0

0
0

文字

分享

0
0
0

宇宙初期塵埃何處來?最新研究顯示:超新星爆發

臺北天文館_96
・2011/07/16 ・2104字 ・閱讀時間約 4 分鐘 ・SR值 554 ・八年級

上圖對SN 1987A超新星遺跡兩張圖片進行比較 - 左側由赫歇爾太空望遠鏡所攝,右側則為左圖圓圈處之局部放大,由美國NASA的哈柏太空望遠鏡所攝。圖片來源:ESA/NASA-JPL/UCL/STScI

宇宙初期塵埃究竟是由誰供應?多年來,不少天文學家致力於解答這道難題。而今天文學家藉由赫歇爾太空望遠鏡發現,一顆超新星吐出了相當於16萬至 23萬顆地球質量的新鮮塵埃。這項發現似乎建議天文學家:「答案,就在這顆超新星(爆炸恆星)裡。」並且也說明了天文學家可以如何運用「光的不同波長」此 一特性,來解決天文學上的重要問題。赫歇爾太空望遠鏡,因為能看見波長更長的遠紅外光,而成為解決初期宇宙塵埃何處來這項奧秘的利器。

宇宙塵由多種元素,如碳、氧、矽、鐵,及其他比氫和氦更重的原子等所組成,這些都不是「大霹靂」製造的,而是後來才形成的,但它卻是組成行星、人體、 恆星形成必要之物。像我們的太陽這樣的恆星,隨著年歲增長,會攪動出斑點狀的灰塵,這些灰塵則孕育出新一代的恆星及其行星。

初期宇宙塵如何產生?類似於煤煙顆粒會凝結在煙囪上的道理,溫暖氣體從恆星向外散逸時,遺留了塵埃。在今天的宇宙中所見到的許多老紅巨星,一向被認為 是塵埃的主要生產源。不過這個想法也有個麻煩:事實上早期宇宙中,缺乏這類恆星的身影。類似太陽這樣的恆星,當時存在的時間還不夠長,並不足以產生像在觀 測中所見的如此大量塵埃 – 但我們的確知道,當時已經有大量的塵埃。數十年以來,天文學家對此謎題一直相當好奇,現在,經由最新的赫歇爾觀測,直接有證據證實:超新星能產生巨大數量 的灰塵。據天文學家推測,當氣體因爆炸、擴展、冷卻後,氣體殘骸凝結成塵埃,而由於初代宇宙超新星數量頗多,所以這個發現對於解釋初期宇宙塵何處來可算是 功勞不小。超新星可能正是宇宙初期時代的塵埃製造機!

我們所生活的這個地球上,幾乎所有物質都是在恆星內部生產製造而成的,本次研究團隊的主要科學家,馬里蘭州巴爾的摩太空望遠鏡科學研究所 Margaret Meixner 表示:「現在,我們得到一個直接量測的結果證明,超新星如何豐富供應了在太空中形成恆星、行星和生命所需要的,由塵埃所凝結成的元素。」

-----廣告,請繼續往下閱讀-----

本研究刊登於2011年7月7日Science期刊,關注焦點是超新星SN1987A爆發殘骸。這顆超新星是位於17萬光年以外的一個恆星爆發後所產 生的殘留物,當這顆超新星在1987年爆發時,甚至從地球上以肉眼即可觀察到此一事件,夜空為之照亮,持續數月後漸告消退。天文學家因為這次事件目睹了這 顆恆星的死亡過程,SN1987A也成為一個被廣為深入研究的天體。哈柏太空望遠鏡最近發現SN1987A在暗淡多年後再次變亮了。

由於赫歇爾望遠鏡能看到波長最長的遠紅外線,所以也看得到非常冷的物體所發射出的極少量的熱,而這種物質,就是塵埃。雖然天文學家起初並未能確定赫歇 爾望遠鏡是否真能觀測的到超新星殘骸,不過赫歇爾巡天計劃巡到了位於「大麥哲倫星雲」中的SN1987A時 – 卻剛好拍到了SN1987A的影像。(大麥哲倫星雲是鄰近於銀河系的一個小星系,名為「大」其實是因為相對於它旁邊,有個比較小的「小麥哲倫星雲」)

科學家自太空中取回這張圖像後,意外的發現了SN1987A竟仍在發亮,藉由亮度可估計塵埃數量多寡,經仔細計算以後得到出乎意料的結果:塵埃數量竟然比天文學家原先認為超新星能夠產生的塵埃數量多了1千倍 – 足夠製造出20萬顆地球這麼大的行星。

這些塵埃的溫度為華氏-429度到- 416度(約攝氏-221度到-213度) – 比冥王星的溫度還低(冥王星溫度約為攝氏-204度。)

-----廣告,請繼續往下閱讀-----

來自英國倫敦大學學院(UCL),本篇論文第一作者Mikako Matsuura說明:「藉由赫歇爾太空望遠鏡我們才能在紅外線波段觀測超新星殘骸發出的亮度,這亮度比我們先前所估的高出許多。發現SN1987A含有 大量塵埃對我們而言是個重大進展,因為它對後續進一步瞭解大麥哲倫星雲裡的塵埃,意義非比尋常,不僅能解開『宇宙初期塵埃何處來』的疑惑,同時還能為世人 解答為何大麥哲倫星雲和我們的銀河系是如此的塵埃遍佈。」

先前曾有一些證據顯示超新星能產生塵埃,譬如NASA史匹哲太空望遠鏡(同樣用於觀測紅外線波段,但觀測波長略短於赫歇爾),曾經發現過位於仙后座A 的超新星爆發殘骸,所產出的新鮮塵埃約達地球質量的1萬倍。但相較之下,赫歇爾望遠鏡能看到溫度更低的物質 –正是個超低溫冷凍櫃,儲存塵埃的好地方。本篇論文另一位作者,來自NASA戈達德太空飛行中心的Eli Dwek則表示:「如何證實這些怪獸等級的爆發,確實是強大的塵埃製造者?在SN 1987A周圍發現高達23萬地球質量的塵埃,足以堪稱為最佳證據。」

中研院天文所博士後研究員大塚雅昭所參與的這項研究成果,於2011年7月7日獲Science刊出,完整論文可於此處下載: http://www.sciencemag.org/content/early/2011/07/06/science.1205983.full.pdf (Lauren譯)

本圖顯示SN 1987A超新星殘骸釋放能量。先前,NASA的史匹哲太空望遠鏡曾在它周圍探測出溫暖的塵埃。圖片來源: ESA/NASA-JPL/UCL/STScI
本圖顯示SN 1987A超新星殘骸釋放能量。先前,NASA的史匹哲太空望遠鏡曾在它周圍探測出溫暖的塵埃。圖片來源: ESA/NASA-JPL/UCL/STScI

-----廣告,請繼續往下閱讀-----

資料來源:中研院天文網 [2011, 07, 11]

引用自臺北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

5
2

文字

分享

0
5
2
來自137 億年前的訊息!透過重力波,一窺「宇宙誕生」的真相──《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》
台灣東販
・2022/08/09 ・4055字 ・閱讀時間約 8 分鐘

重力波不只能提供星體的資訊!

說到重力波,一般人可能會想到黑洞、中子星、超新星這三個引發話題的星體。不過,只有在這些星體事件發生的「瞬間」,才會產生重力波,就像宇宙中的一場秀一樣。而當重力波通過後,就無法再偵測到這些資訊。

discoveries GIF
圖/GIPHY

譬如,LIGO 在 2015 年 9 月捕捉到的就是「來自 13 億光年外星體的重力波」。不過,和宇宙年齡相比,這其實是相對較年輕的星體事件。

我們有沒有辦法捕捉到很久很久以前,宇宙剛誕生時產生的重力波,也就是暴脹時期產生的重力波呢?

為什麼宇宙正在急速膨脹?

138 億年前,宇宙在超高溫、超高壓下,以「火球」的樣貌誕生,這就是所謂的「大霹靂」。在這之後,隨著宇宙的急速膨脹,溫度與密度逐漸下降,然後演變現在的樣貌。

這就是大霹靂宇宙論,也是目前多數學者支持的標準宇宙論。

-----廣告,請繼續往下閱讀-----

那麼,為什麼會產生「火球宇宙」這個超高溫、超高壓的世界呢?為什麼宇宙不是一直保持原樣(不是保持相同大小),而是會急速膨脹呢?目前有一個較被接受的說法,那就是前面提過許多次的「暴脹理論

在這個理論中,宇宙初期並沒有任何物質或光,而是一個充滿能量的真空。透過這些真空能量,宇宙用比光速還快的速度,呈指數函數膨脹。

而在暴脹時期結束後,這些真空能量轉變成了光(火球),於是產生了超高溫、超高壓的宇宙,這就是所謂的大霹靂。

目前科學界的研究和觀測結果大多支持大霹靂學說。圖/NASA

不過,如果空間中存在許多能量的話,應該會存在像重力這樣使空間收縮的力才對。為什麼空間會以超越光速的速度迅速膨脹,進入暴脹時期呢?

-----廣告,請繼續往下閱讀-----

學者們用「暴脹子場」這種量子場中的真空能量,說明暴脹時期。

暴脹子場是個未證實存在的純量場。就目前而言,它的存在仍處於假說階段。

目前已知的純量場,譬如 2012 年時,由瑞士日內瓦的歐洲核子研究組織 CERN 在 LHC 實驗中發現並發表,由希格斯玻色子產生的希格斯場。研究者們也因此而獲得 2013 年諾貝爾物理學獎,各位應該還記憶猶新。

137億歲的宇宙,至今仍然不斷膨脹

暴脹子場與希格斯場在質量與粒子的結合力上,都有著很大的差異。暴脹子場的真空中,會產生長時間的負壓。而這個負壓會造成宇宙加速膨脹。

這點與目前的暗能量機制十分類似。有人猜想暗能量可能是未發現的純量場。與暴脹時期相同,目前的宇宙中可能存在著未知純量場的真空能量,就像暗能量般,佔了全宇宙能量的 70%。

-----廣告,請繼續往下閱讀-----

宇宙中佔了 30% 能量之物質,與佔了 0.1% 的光會產生引力,但比不過真空能量所產生的斥力,所以目前宇宙正在加速膨脹。

宇宙仍在不斷的擴大。圖/NASA

順帶一提,即使物質與光的能量佔宇宙的 100%,宇宙也只是減速膨脹而已,並不會收縮回去。因為膨脹初期的速度過快,所以宇宙只會持續膨脹下去。

宇宙誕生的第一步——「原始重力波」

暴脹時期結束後,空間能量會迅速轉變成物質能量,使宇宙轉變成超高溫、超高壓、充滿輻射的狀態。這就是大霹靂「火球」。暴脹理論說明了幾點。

首先是前面提到的「膨脹速度超越光速的宇宙」

-----廣告,請繼續往下閱讀-----

這造成了我們現在看到的(宇宙視界內的)宇宙溫度擁有各向同性,在 10 萬分之 1 的精度下,為絕對溫度 2.723K(約 3K 的宇宙微波背景輻射(CMB))。

在大霹靂學說中,宇宙微波背景輻射是宇宙誕生時所遺留下來的熱輻射。圖/ESA

第二,這個急速膨脹,使宇宙的形狀在幾何學上變得相當平坦,就像膨脹的氣球一樣。

再者,暴脹子場的量子擾動,是宇宙初期物質擾動的來源,也就是3K宇宙微波背景輻射所觀測到的溫度擾動。暴脹子場也含有量子的擾動。這些小小的擾動在短時間內暴脹過程中,急速膨脹,延伸至宇宙視界的彼端,造成現今宇宙中不同區域的密度差異,這也是形成星系的種子

CMB 觀測到的「溫度擾動」,正是暴脹時期產生之暴脹子場的量子擾動。

-----廣告,請繼續往下閱讀-----

另外,在重力波方面,暴脹時期不僅會產生前述密度(溫度)的擾動,也會產生「時空擾動」。急速膨脹的過程中,真空會一直變化,成對產生重力子,這與黑洞周圍產生霍金幅射的機制類似。

學者們認為這種重力波現今仍存在,稱其為「原始重力波」。因為整個宇宙都存在這種重力波,所以也叫做背景重力波。若能檢出這種背景重力波,不只能成為暴脹理論的證據,也會是宇宙起源相關研究的一大步。

原始重力波就像是背景雜訊一樣,在宇宙四處飄蕩

黑洞雙星的合併會產生重力波,不過當重力波通過地球,被 LIGO 觀測到時,該事件便已結束。不只是黑洞,中子星雙星的合併、超新星爆發也一樣。

不過,暴脹時期產生的重力波並非如此。當時整個宇宙充滿了重力波。不過這種重力波就像白噪音般的存在,很難分析這種波的狀態,所以也叫做背景重力波。若依波的種類來分,可以將其算在駐波。如何找到這種駐波,是我們現在的課題。

-----廣告,請繼續往下閱讀-----
重力波可以分成兩種,來自近期星體活動的重力波,以及來自宇宙誕生的背景重力波。圖/台灣東販

與光波不同,重力波的偏振方式可以分成十字形(+)與交叉形(×)2 種,如下圖所示。十字形的偏振會往縱向與橫向伸縮、交叉形偏振則會往斜向伸縮,如其名所示。這兩種波疊合後,會變成圖中右方的樣子,往外傳播。

隨著時間的經過,來自黑洞的重力波會持續前進;但暴脹時期產生的重力波為「背景重力波」,是一種駐波,就像噪音一樣充滿在整個宇宙中。如果能發現這種波,就能證明暴脹理論。

重力波由十字形、交叉型兩種偏振方式所組成。圖/台灣東販

宇宙之窗:暴脹子場是什麼?

暴脹時期產生的「暴脹子場」究竟是什麼樣的東西呢?

重複一次,暴脹子場被認為是某種未知、很重的純量場,其質量上限在 1013GeV 以下。目前這個低能量宇宙中,已經不存在暴脹子場。即使透過粒子對撞,產生目前可達到的最高能量(數 10TeV,相當於數 10 京度的溫度),也沒辦法產生這種場。

-----廣告,請繼續往下閱讀-----

每種基本粒子都有著伴隨其出現的「量子場」。

譬如希格斯場會伴隨著希格斯玻色子出現。就希格斯場這種純量場而言,其存在機率最高的期望值稱做場值(真空值),是希格斯玻色子的位置。而場值周圍存在所謂的量子擾動。這種量子擾動只有在微觀尺度下有意義。

在我們生活的巨觀尺度下,幾乎察覺不到任何量子擾動,所以我們平常的生活並不會意識到它們。

我們周圍有許多電路會用到二極體。在微觀尺度下看這些電路,會看到粒子般的電子周圍有量子擾動,這種量子擾動對二極體來說相當重要。

在這種量子擾動下,電流只能沿著電路中可跳躍量子擾動的方向流動,二極體才有如此特別的性質,可見量子論也是現代科技中的重要理論。

所以說,考慮初期宇宙中暴脹子場的量子擾動,可以知道當宇宙還很小時,暴脹並非在宇宙中的各個地方同時間發生。宇宙中各個地方開始暴脹與結束暴脹的時間都不一樣。

量子擾動除了會造成時間擾動,在某些條件下,我們也可以在巨觀視界下感受到密度和溫度的擾動。圖/台灣東販

量子擾動會造成時間擾動,不過在暴脹這種急速膨脹後,會轉變成超越視界的古典擾動,所以我們會在巨觀視界下觀察到,各個地方都有著不同的密度。這就是所謂的「密度擾動」或「溫度擾動」。

總而言之,最初產生量子擾動後,隨著空間的急速膨脹而迅速延伸,轉變成了空間性的密度擾動。

備註

  • 暴脹理論與大霹靂的名稱

1981 年,佐藤勝彥在大統一模型的框架下,提出真空相變會造成宇宙呈指數函數膨脹的理論。同年,古斯也發表了同樣的想法。自宇宙誕生的瞬間起(依大統一理論,約為 10−38 秒後~10−36 秒後)宇宙會以超越光速的速度,呈指數函數膨脹,然後轉變成大霹靂的「火球」宇宙。

1980 年時,為修正愛因斯坦的重力觀點,學者們提出了以指數函數膨脹中的宇宙。

而在 20 世紀初,多數學者認為「宇宙永遠不會改變」(宇宙穩態論),沒有開始,沒有結束,大小也永遠不會改變。不過宇宙穩態論的擁護者霍伊爾(Fred Hoyle)曾在某個廣播節目中說「宇宙的開始?那是大霹靂的觀點(the ‘big bang’ idea)」,於是「大霹靂」這個名稱就定了下來。

當時連愛因斯坦都相信宇宙穩態論,否定膨脹宇宙。不過在觀測結果陸續出爐後,哈伯(Edwin Hubble)、勒梅特(Georges Lemaître)等人成功說服了愛因斯坦接受宇宙正在膨脹。

——本文摘自《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》,2022 年 6 月,台灣東販,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
台灣東販
5 篇文章 ・ 3 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。

0

5
4

文字

分享

0
5
4
解析韋伯太空望遠鏡第一批影像背後的科學意義
EASY天文地科小站_96
・2022/07/14 ・4350字 ・閱讀時間約 9 分鐘

  • 作者:林彥興|EASY 天文地科小站主編、清大天文所碩士生,努力在陰溝中仰望繁星

萬眾矚目的詹姆士韋伯太空望遠鏡,在經過半年的校準與測試後,終於公開了它拍攝到的第一批成果。這些五彩斑斕、美麗絕倫的照片究竟是什麼樣的天體,照片的背後又有哪些深藏的意義?就讓我們一起深入解密,韋伯的第一批照片吧!

韋伯望遠鏡是什麼?

詹姆士.韋伯太空望遠鏡是美國、歐洲與加拿大太空總署合作開發的新一代旗艦級紅外線太空望遠鏡,也是無數天文學家夢寐以求、能幫助人類破解許多未解天文迷團的利器。

韋伯的研發其實早從 1996 年就已經開始,但是由於開發時遇到諸多困難,導致嚴重的預算超支與進度延宕,這台耗資上百億美金的超級望遠鏡,直到去年年底才終於從法屬圭亞那發射中心,用一枚亞利安 5 號運載火箭發射升空,前往距離地球 150 萬公里的日地第二拉格朗日點。

拉格朗日點是什麼?

日地拉格朗日點一共有五個。當物體在這些點上,其受到來自太陽與地球的重力恰到好處,因此太空船只需要少量的燃料,就可以長期與地球和太陽保持穩定的相對位置,可謂是地球軌道附近的風水寶地。

而韋伯繞行的,是位於地球後方的第二拉格朗日點,簡稱 L2。之所以選擇這裡,是因為只有 L2 的位置剛好會讓地球、太陽、月亮都在同一側,而這三個星體正是天文望遠鏡的主要紅外線光害來源。位在 L2 的韋伯,就可以用它的遮陽帆一次把三顆星體全部擋住,認真凝望遠方而不受干擾,因此 L2 可以說是觀測宇宙的絕佳地點。升空的幾個月之間,韋伯已經完成一系列的儀器校準工作,一步步把望遠鏡調整到最佳狀態。

-----廣告,請繼續往下閱讀-----

相比知名前輩「哈伯太空望遠鏡」,韋伯的優勢不只是擁有比哈伯大六倍的鏡面,更重要的是它是以紅外線為主力觀測波段。宇宙膨脹造成嚴重紅移,但哈伯望遠鏡的守備範圍主要是可見光,波長範圍是 90 – 2500 奈米,可說是鞭長莫及啊。

這時換上以波長 600 – 28500 奈米的紅外線為守備範圍的韋伯,就可以讓我們看到更遙遠、更古老的宇宙。此外,同一個天體在可見光和紅外線看起來,往往長得相當不一樣。這個強大的紅外線觀測能力,正是韋伯最引以為傲的武器。

作為深具儀式感的第一批科學影像,韋伯這次公布的影像分別對應四個主要科學主題:早期宇宙星系演化恆星的生命循環系外行星

1. 早期宇宙—— 星系團 SMACS 0723 與重力透鏡效應

星系團 SMACS 0723。圖/Webb Space Telescope

畫面中心黃白色的天體,是由成百上千的星系共同組成的星系團 SMACS 0723。在韋伯之前,哈伯太空望遠鏡就曾經花費數個禮拜的時間拍攝這個星系團。然而擁有更大鏡面、更精良儀器的韋伯,僅用了 12.5 個小時就拍出了解析度更高、畫面品質更好的照片,讓我們看到許多以前難以辨識的黯淡星系。可見哈伯與韋伯在觀測能力上的差距。

對天文學家來說,圖中最令人興奮的其實不是前景壯闊的星系團,而是後方這些經過重力透鏡扭曲和放大的小小星系們。星系團龐大的質量扭曲了周圍的時空,讓整個星系團好像一塊巨大的放大鏡一樣,可以偏折和聚焦通過的星光,稱為「重力透鏡效應」。

當星系團後方更遙遠、更古老的星系發出的光線通過星系團時,就會被星系團的重力透鏡效應偏折和聚焦,形成而圖中無數弧形的扭曲影像。

-----廣告,請繼續往下閱讀-----
紅圈為照片上受重力透鏡影響的區域之一,可以看到星系被拉長。

這些仍在襁褓中的小小星系,往往正在快速的孕育新的恆星,或是互相合併,因此有著混沌不規則的形狀。離我們越遠的星體發出的光,需要越長的時間才能到達我們的眼中。因此研究這些遙遠且古老的星系,能幫助天文學家理解宇宙早期的模樣。

2. 星系演化——史蒂芬五重奏(Stephan’s Quintet)

上一張照片讓我們認識星系的起源,這張「史蒂芬五重奏(Stephan’s Quintet)」則可以讓天文學家更仔細地研究星系內的複雜結構,以及星系與星系之間的交互作用。

史蒂芬五重奏(Stephan’s Quintet)。圖/Webb Scape Telescope

正如其名,「史蒂芬五重奏(Stephan’s Quintet)」是由五個視覺上相當靠近的星系所組成。但其實最左邊的這個星系(NGC7320)與另外四者並無關聯,只是從地球上看剛好位在天空中差不多的位置而已。

圖片中偏向黃白色,感覺如絲綢般順滑的部分是在近紅外線波段拍攝,主要顯示的是星系中恆星的分布;而醒目的橘紅色,則是來自中紅外波段的資料,展示的是星系中的高溫塵埃,以及星系中的氣體高速對撞時產生的震波(Shock wave)。

除了影像,韋伯還使用光譜儀仔細檢視了影像中右上方的星系(NGC 7319)中心,因為那裏有一顆比太陽重 2400 萬倍的超大質量黑洞,正在吸食周遭的氣體,並在過程中釋放巨大的能量。

-----廣告,請繼續往下閱讀-----

藉由觀察光譜的細節,韋伯可以分辨出像是氬離子、氖離子或是氫分子等等化學組成,甚至知道氣體的溫度、運動速度這些從一般照片難以辨識的資訊。

史蒂芬五重奏就像一個天然的實驗場,讓天文學家研究星系演化的詳細過程。

3. 系外行星——WASP-96 b 的大氣光譜

這一張照片可能是整批影像中,視覺上最不起眼的一張,它是系外行星 WASP-96 b 的大氣光譜。

WASP-96 b 的大氣光譜。圖/Webb Scape Telescope

最近 20 多年來,人類對太陽系以外行星的認識越來越多。截至今日,人類已經發現超過 5000 顆系外行星。然而,以現有的觀測技術,天文學家通常只能用一些間接的方法,測量它們的質量、半徑、軌道週期等粗略的特性。想知道這個行星是否適合生命生存,就不能少了行星大氣層的化學組成和溫度資訊。

那要怎麼取得行星的大氣資訊呢?當行星通過恆星跟地球中間時,恆星的一部分星光將會通過行星的大氣層,並被行星的大氣吸收。吸收的多寡和波段,取決於行星大氣層的溫度和化學組成等特性。此時,天文學家就可以藉由分析光譜中的各種特徵,去回推行星大氣層的性質。

圖片中的白點,即是韋伯實際觀測 WASP-96 b 時取得的光譜資訊。而藍色的線,則是天文學家認為最貼合觀測數據的理論模型。

-----廣告,請繼續往下閱讀-----

根據這個觀測結果,天文學家計算出 WASP-96 b 的大氣溫度約為 725°C,大氣中明顯有著水氣,並推測可能還有雲和霾存在。未來進一步的分析和觀測,將為世人揭開更多系外行星的神祕面紗。

4. 恆星的生命循環——「南環狀星雲」與「船底座大星雲(Carina)」

最後兩張照片都與恆星的生命循環有關。正如人會有生老病死,恆星也是一樣。

恆星一般誕生在巨大分子雲中,氣體在重力吸引下逐漸塌縮、升溫並點燃核融合,成為一顆恆星。

當小質量的恆星步入晚年,其結構容易變得不穩定,最終將自己的外層氣體拋射出去,形成美麗的行星狀星雲,也將氣體吐回到星際空間中,成為下一代恆星的養分。氣體都拋射完之後留下的核心,就是白矮星。

-----廣告,請繼續往下閱讀-----

各位現在看到的,是暱稱「南環狀星雲」的行星狀星雲,左右兩張圖分別於近紅外線與中紅外線拍攝。

南環狀星雲。圖/Webb Scape Telescope

我們可以看到,左圖中的影像比右圖要更清晰一些,這是因為在相同的望遠鏡口徑下,波長越短所能達到的理論解析度就越高。

有趣的是,在左圖中看起來位於星雲中心的明亮恆星,其實並不是行星狀星雲的核心。真正的核心其實是在其左下方,一顆被塵埃包裹著的黯淡白矮星。在近紅外線波段的影像中,這顆白矮星幾乎淹沒在隔壁恆星的炙烈星芒之中。

但在中紅外波段,由於恆星的亮度相對降低,包裹著白矮星的塵埃發出的光就變得清晰可見。再次展示即使是同一個天體,使用不同的波段進行觀測,往往可以看到不同的東西。

最後這片壯麗的宇宙山崖,則是位於「船底座大星雲 Carina」西北角的 NGC3324 恆星形成區。在這裡,源自星雲中無數初生恆星所發出的炙烈輻射、恆星風與噴流,吹散、游離了星雲中原有的濃密氣體與塵埃。交織出這片壯闊而複雜的結構。

船底座大星雲(Carina)。圖/Webb Scape Telescope

這張照片一共結合了這六個不同的濾鏡的影像拍攝而成。每個濾鏡涵蓋的波段各不相同,代表的物理意義也不一樣。比如(F090W、F200W、F444W)這三個寬帶濾鏡,分別在影像中按照波長順序,以藍色、綠色和紅色這三原色呈現,為照片打下骨幹。而在此之上,照片的製作團隊又疊上青色代表氫原子的(F187N)濾鏡影像,以黃色代表氫分子的(F470N)濾鏡影像,以及用橘色代表甲烷和多環芳香烴的 (F335M) 濾鏡影像,為照片再添更多的細節。

-----廣告,請繼續往下閱讀-----

想要將這麼多個波段的影像全部結合起來,仔細調整讓細節更加突出,最終呈現出一張如此絢麗又震撼的照片,是非常不容易的。這展示了韋伯太空望遠鏡不僅在科學上相當重要,在藝術上也價值非凡。

最後別忘了,以上只挑選介紹了第一批資料中最具代表性的幾張,更多關於五個目標的照片和光譜,可以在韋伯的官網上找到。而這批照片,又只是韋伯未來二十年服役生涯中,前兩個月的小試牛刀而已。韋伯的時代,才剛剛要開始!

-----廣告,請繼續往下閱讀-----
EASY天文地科小站_96
23 篇文章 ・ 1578 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事