有兩個主題:《機巧時代》和《科學再發現》正在火熱徵稿中,如果螢幕前的你正好是個喜歡寫科學文章的人,歡迎來投稿!第二件事,現在除了 pansci.asia和 facebook粉絲專頁以外,也可以在噗浪plurk上找到 PanSci唷。最後,本年度的泛科學盛會「蛻變吧!科學」將在 3月 29日台北科教館舉辦,除了有精采的演講和活動外,更有「科仔七分熟」邀請七位科學家在短短的七分鐘之內分享自己的研究領域,想來一定相當刺激,歡迎大家預留時間,一起來蛻變。

-----廣告,請繼續往下閱讀-----

接下來,就讓我們一起跟隨專家的腳步,來趕流行吧!

羅一鈞:以流行性感冒為例談流行病偵測

羅一鈞醫師現任疾病管制局防疫醫師、臺大醫院內科兼任主治醫師,今晚的講題為「走在流行尖端:以流行性感冒為例談流行病偵測」,談談怎麼用偵探的方式來掌握流行病。羅醫師首先拋出了一個問題:「你怎麼知道流感在流行呢?」最簡單的方法是,我們可以從身邊的人出現流感症狀的比例推測它正在流行,這個方法從古早時候到現在都管用;而現在,媒體的報導也是消息來源之一,還附上數字和圖表。我們會很想像天氣一樣去預測流行病,因此需要一些科技來收集全國流行病的資訊,以有效掌握流感流行的狀況。

不過,我們不見得能掌握到流行病的全貌。如果政府單位只靠醫院的紀錄來進行疫情調查,很容易出現漏網之魚,例如太晚就醫而死亡、覺得病毒不致命就沒看病、或是轉向民間偏方求助的案例,都會使得醫院無法以偵探調查的方式找到這些個案。以流行病學家的期盼來說,其實相當希望這些患者主動向醫院通報,羅醫師甚至開玩笑說,巴不得能夠有一副能夠迅速辨識出病患的眼鏡!

流行病偵測的實際挑戰

疾病的流行可以畫成一張鐘形的曲線圖。通常在疾病流行之後,感染人數會先上升,感染得差不多了之後開始往下掉。目前各國普遍都有「例行疾病通報」制度防範。然而,通報都在感染靠近高峰的時候才啟動,那時流感併發症通常都已經發生數日,如果政府完全依靠醫院的疾病通報系統就會落後。目前,流感併發症個案監測只針對重症在抓,且有許多緩衝通報的容許時間。為什麼不每個流感案例都呈報呢?因為每年流感病例都很多,若每則都即時通報會造成訊息量過載,而把通報系統拖垮。因此除了例行疾病通報,我們還需要更為警覺的醫生盡早察覺疫情,例如臺大醫院的張淑媛醫師追出首位境外移入的病例、鑑別出 H7N9病毒

-----廣告,請繼續往下閱讀-----

在流行病高峰前的更早期,則可以透過哨兵網絡和非正式偵測管道掌握疫情。哨兵網絡的概念是在各個區域都設置警覺系統,只要點設置得夠多,哨兵網絡就能更早發揮作用,目前設全臺灣 85%的急診就診紀錄、以及門診和住院的「全民健保資料庫」,在雲端監測著每周民眾的就醫情形。還有一些哨兵負責「社區流感病毒監測」,收集檢體並交與合約實驗室、醫生協助分析。

全民參與防疫圍堵

還有一些更早的非正式偵測管道存在,比如說當年 SARS在中國民間早有風聲,或是去年 H7N9有民眾在官方發布消息之前,就有網友在微博、PTT上爆卦,這對流行病偵探來說都是很重要的管道。另外,也有像 GOOGLE.org以各地區搜尋某些關鍵字的頻度,來歸納流感(flu)和登革熱(dengue fever)的疫情發展。最後,能夠防範未然的全民參與偵測雖然才剛起步,但已有像是臺大防疫先鋒網站來作為傳染病的雙向溝通平台。民眾不但能藉此即時報告消息,還能獲得疾病消息,一舉兩得。

 其實若還要進行更早的傳染病監測,還能做動物疾病監測,例如臺大獸醫系在進行野生動物疾病監測時,在鼬獾身上找到狂犬病的病毒株;以及新聞報導台北市立動物園無尾熊可能罹患反轉錄病毒死亡,雖然這種病毒不會傳染給人,但可能會傳給其他動物,可能在未來會對人類造成疾病危險,因此防範研究還是重要的,特別是水鳥和養禽。最後,羅醫師很快地跟各位分享一些日常的傳染病防治觀念,包括衣袖遮口鼻、防流感打疫苗等等。

溫在弘:透過地理學看見流行病

溫老師學術背景很有趣,從歷史、人文、社會科學、環境工程、流行病到現在任教於台大地理系,學術歷程相當多元。「地理學家強調視覺化地理環境,疾病這種相對抽象的概念應該也能透過地圖具象化,並藉此看出一些端倪。」溫老師的博士學位是生物環境系統工程,應用實例像是透過對地形的掌握,預測颱風路徑和降雨量,有助於災情搶救與疏散。他接著想:有沒有可能在了解社會中人的模式和病毒傳染的方法之後,透過數理科學的模型來預測疫情擴散?這開啟了溫老師對疾病預測的興趣。

關於地圖和流行病的故事,其中一則著名的故事便是 John Snow在 1854年把霍亂致死的病例描繪在地圖上,進而封鎖了可能是霍亂元凶的抽水幫浦。不過,若用更縱深的歷史來看,把疾病畫在地圖上並不是他的創舉;重點是,當時人們以為霍亂是由空氣傳播,不過 Snow認為倘若真是如此,人口密度越高的地方應該會有更多人死去,但在地圖上則不然。Snow的重要性是推斷出「霍亂不是空氣傳染」,建立了流行病學的研究方法去確認他的假說。這個歷史故事還有一些後話,像是井在被關閉之前疫情就已經結束,又封井之後曾經一度重啟,卻又沒有病例產生。不過當時還沒有細菌理論,現在則變成了謎團。

從地理學看流行病擴散

地理學可以用來分析流行病的傳播過程、途徑和動態。「疾病地圖」是其中一種表示法,能以顏色深淺在地圖上表示不同區域的染病風險程度。不過,以傳染病來說,它和那些穩定存在的環境暴露因子不同,哪怕只要存在一個病例,都有機會傳染、產生更多的病例,因此病例數目的意義比計算感染比例來得更大,目前疾病管制署(CDC)即是以各地區的病例數目,當成警戒程度的依據。

流行病的地理擴散現象怎麼模擬呢?溫老師表示這種擴散現象和 iPhone流行的模式和「創新擴散」的概念類似。傳染病的模擬致病過程可以簡化四個階段:可感受期、已感染、具傳播力、免疫或死亡,接著進行模擬。最簡化的傳染病模型SIR模型(Susceptible-Infective-Recovered model),是探討在一個存在具傳染力病例的密閉空間裡,何時所有的人都得病?流行高峰是何時?何時全體都免疫?透過數學模型推測最後計算出結果。

接著,「基本再傳播率」(R0)也是個非常重要的指標,顯示這個傳染病有多麼威猛。另外,傳染病的擴散常是指數上升,因此所有的傳染病學家都好奇流行病的臨界爆發值是多少,R0就在此時派上用場。這個神奇數字若小於1,則代表疾病不容易傳染,疫情會自動慢慢消失;但若大於1,可以用來計算,讓我們知道應該讓多少人接種疫苗,進行群體免疫的防範措施。

預測,沒那麼容易

然而,真實的防疫決策往往更為複雜,溫老師提出幾個應用實例。如果是像一所有1000人的學校的尺度,有個網站可以用以預測各種防疫情境下介入時間產生的防疫效果。但是,SIR傳染病模型的本假設是均勻碰撞,沒有辦法捕捉社會群聚的特性。

接下來,我們加入社會接觸的過程,來看看複雜的都市尺度。科學人雜誌有一篇文章叫〈模擬城市:天花來了〉,它把每個人的日常行為和人口組成時空關係用數學建模來做統計分析,接著進行模擬,像是接種疫苗或是隔離病患等介入方式,做更細緻的描述及作為防疫決策的參考。

如果要描述全國性尺度的擴散,我會把它分成個人間、群體間到都市間接觸的多層次整合,來模擬整個台灣的疫情擴散情形,例如把人口及戶口普查的資料,用以建構通勤網絡地圖。未來將能夠利用這個結果,模擬在某個點發生的疫情如何透過通勤網絡擴散,在一併與各個層次的接觸做考量,最後還要做情境評估的驗證,慎重評估介入時間對防疫策略延緩疫情高峰和傳播率降低的比例的變化過程。

 傳染病跨越地理與學科的邊界,生醫的知識只能描述疾病的嚴重性,無法去了解疫情的擴散狀況。傳染病的監測還需仰賴交通運輸模式,這又連帶和群體行為模式、異質人口模式等專業學科相關。因此,要做好傳染病的監測,建模和跨越學科邊界的整合科學團隊是不可或缺的。

流感來了,怎知道?

在 Q&A時間裡,Z編問:什麼時候要發布警報好呢?羅醫師表示,以科學面來說流感每年都在流行,但會有閾值門檻、高標低標的差異,也有 N年一次流行潮的預測方法。與之相比,民眾的恐慌更容易被媒體煽動,那其實更像一種「恐慌」的傳染病。有時候,疾管局也可能被媒體逼迫要提早發布警報,但還是要依據實際上全國情報和各地衛生局的監測來做警報發布。

為什麼在冷的時候,流感容易流行呢?羅醫師說,因為流感病毒耐低溫、耐乾燥,溫帶國家的流感容易在較冷的季節流行。但是,熱帶、亞熱帶的病毒有開始演化的跡象,可能和溫度、雨量和人的行為都有關係,比如說冬天人們會群聚,下雨的時候容易待在空氣不流通的室內等等。流行的因素很多,還要考量到疫苗和免疫力的效應。

登革熱的迷思

溫老師以他對登革熱防治的參與經驗,認為「預測」這件事非常困難,且很容易被誤導。事實上,所有建模的模型都有簡化的假設,只能在假設的情形下才能說是對的,而這非常怕被外界放大檢視。建模的目的不應該是預測,而是為了做公共衛生介入的比較。算出數字多少本身沒有意義,比較不同處理和介入早晚才有參考價值,幫助決策的進行。我們應該做的是定性而非定量的解釋。

有民眾好奇,登革熱的防治通常都在暑假,卻容易在11月達到高峰呢?又為什麼11月的時候比較沒有登革熱警報傳出?羅醫師強調:「防禦在於機先」。事實上,疾管局都會定期跟記者回報登革熱疫情,不過登革熱比較容易集中在南部,北部在發生疫情前記者比較不會寫。溫老師則補充,臺灣南部的民眾其實不怎麼怕登革熱的,他們甚至會拒絕防疫同仁進行噴藥,可能是因為風險傳播教育還不夠落實,或是疫情沒有超過閾值或以往的標準,讓民眾覺得登革熱不嚴重。不過,真正叫人擔心的是「登革出血熱」,它的致死率很高,病理機制目前還不瞭解。如果登革熱患病比例增加,登革出血熱的機率可能就會隨之上升,一旦登革出血熱爆發就會造成嚴重的衝擊。因此,蚊蟲防治除了是要控制登革熱的疫情,同時也是防範出血熱的發生。

媒體的影響和經濟變動

2010年媒體曾報導劉小弟疑似因 H1N1疫苗注射發生重症,而下了「疫苗殺人」的標題。羅醫師表示,後來發現其實是因為微小B病毒的感染,卻還是被媒體放大,還因為這件事情讓疫苗接種率大幅降低,幸好後來疫情沒有再快速攀升。這個事件如果要用模型來算,參數會變得頗為複雜,一般來說,疫苗介入模型的預測方向比較像是疫苗如果做不出來?疫苗的保護力會不會不好?這些等等。

那麼,經濟能不能當成是流行病的指標之一呢?羅醫師說,防疫一定跟經濟有利益糾葛,像是在進行動物疾病防治時,管動物的農業局會賠償,但無法完全賠償。雖然動物要為人犧牲顯得可惜,但我們希望不要有任何人因疾病而死。經濟上,邊境的封鎖會衝擊貿易,像是對疾病的恐慌容易造成兩岸交流出現標籤化的情形,所以防疫要先做好,才不會讓經濟有後顧之憂。至於以經濟作為防疫的指標,世界貿易例如醫藥品的買賣、或是落後國家的高價珠寶買賣,也是可參考的指標。另外,現在也有經濟衝擊的建模。以經濟學模型來說,透過投入/產出模式能夠知道某產業的變動對其他產業的關聯,還有對產業上下游造成的影響。至於如何估計介入的時機對經濟造成的社會成本影響,是疾管局正在發展的方向。

 

今晚兩位講師和我們分享了許多他們在預測傳染病的實務經驗。羅醫師為我們介紹疾管局如何掌握疫情,在第一時間發警報、「趕流行」,而且透過今日便利的網路系統,全體民眾都可以協助防疫工作,只盼民眾積極參與;而地理系的溫在弘老師則向我們展示了生醫學的病理研究如何和地理學、社會科學結合,發揮跨領域思維的威力去預測傳染病的散播。有了全民參與,再加上完善的防疫系統,相信國家未來在面對新疾病爆發的時候,能夠反應得更加靈敏,盡其所能地降低疫情吧!

-----廣告,請繼續往下閱讀-----

 

「M.I.C. ╳ 民視科學再發現」科學系列講座,由國科會支持,辦理單位為民視文化與PanSci 泛科學。

更多精采的科學內容,每週六上午八點,請收看民視53頻道「科學再發現」

文章難易度
Gilver
28 篇文章 ・ 3 位粉絲
畢業於人人唱衰的生科系,但堅信生命會自己找出路,走過的路都是養份,重要的是過程。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
流感合併肺炎鏈球菌感染恐致命?如何預防?肺炎鏈球菌疫苗接種方式介紹!
careonline_96
・2024/06/14 ・2739字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

「千萬不可小看肺炎鏈球菌!歷史及醫學文獻上告訴我們,即使青壯年感染流行性感冒,合併肺炎鏈球菌感染,可能病程進展快速,短短 48 小時就過世,相當可怕!」台大醫院內科部感染科教授兼科主任陳宜君醫師指出,「如果肺炎鏈球菌由上呼吸道黏膜進入血液,可能侵襲各個器官,演變為侵襲性肺炎鏈球菌感染症。患者的狀況可能兵敗如山倒,而住進加護病房;可能因而器官衰竭,如肝腎功能受損,嚴重甚至導致洗腎。這些情況都讓家屬很難過、無法接受。」

侵襲性肺炎鏈球菌感染症確診數,在 2023 年底有明顯上升的趨勢,且感染案例數創三年新高1,民眾務必提高警覺。根據疾病管制署的統計,侵襲性肺炎鏈球菌感染症患者中,65 歲以上民眾佔了 44.5 %2。陳宜君醫師提醒,換言之有 55.5 % 是 65 歲以下民眾,比例超過一半。肺炎鏈球菌對各個年齡層都有影響,所以不是只有老年人,各年齡層都要注意。

不可輕忽!肺炎鏈球菌潛伏體內,流感合併肺鏈重症高四倍!

除了 5 歲以下嬰幼兒、65 歲以上老年人之外,還有許多族群屬於侵襲性肺炎鏈球菌感染症的高危險族群,包括慢性病患(如慢性腎病變、慢性心臟疾病、慢性肺臟病、糖尿病、慢性肝病、肝硬化患者)、酒癮者、菸癮者、脾臟功能缺損或脾臟切除、先天或後天免疫功能不全、人工耳植入者、腦脊髓液滲漏者、接受免疫抑制劑或放射治療的惡性腫瘤者或器官移植者3

此外,原本健康民眾在感染流行性感冒、新冠肺炎等病毒後,呼吸道黏膜免疫會受到影響,續發性細菌感染的機會上升。陳宜君醫師說,台大醫院兒科團隊發表過一個很重要的研究,發現單純得到流感的患童約有 5 % 會住加護病房,而流感合併肺鏈的患童約有 20 % 會住加護病房4,顯示流感合併肺鏈比一般流感的重症風險高出四倍之多。

-----廣告,請繼續往下閱讀-----

肺炎鏈球菌主要存在鼻腔黏膜,當免疫力正常時不會產生問題,但當黏膜免疫力下降時,便可能侵入組織,造成中耳炎、鼻竇炎、肺炎等感染;而免疫力低下患者,便可能發展成重症。陳宜君醫師說,患者會出現發燒、咳嗽、氣喘、噁心、胸痛、頭痛、呼吸急促等症狀,可能進展為肺炎、腦膜炎、關節炎、骨髓炎、心包膜炎、溶血性尿毒症、腹膜炎、敗血症等,危及性命5

接種肺炎鏈球菌疫苗,預防勝於治療

面對肺炎鏈球菌感染,預防永遠勝於治療!陳宜君醫師說,肺炎鏈球菌經由飛沫散播,所以可以透過戴口罩、勤洗手、避開擁擠密閉的空間,更積極的做法就是接種肺炎鏈球菌疫苗。

肺炎鏈球菌可分為 92 種以上血清型,其中約有 30 種血清型會造成人類的感染,所以會針對較常見的血清型製作肺炎鏈球菌疫苗6。目前台灣有結合型疫苗(PCV)與多醣體疫苗(PPV)。

多醣體疫苗(PPV),通常不具備長期免疫記憶。陳宜君醫師解釋,結合型疫苗(PCV)可以誘發 T 細胞免疫,有助產生免疫記憶,提供較長時間的保護力7

-----廣告,請繼續往下閱讀-----

研究顯示,接種一劑結合型疫苗(PCV)後,再接種一劑多醣體疫苗(PPV),有助提升免疫記憶,提供較長時間的保護力,並使保護範圍更廣,能有效降低感染肺炎鏈球菌導致嚴重併發症或死亡的風險8。因此,疾病管制署針對 65 歲以上民眾提供公費疫苗政策:接種 1 劑 13 價結合型肺炎鏈球菌疫苗(PCV13)及 1 劑 23 價肺炎鏈球菌多醣體疫苗(PPV23),以保護年長者免於重症威脅9

不過,一般年輕族群亦不可輕忽。陳宜君醫師提到,因為肺炎鏈球菌疫苗是準備讓健康民眾施打,所以在研發疫苗時,對安全的要求非常高。結合型疫苗(PCV)與多醣體疫苗(PPV)皆為不活化疫苗,免疫不全者皆可接種,且能夠與流感疫苗同時接種。國際建議在左手臂接種流感疫苗,在右手臂接種肺炎鏈球菌疫苗。

關於肺炎鏈球菌疫苗的接種方式,疾病管制署建議:

  • 從未接種肺炎鏈球菌疫苗的民眾,可先接種 1 劑結合型疫苗(PCV),間隔至少 1 年後再接種 1 劑多醣體疫苗(PPV)。若是高風險對象,可先接種 1 劑結合型疫苗(PCV)後,間隔至少 8 週後再接種多醣體疫苗(PPV)。
  • 曾接種過 1 劑結合型疫苗(PCV)的民眾,可於間隔至少 1 年後再接種 1 劑多醣體疫苗(PPV)。若是高風險對象,可於接種結合型疫苗(PCV)後,間隔至少 8 週後再接種多醣體疫苗(PPV)。
  • 曾接種過多醣體疫苗(PPV)的民眾,可於間隔至少 1 年後再接種 1 劑結合型疫苗(PCV)10

「肺炎鏈球菌感染不只造成肺炎!」陳宜君醫師叮嚀,「狀況許可時,建議及早接種疫苗,做好預防措施,才能保護自己、保護身邊的人。」

註解

  1. 衛生福利部疾病管制署 65 歲以上公費肺炎鏈球菌疫苗三階段開打,呼籲長者接種(access date 2024/3/8)
    https://www.cdc.gov.tw/Bulletin/Detail/hr4M-Qmi3Fu2KPC3En2a6Q?typeid=9 ↩︎
  2. 衛生福利部疾病管制署 肺炎鏈球菌疫苗 (Pneumococcal Vaccine)(accessed date 2023/12/15)
    https://www.cdc.gov.tw/Category/Page/ORBnRmMgImeUqPApKawmwA ↩︎
  3. Hsing, T. Y., Lu, C. Y., Chang, L. Y., Liu, Y. C., Lin, H. C., Chen, L. L., Liu, Y. C., Yen, T. Y., Chen, J. M., Lee, P. I., Huang, L. M., & Lai, F. P. (2022). Clinical characteristics of influenza with or without Streptococcus pneumoniae co-infection in children. Journal of the Formosan Medical Association = Taiwan yi zhi121(5), 950–957. https://doi.org/10.1016/j.jfma.2021.07.012 ↩︎
  4. 衛生福利部疾病管制署 侵襲性肺炎鏈球菌感染症(accessed date 2024/03/08)
    https://www.cdc.gov.tw/Disease/SubIndex/oAznsrFTsYK-p12_juf0kw
    ↩︎
  5. 衛生福利部疾病管制署  侵襲性肺炎鏈球菌感染症 疾病介紹(accessed date 2024/03/08)
    https://www.cdc.gov.tw/Category/Page/MEYvHLbHiWOcLfQKKF6dpw
    ↩︎
  6. Pollard, A. J., Perrett, K. P., & Beverley, P. C. (2009). Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nature reviews. Immunology9(3), 213–220. https://doi.org/10.1038/nri2494 ↩︎
  7. Intervals Between PCV13 and PPSV23 Vaccines: Recommendations of the Advisory Committee on Immunization Practices (ACIP) (cdc.gov) (accessed date 2023/12/15) https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6434a4.htm ↩︎
  8. 衛生福利部疾病管制署 為提升民眾免疫保護力,10月2日起分三階段擴大65歲以上民眾公費接種肺炎鏈球菌疫苗(accessed date 2024/03/08) https://www.cdc.gov.tw/Bulletin/Detail/q9_r5mAOvcpIPSUvrjGFpw?typeid=9 ↩︎
  9. 衛生福利部疾病管制署 肺炎鏈球菌疫苗 (Pneumococcal Vaccine) (accessed date 2023/12/15)
    https://www.cdc.gov.tw/Category/Page/ORBnRmMgImeUqPApKawmwA ↩︎
  10. 衛生福利部疾病管制署 肺炎鏈球菌疫苗 (Pneumococcal Vaccine) (accessed date 2023/12/15)https://www.cdc.gov.tw/Category/Page/ORBnRmMgImeUqPApKawmwA ↩︎

本衛教文章由台灣輝瑞協助刊登(PP-PRV-TWN-0166-202404)

-----廣告,請繼續往下閱讀-----

1

0
1

文字

分享

1
0
1
如何有效預防食媒性疾病 A 型肝炎病毒?
衛生福利部食品藥物管理署_96
・2023/10/10 ・2338字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自食藥好文網

圖/envato
  • 文/黃育琳 食品技師

民以食為天,你吃的食物是安全的嗎?

中國大陸上海市在 1988 年曾因毛蚶貝類污染而爆發 A 型肝炎疫情,造成約 30 萬人感染,其中 47 人死亡 [1]

我國於 2014 年 10 月至 11 月期間,急性病毒性 A 型肝炎本土病例達 30 人(其中 25 人住院),經衛生福利部疾病管制署(以下簡稱疾管署)與衛生局調查發現,多數病例於潛伏期間有生食蠔類(牡蠣)、文蛤或蛤蜊等貝類水產品 [2]

-----廣告,請繼續往下閱讀-----

這起事件極有可能是所謂的「食媒性疾病」。

何謂食媒性疾病?

食媒性疾病或稱食源性疾病(foodborne illness or foodborne disease)是指經由吃進被污染的食物或飲水等所致的疾病,常見症狀包含噁心、嘔吐、腹痛及腹瀉等。

依世界衛生組織的資料顯示,全球每年約有 6 億人因食用受到污染的食物或飲水而生病,其中 42 萬人死亡,又以兒童占多數。學童在校園中常暴露於共同的飲食及水源,人與人之間接觸密切,傳染病原很容易透過飛沫、糞口與接觸途徑傳播,易造成校園群聚感染事件發生 ​​[3]

但追溯污染源並不容易,食物在種植(或養殖)、採收、儲存、運送、製造、加工、包裝及烹調等任一階段都有可能被污染。且旅行和國際貿易頻繁更是提高被污染食品跨國散播的可能性 ​​[3],使農場到餐桌的食安管理顯得十分重要。

-----廣告,請繼續往下閱讀-----

A 肝病毒之分布

一開始提到因吃下受 A 型肝炎病毒(Hepatitis A virus,以下簡稱 A 肝病毒)污染的食物而感染 A 型肝炎,就是很典型病毒型食媒性疾病的例子。

A 肝病毒的流行主要與當地的衛生環境有關,主要流行地區包括亞洲、非洲與中南美洲等地區,尤以東南亞、印度、中國大陸等地區較為嚴重。

在開發中國家,人民多半在嬰幼兒時期,常因攝入受 A 肝病毒污染的水或食物而感染(通常 6 歲以下兒童感染約有 70% 無臨床症狀或症狀輕微),成年後多半已具有免疫力。

然而在已開發國家,衛生環境大致較佳,很多年輕人並未感染過 A 肝病毒而不具免疫力。臺灣便是如此,大部份的兒童及青少年(尤其是都會地區)都未具 A 型肝炎抗體,使爆發流行的風險增加 [1]

-----廣告,請繼續往下閱讀-----

A 肝病毒之特性與感染症狀

A 肝病毒是一種無套膜,直徑約為 27 nm 的 RNA 病毒,潛伏期約 15~50 天,其所引起的 A 型肝炎,屬第二類法定傳染病 ​​[1]

患者臨床症狀包含發燒、肌肉酸痛、疲倦、食慾不振、腹部不適、噁心、甚至嘔吐等,持續幾天後,病人會出現有茶色尿或併有眼白變黃(即黃疸)的徵兆,急性 A 型肝炎並無特殊療法,通常採一般的支持性療法即可痊癒 ​​[1]

而 A 肝病毒主要是透過糞口途徑傳播,最可能被污染的食品或飲料如水果、蔬菜、貝類、冰和水(包括冷凍或未經澈底加熱),感染者沒有確實洗手並接觸其他東西也會造成病毒傳播 [1]

不過 A 肝病毒的生命力頑強,對胃腸道極端的 pH 值和酶之耐受性高,能在不利條件下存活,被污染的食物需加熱超過攝氏 85 度且持續至少一分鐘才足以使 A 肝病毒失去活性。

-----廣告,請繼續往下閱讀-----

再加上只要有極少量病毒顆粒存在便足以使人致病,所以即使食品所含的病毒量很低,仍具有食品中毒之風險 [4]

透過電子顯微鏡所拍攝的 A 型肝炎病毒。圖 / 美國疾病管制與預防中心
透過電子顯微鏡所拍攝的 A 型肝炎病毒。圖 / 美國疾病管制與預防中心

食品從業人員基本要求《食品良好衛生規範》

為了避免食品受到病毒污染,食品從業人員的「衛生管理」就非常重要,我國行政院衛生福利部為了確保食品業者之衛生管理,已制定《食品良好衛生規範準則》(The Regulations on Good Hygiene Practice for Food, GHP)。

GHP 是食品業者確保其食品在製造、加工、調配、包裝、運送、儲存、販賣、輸入、輸出等過程中的安全衛生與品質,是最基本要求,所有食品業者皆應實施 GHP,在 GHP 附表二即說明:

食品從業人員經醫師診斷罹患或感染 A 型肝炎、手部皮膚病 、出疹、膿瘡、外傷、結核病、傷寒或其他可能造成食品污染之疾病,其罹患或感染期間,應主動告知現場負責人,不得從事與食品接觸之工作。

-----廣告,請繼續往下閱讀-----

雖然是安全衛生品質的基本要求,卻還是有不少業者會疏忽,導致感染事件重蹈覆徹。

最佳預防方式就是注重衛生管理

除了 A 肝病毒之外,諾羅病毒、E 型肝炎病毒及沙波病毒皆是常見的病毒型食媒性疾病,這些病毒感染均無特效藥物可治療,僅能採用良好的支持性療法幫助病人痊癒。

因此最佳的預防感染方式就是做好衛生管理,包含:

  1. 個人衛生:準備食品前及進食前,還有如廁後皆要確實洗手。
  2. 在飲食衛生:飲水要煮沸再飲用,所有食品都應清洗乾淨並澈底加熱,不生食。
  3. 環境衛生:維護廁所環境清潔,廚房及飲食用具要保持清潔。
圖/envato

參考資料

  1. 衛生福利部疾病管制署,2018。急性病毒性 A 型肝炎  疾病介紹。
  2. 衛生福利部食品藥物管理署,2023。A 型肝炎病毒(Hepatitis A virus)。
  3. 衛生福利部疾病管制署、國立臺北教育大學,2016。食媒性疾病防治 教師指引手冊。臺北市:衛生福利部疾病管制署。
  4. Bozkurt, H., Phan-Thien, K. Y., van Ogtrop, F., Bell, T. and McConchie, R. 2021. Outbreaks, occurrence, and control of norovirus and hepatitis a virus contamination in berries: A review. Critical Reviews in Food Science and Nutrition 61:1 116-138.
所有討論 1
衛生福利部食品藥物管理署_96
65 篇文章 ・ 23 位粉絲
衛生福利部食品藥物管理署依衛生福利部組織法第五條第二款規定成立,職司範疇包含食品、西藥、管制藥品、醫療器材、化粧品管理、政策及法規研擬等。 網站:http://www.fda.gov.tw/TC/index.aspx