Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

非洲靈長類動物瘧疾可能正在跨越物種

SciDev
・2011/07/16 ・1044字 ・閱讀時間約 2 分鐘 ・SR值 511 ・六年級

-----廣告,請繼續往下閱讀-----

這種瘧原蟲是在加蓬的一種大白鼻長尾猴身上發現的。 Flickr/donjd2

在一隻非洲猴子身上發現了來自大猩猩的原蟲,這提示它跨越了物種而且有可能轉移給人類。

這項發現已經導致一些瘧疾專家提出,如果在猴子和猿之間能發生轉移,那麼猴子到人的傳染可能正在發生。他們已經呼籲進行更多的研究從而量化這些風險。

「有足夠的證據表明應該進行進一步的研究從而弄清楚這些寄生蟲轉移給人類的可能性,」美國阿拉巴馬大學的醫學教授Beatrice Hahn說。「我們需要對生活在也叮咬靈長類動物的蚊子的飛行範圍之內的人類進行篩查,從而弄清楚他們是否容易感染這種靈長類寄生蟲。」

已知在野生森林中生活的大猩猩種群有一種和人類的惡性瘧原蟲親緣關係很近的寄生蟲。而在東南亞的獼猴攜帶有另外一種對人類具有潛在威脅的瘧原蟲——諾氏瘧原蟲。

-----廣告,請繼續往下閱讀-----

但是這是首次在一種非洲猴子——來自加彭的大白鼻長尾猴——身上發現類似於導致人類瘧疾的惡性瘧原蟲的寄生蟲。

法國國家科學研究中心的研究人員、發表在7曰5日的《美國科學院學報》上的這項研究的作者之一的François Renaud說:「它與人類瘧原蟲株型的遺傳差異如此之小」的事實帶來了一種可能性,即猴子和猿的瘧疾可能傳給人類。

由於森林砍伐、商業狩獵和人口增長導致人類與猿和猴子更密切地接觸,這些寄生蟲傳給人類的可能性將會增加。

「一次成功的跨物種傳播事件有潛力導致一場人類瘧疾大流行,」沒有參與這項研究的Hahn告訴本網站說。

-----廣告,請繼續往下閱讀-----

但是英國倫敦衛生學與熱帶醫學院的生物學教授說,考慮到這項研究發現的低流行率,非洲猴子的瘧疾儲存宿主應該非常少。

「但願人們將開始認識到猴瘧疾是一個重要的研究領域,但是當審視它對於人類的公共衛生意義的時候,重要的是把風險放在環境中。普通的人瘧疾有更高的流行率,除了在東南亞部分地區,在那裡瘧疾發病率已經減少了,而來自猴的瘧疾的重要性變得更明顯,」Conway說。

他說,尋找人類感染猴瘧疾「就像大海撈針」。他還說,「很有可能人類感染正在森林中偶爾發生」。

「在這個具體的案例中,這種瘧疾病媒是決定公共衛生風險的關鍵決定因素,」Conway說。「發現哪種蚊子傳播哪種瘧原蟲是個被忽視的研究領域,需要額外的資助。」

-----廣告,請繼續往下閱讀-----

鏈接到《美國科學院學報》的論文摘要

本文原發表於SciDev.Net[2011-07-07]

-----廣告,請繼續往下閱讀-----
文章難易度
SciDev
41 篇文章 ・ 1 位粉絲
科學與發展網絡(SciDev.net),提供有關科學、技術以及發展中國家的新聞、觀點和信息。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
一波未平,一波又起!我們該擔心猴痘疫情嗎?——《科學月刊》
科學月刊_96
・2022/08/05 ・2479字 ・閱讀時間約 5 分鐘

  • 文/林翰佐 銘傳大學生物科技學系副教授,本刊總編輯。

「一波未平,一波又起。」正當這個世界仍為嚴重特殊傳染性肺炎(COVID-19)疫情疲於奔命之際,猴痘(monkeypox)疫情似乎也有逐步升溫的趨勢。我們該以何種心態面對新的未知疫情?或許這篇文章能提供讀者一些方向和理性。

猴痘病毒的近親——造成數十億人喪命的天花

猴痘是由猴痘病毒(monkeypox virus, MPV)感染所引起,猴痘病毒在分類上有個赫赫有名的同屬——造成天花(smallpox)的天花病毒(variola virus)。

天花病毒的穿透式電子顯微鏡圖,內部呈現啞鈴形的部分包含了病毒的 DNA。圖/Wikipedia

天花是一種能透過空氣傳播、致死率約 30% 的病毒,且疾病痊癒後仍會在病人身上留下難以磨滅的坑疤,令人聞之色變,更是人類疾病歷史上最黑暗的篇章。據歷史記載,在 735 至 737 年間,一場爆發於日本的天花流行,一共奪走了 100~150 萬人的生命,約相等於當時日本總人口數的 1/3,足見其威力。

諷刺的是,天花也是人類第一個戰勝的疫病。由英國醫師詹納(Edward Jenner)推行的牛痘(cowpox)接種技術,意外開啟生命科學中的免疫學篇章,使疫苗成為對抗病毒性傳染病最有效的武器。1980 年代,在世界衛生組織(World Health Organization, WHO)防堵策略的運用下,曾經造成人類歷史上約數十億人喪命的天花,在地球上徹底地被根除。

-----廣告,請繼續往下閱讀-----

猴痘的病毒結構與傳播能力

繼承表親天花病毒的威名,猴痘疫情似乎顯得山雨欲來。

其實,痘病毒科(Poxviridae)的親戚一直存在於脊椎動物的族群當中。這類病毒的基因組由雙股 DNA 所組成,長達 186 千鹼基對(kb),記錄著 180 多個基因訊息,是感染哺乳動物的病毒當中體型最大,最為複雜的病毒。

相較於目前大家最為熟知的新型冠狀病毒(SARS-CoV-2)基因體長度大約只有 2 萬 6000 至 3 萬 2000 個核苷酸(nucleotides)所組成,透過分子機轉可以生產約 20 種左右的結構性蛋白(structural protein)及非結構性蛋白(nonstructural protein),在巨大的天花病毒前面顯得單純許多。

而更多種蛋白質的生產力也意味著病毒的「能力」愈強,所以天花病毒一直以來都被譽為是最狡猾的病毒,它具備多套欺騙免疫系統的機轉,使人防不勝防。

-----廣告,請繼續往下閱讀-----
痘科病毒相當狡猾,但還是希望猴痘可以安分一點。,圖 / pixabay

猴痘,顧名思義是一種流行於靈長類的流行病。1958 年,在研究用的猴子中首度被發現,而人類被感染的首起案例發生於 1970 年,之後在中非及西非偏遠地區也陸續發現零星案例。

根據流行病學的調查研究,猴痘主要透過嚙齒類、靈長類野生動物傳染給人類,是一種人畜共通傳染疾病。不過猴痘的傳播一直以來都是不慍不火,即便目前有升溫的趨勢,流行病學專家也相信它的「基本再生數」(basic reproduction number,俗稱 R0 值)介於 2 和 3 之間,遠低於目前肆虐的新型冠狀病毒 Omicron 變異株(R0≈10~15),意味著只要有適當的防疫作為,疫情不會像 COVID-19 一樣來得又快又猛。

猴痘的傳播途徑有哪些?

目前已知猴痘人傳人的途徑主要以皮膚、口對口或體液等與患者有密切接觸的方式傳染,其中也包括接觸被患者汙染過的物品以及衣物等。不過具體相關細節仍有賴後續的研究,包括患者實際具備感染能力的時程,以及是否造成胎兒垂直感染的可能性等。不過由於人類對抗天花具有相當完善的經驗,對於應付猴痘來襲,一些估算總不至於差得離譜。

若是不慎感染猴痘,需要多久才能痊癒?

猴痘的症狀類似天花,具有明確的病癥,包括發燒、頭痛、肌肉酸痛、背痛、疲倦及淋巴結腫大,此外隨著病程的演進也會在皮膚上出現丘疹。

-----廣告,請繼續往下閱讀-----
猴痘的症狀類似天花,特別明顯的症狀是皮膚病灶。圖/Wikipedia

猴痘的病程通常持續兩到三週,多數健康的人可以自行痊癒。不過部分患者包括嬰兒、兒童,以及免疫缺陷病友,可能會面臨更嚴重的症狀,甚至死亡。有關猴痘的死亡率依照不同地區呈現相當大的差異,預估值從 1~10%,甚至於更高的數值都曾經被提出,不過死亡率也與當地的公衛條件和醫療支援程度息息相關,不排除被高估的可能。

根據世界衛生組織公開的資料顯示,近期受到猴痘疫情影響的國家及地區,迄今並未出現死亡案例。

目前有針對猴痘開發的疫苗或是藥物嗎? 

由於新藥開發的速度較慢,多數新興傳染病很難有可以立即使用的「特效藥」。但目前包括美、英、加拿大等國的藥物管理局,已陸續核准將天花的藥物特考韋端(tecovirimat)用於猴痘治療。特考韋端能干擾天花病毒細胞膜蛋白的合成,阻斷病毒在人體內複製散播的機率、降低病情的發展,在實驗室中的研究證明它對猴痘病毒的複製也能有效地進行干預,不過臨床上的效果仍有待後續研究證實。

基於猴痘與天花的同源性,接種牛痘疫苗也可以提供有效保護,多項研究表明曾接種過牛痘疫苗者,發病率可降至約 4~21%。根據臺灣衛生福利部疾病管制署的說明,臺灣目前仍保有一定數量的第一代牛痘疫苗戰備存量,可以因應緊急時所需。另外,由於牛痘疫苗的製程屬於活毒疫苗,具有相當長效的保護效力,在 1979 年前出生的民眾皆有施打牛痘疫苗,因此他們也對猴痘有較佳的抵抗能力。

-----廣告,請繼續往下閱讀-----

疫病的可怕性來自於高傳染率、致死率,以及人類對該疾病的理解程度。由上述已知條件看來,猴痘並不是那麼可怕,可避免過度恐慌。不過衛生習慣的培養與防疫知識確實仍是趨吉避凶的基礎,願大家出入平安。

  • 〈本文選自《科學月刊》2022 年 8 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

延伸閱讀

  1. 台灣科技媒體中心,猴痘最新研究解析記者會新聞稿,2022年7月。https://smctw.tw/13545/
  2. 天平疫病大流行,2021年11月5日,維基百科,https://reurl.cc/j1XR4m
-----廣告,請繼續往下閱讀-----
科學月刊_96
249 篇文章 ・ 3742 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

5

12
3

文字

分享

5
12
3
如果人類的祖先是猴子,為什麼我們沒有尾巴?
暐恩咖啡_96
・2022/02/18 ・3120字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

尾巴幾乎是脊椎動物的標配,它能幫助魚類游泳、爬蟲類爬行、鳥類飛翔。在哺乳類動物身上,尾巴的功能更是包羅萬象,狗狗用尾巴表達情緒、草食動物用尾巴驅趕蚊蟲,我們的猴子表親甚至能用尾巴抓握東西。

功能多變又實用的尾巴,就好像動物身上的瑞士刀一樣,根本是「居家旅行必備良品」。這麼棒的東西,為什麼人類偏偏沒有呢?這一切還得從人類的起源說起。

人類是從猴子演化而來的嗎?

在大約 6600 萬年前,也就是恐龍經歷隕石浩劫後的 1000 萬年內,具有靈長類生理機能的小型哺乳動物就出現了。牠有一條又長又結實的尾巴,這也許能幫牠在枝條間捕捉昆蟲時,更容易保持平衡。 

阿喀琉斯基猴屬想像圖,這類生物大約生活在五千五百萬年前,可能是靈長類動物最後的共同祖先。 圖 / Wikipedia

隨著時間推移,原始的靈長類動物逐漸演化成雜食性的猴子。這類生物的尾巴特別的靈活又有力,幾乎就像是手腳以外的「第五肢」,使得這群動物在樹梢上的生活更加活動自如。

然而,生物的演化從不停止。大約在2000 萬年前,猴子當中出現了「沒有尾巴」的一支——人猿。牠們的後代包括長臂猿、紅毛猩猩、大猩猩、黑猩猩,當然了,也包含我們人類。配合下圖,你可以看出,人猿在演化成真正的人類以前,尾巴這個構造已經消失了數百萬年,所以人類理所當然長不出尾巴。

-----廣告,請繼續往下閱讀-----
約 2500 萬年前,人猿起源於舊大陸猴(Old world monkeys),經過長久的演化與分化形成多個類群,最終,人類與黑猩猩在六百萬年前分家。由上而下依序是:屬於人猿的人類、黑猩猩、大猩猩、紅毛猩猩、長臂猿,以及不屬於人猿的舊大陸猴、新大陸猴、眼鏡猴與狐猴。圖 / 參考資料 1

人類真的沒有尾巴嗎?

生物學上,總有些令人印象深刻的例外會發生。有些人類嬰兒(通常是男性)出生時還帶著小小的胚胎尾巴,這通常不會造成健康上的問題,甚至在有些案例中,這個小尾巴具有肌肉,而且可以動作!

在巴西就有一名 35 週早產的男嬰,出生時長著一條長達 12 公分的細長尾巴,尾巴末端還有一個 4 公分寬的肉球。醫生進行檢查後發現,這個構造僅由組織和脂肪組成、完全沒有骨頭,排除了先天性脊椎畸形的可能,認為這是罕見的「人類尾巴」,在醫學史上大約只有 40 個相同病例的記錄。[2]

巴西一名男嬰出生時長著 12 公分長的尾巴。圖 / 參考資料 2

事實上,每個人都曾擁有過尾巴,只不過,那時你還在媽媽肚子裡。在妊娠期的第 31 至 35 天左右,尾巴長度就會達到人生巔峰,尺寸大概佔胚胎長度的六分之一左右。不久後,尾巴就會停止生長,其中一部分尾巴會被身體吸收掉,另一些部分則退化、癒合成尾椎骨。

雖然人類的尾椎骨退化、失去了大部分原有的功能,但可別以為它是無用的器官!尾椎的前後兩面都有肌肉與韌帶附著,這些構造將骨盆底部的開口大部分封住,避免腹腔內的器官往下掉、造成疝氣,也具有避免失禁的功能。出力時,這些肌肉與韌帶能提高腹腔內的壓力,輔助排尿、提重物、嘔吐、前傾身體等動作。

人類胚胎在發育時是具有尾巴的。圖/ WIKIPEDIA

我們的祖先是怎麼失去尾巴的?

人體內有些基因被認為是「自私的基因」,它們平時唯一的功能便是自我複製,比如 Alu 序列(Alu element)就是個典型的例子,它本身沒什麼用,卻在人類基因裡複製了超過一百萬份,佔據了人類基因組中約 10.7% 的空間,有時還會插進有功能的基因片段裡,造成人體病變或異常。然而某些時候,它們卻能以獨特的方式發揮作用。紐約大學最近的一篇研究就表明,我們的祖先會失去尾巴,就是因為有一段 Alu 序列插入。

這回,被插入的對象是 TBXT 基因,這個基因對於胚胎發育非常重要,它與脊索(脊椎的前身)發育有關。紐約大學的研究團隊發現,無尾的猿類與有尾的猴類有個關鍵的基因差異,那就是 TBXT 基因的其中一段(exon 6)被 AluY 與 AluSx1 前後夾住,形成一個環狀結構,使得 exon 6 基因片段無法正常表現——這很可能就是猿類沒有尾巴的原因!

-----廣告,請繼續往下閱讀-----

為了證實這個假設,科學家剔除小鼠基因裡的 exon 6 片段,果真發現小鼠會出現無尾或短尾的特徵!值得注意的是,exon 6 片段被剔除的小鼠表現出了胚胎脊髓畸形的現象,這個現象在人類新生兒身上,也有約千分之一的機率出現,情形嚴重的話會造成下肢癱瘓或大小便失禁,可見沒有尾巴風險極高,但也能合理推測此特徵也伴隨巨大的優勢,否則就無法在殘酷的天擇中延續下來,只不過,科學家對於尾巴消失究竟帶來什麼樣的演化優勢還沒達成共識。

人猿 TBXT 基因的 exon 6 片段被 AluY 與 AluSx1 前後夾住,形成一個環狀結構。圖 / 參考資料 1
exon 6 基因片段被剔除的小鼠出現了無尾或短尾的特徵。圖 / 參考資料 1

所以,如果人類保留了健全的尾巴會怎樣?

如果現代人的尾椎延長、超出身體一大截,搭配上(與其他動物相比)幾乎「衣不蔽體」的體毛,那看起來就像「在屁股上掛串白腸」,畫面太美我不敢看

想要一條功能健全的尾巴,那肯定需要周遭肌肉、韌帶與骨骼的固定與驅動,但是,你還記得尾椎附近的肌肉與韌帶拿去做什麼了嗎?它們在骨盆底部承托著腹腔!我想,如果將它們調離原本的崗位,失禁與疝氣的機會也許會上升,或許人類將不再能夠直立著軀幹追趕跑跳,只能像大多數動物一樣,平時將軀幹水平匍匐於地面,避免肚子裡的東西靠向脆弱的骨盆底部。

現實中難道就沒有尾巴發達、又能常常直立活動的靈長類動物嗎?有的,那就是狐猴

-----廣告,請繼續往下閱讀-----

雖然大多數狐猴是屬於樹棲性的物種,但有些狐猴能在兩樹之間連續側跳一百公尺 [3]。另外,還有喜歡生活在地面上的環尾狐猴,牠們每天早晨都會或站或坐,朝向太陽張開雙臂,花些時間將體溫升高,然後成群穿梭在草原上,取食花、果實、葉子或種子,偶爾也吃吃葷,取食昆蟲、小鳥、變色龍,甚至是蜘蛛絲 [4],雜食的習性就和我們的猿猴祖先一樣。

看來,直立活動跟發達的尾巴也是能夠兼得的!如果人類真的有尾巴,或許尾巴高度會成為地位的象徵,於是人們開始用髮蠟把尾巴尖端的毛抓翹,往尾巴噴香水求偶或宣示主權;長輩會要求晚輩放低尾巴,情侶們逛街時也改用勾尾巴取代牽手,這樣就不用擔心流手汗造成尷尬了。

  1. The genetic basis of tail-loss evolution in humans and apes | bioRxiv
  2. A true human tail in neonate – ScienceDirect
  3. Ring-tailed lemur – Parc Animalier d’Auvergne (parcanimalierdauvergne.fr)
  4. ADW: Lemur catta: INFORMATION (animaldiversity.org)
  5. What if Humans Had Kept Their Tails? (sciencealert.com)
  6. Archicebus – Wikipedia
  7. Alu element – Wikipedia
  8. TBXT gene: MedlinePlus Genetics
  9. 猿 – 維基百科,自由的百科全書 (wikipedia.org)
  10. 尾骨痛的成因與治療 (chiropractors.com.hk)
  11. Lemurs (Lemuridae) | Encyclopedia.com
-----廣告,請繼續往下閱讀-----
所有討論 5
暐恩咖啡_96
3 篇文章 ・ 0 位粉絲
一入生科 一生科科 我是說熱愛科普啦~ 努力將科學知識 譜寫成大家都能會心一笑的文章