0

0
1

文字

分享

0
0
1

重力波:探測十三億光年外的黑洞合併──《宇宙的顫抖》

臺大出版中心_96
・2018/02/07 ・3487字 ・閱讀時間約 7 分鐘 ・SR值 569 ・九年級

  • 文/李傑信│美籍華裔科學家,美國航空暨太空總署(NASA)太空任務科學家

引力波訊號 GW150914,「看不見」的黑洞相撞

2015 年 9 月 14 號,臺北時間 15 時 50 分 45 秒,美國兩個雷射干涉引力波觀測站,前後收到了引力波(重力波)的訊息。東南方的路易斯安那州比西北方的華盛頓州的訊號早到了 0.0069 秒,即 6.9 ms。引力波的振幅約為 10 的負 18 公尺(10−18 m),收到的訊號前後總共約 0.5 秒不到。

以北京清華大學發展出的電腦軟件分析,找出這個引力波是由兩個巨大的「自旋」(spinning)黑洞互繞、相撞、衰蕩(ringdown)、合併後產生, 其中一個黑洞為 29 個太陽質量,另一個為 36 個太陽質量,在相撞前 10 億年即尋獲彼此並互繞了 10 億年,最後以近光速 60% 的速度相撞後二合為一, 衰蕩形成一個 62 個太陽質量的單一黑洞,3 個不見了的太陽質量(29 + 36 − 62 = 3),經由愛氏(編按:本文簡稱愛因斯坦)的 E = mc2,完全轉變成引力波能量,在愛氏四維黎曼流形堅硬美麗的時空纖維中,以光速傳播了約13 億年,最後給了我們約 0.5 秒不到的引力波訊號。這個引力波被命名為 GW150914

如果這 3 個不見的太陽質量完全轉換成電磁能量,它是整個宇宙可接收到的電磁能量的 50 倍,但我們在電磁波段,竟然沒看到一點火花。愛氏的引力波孤獨營生,和電磁波世界是陰陽兩界、生死不相往來。

圖 27 GW150914 引力波可能來自「大麥哲倫星雲」方向,但距離約為13 億光年,比 LMC 離太陽系的 16.3 萬光年遠很多。紫色彎月內為 90% 置信度範圍。左上角小紫色區域為下文提到的 GW151226 方向,亦為 90% 置信度範圍。(Credit: LIGO/Axel Mellinger)

這個引力波由南邊的觀測站先收到,所以訊號來自南方星空「大麥哲倫星雲」(Large Megellanic Clouds,LMC)方向(圖27)。雙黑洞相撞地點,距地球約 13 億光年。

-----廣告,請繼續往下閱讀-----

由引力波的資料一窺黑洞合併的故事

儘管引力波和電磁波是陰陽兩界,天文學家還是正在密集搜索這塊宇宙地盤,企圖尋找這個雙黑洞合併的暴烈事件前,在電磁波光譜上留下的蛛絲馬跡,如雙黑洞相撞前周圍帶電星塵異常的X 光光譜變化和伽瑪射線閃爆等,但目前尚無斬獲。

有的專家認為兩個黑洞相撞合併的同時,也應會產生大量的微中子(neutrinos)。但在 GW150914 抵達地球的前後各 500 秒時段內,以南極洲的 IceCube 和地中海底的 ANTARES 微中子探測器檢查,竟然毫無與 GW150914 同方向來的微中子跡象。偵測不到微中子,原因可能是這兩個探測器的靈敏度還不夠嗎?還是有其他與暗物質(微中子是已知的暗物質)有關的更深層物理原因?

兩格獨立觀察站觀察到的資料,藍線位於 Livingston, Louisiana,紅線位於Hanford, Washington. 圖/LIGO

如果把兩個觀測站分別獨立接收的訊號,在時間軸上移動約0.007 秒,兩處的引力波訊號,有如同卵雙胞胎般完美重疊,證明它們是同一個訊號(上圖)。

GW150914 在合併前後的衰蕩期,即圖中右邊最後的0.025 秒,包含了大量寶貴的雙黑洞物理資料,可直接驗證愛氏四維時空黎曼流形「度量」尺標的正確性。衰蕩期的引力波振幅及相位訊息,破天荒第一次接收到,也可用電腦來計算愛氏「強」場方程左右兩邊的未知函數。這些從 GW150914 引力波取得的數據,為愛氏場方程注入了最鮮猛的生命力。

-----廣告,請繼續往下閱讀-----

當然,這兩個黑洞在合併前的互繞期間,尤其是最後以接近光速 60% 相撞前,所輻射出來的引力波,要比泰勒和胡爾塞脈衝雙子星系統的幅度強度高出甚多,也是印證愛氏「強」場方程的重要數據庫(圖 29)。

圖 29 類似 GW150914 兩個自旋黑洞互繞期間輻射引力波的電腦模擬示意圖。兩組彩色虛線代表黑洞互繞衰減的軌道,綠色箭頭代表黑洞自旋的方向,菊色花瓣代表輻射出去的引力波。(Credit: NASA/ Ames Research Center/C. Henze [Public Domain], via Wikimedia Commons)

GW150914  出身於暴烈的自旋雙黑洞相撞合併事件。它誕生地的四維時空黎曼流形的「度量」尺標,彎曲的程度難以想像。而這個「度量」尺標因兩個巨大黑洞合併,產生了瞬時劇烈的變化,引力潮有如滔天的海嘯,能將宇宙所有的物質結構揉得粉碎,引力波也以海嘯幅度即刻以光速散播出去。引力波上路後,波幅就以和原生地距離的平方成反比衰減,於 13 億多光年的旅程後抵達地球,引力波的振幅衰減到只剩下 100 億億分之一公尺,帶給人類的只是宇宙一個微弱的顫抖。

但這個微弱的 GW150914 出身豪門,以愛氏的「強」場方程追本溯源,讓人類看清楚了這場在宇宙中發生過的驚心動魄往事。

在黑洞橫屍遍野的宇宙,偵測更多引力波

經過五個月的數據分析,人類第一次直接偵測到的引力波GW150914 的驚世發現,以「雙黑洞合併的引力波觀測」[22] 論文發表,列出包括「引力波三傑」索恩、維思和追沃等作者共1,860名,與 136 所大學和研究機構,北京和臺灣的清華大學和作者也都上榜。論文中強調 GW150914 的數據正確的置信度(confidence level,CL)為 5.1σ(標準誤差),即約 99.99996%,也是每約五百萬次才出一次錯,以嚴格的高能粒子發現的黃金標準衡量, 只能算夠上了薩根(Carl Sagan,1934-1996)較次等級的「驚世聲明需要驚世數據」(Extraordinary claims require extraordinary evidence)的規格。論文換另一個角度看數據置信度問題,宣稱宇宙送出 GW150914 類數據的「虛驚」率,每 203,000 年一次。以地球年齡 46 億年估計,宇宙已送出類似 GW150914 的「虛驚」訊號 22,660 次,兩萬多筆可不是個小數目,所以這個置信度尚未達到五星級標準。

-----廣告,請繼續往下閱讀-----

等全部六個引力波觀測站聯網作業後,只要六站同時接收到有如圖 28 同卵六胞胎的引力波訊號,置信度可能會超過 7σ,訊號的置信度比現在會高上十萬倍,甚至超過希格斯波色子 7σ 拍板定案的標準。

2015 年 12 月 26 日,美國的兩座 LIGO 站又觀測到第二起引力波事件,也是由雙黑洞互繞、相撞、衰蕩和合併引起,距地球約 14 億光年,黑洞大小為 14.2 和 7.5 太陽質量,其中至少一個黑洞有自旋現象,合併後為 20.8 太陽質量,0.9 太陽質量轉變成引力波能量。

東南站比西北站早 1.1 ms 收到訊號,表示引力波大約由西南方向而來,在圖 27 中以左上角小紫色區域圈出 90% 置信度範圍。沿用 GW150914 已建立起的傳統,這個引力波被命名為 GW151226

人類追尋了五十餘年引頸以盼的引力波,在短短的三個多月內,連續兩次以雙黑洞合併劇碼登場,給愛氏的場方程提供了最厲害的「強」引力場檢驗,也直接證明了愛氏的黎曼流形中四維時空的纖維結構更加美麗堅固的存在。

-----廣告,請繼續往下閱讀-----

2017 年 6 月 1 日,美國的兩座 LIGO 站再接再厲地宣布成功偵測到第三起引力波  GW170104。這次的兩個黑洞分別為 31.2 和 19.4 太陽質量,相撞合併後為 48.7 太陽質量,1.9 太陽質量轉變成引力波能量,經過 30 億年的傳播,抵達地球。

在 LIGO 的網站上並可尋得尚有另外六個引力波事件正在分析確認中。目前的跡象已很明顯,雙黑洞相撞合併後激發的引力波事件在宇宙中可能層出不窮,已達欲罷不能的地步。(第四起引力波 GW170814 已被確認。第五起的引力波 GW170817 也被確認了是第一起雙中子星引力波, 並偵測到同時發生的伽瑪閃爆電磁波訊號。)

引力波頻頻以活躍的雙黑洞合併後剩餘能量出現,就表示我們目前的宇宙已可能黑洞橫屍遍野,正在快速甚或加速地朝老化方向演化。但從正面角度去看,雙黑洞合併頻率高,就能常常激發出引力波在宇宙中蕩漾。未來只要 LIGO 的靈敏度持續改進,偵測引力波可能會成為稀鬆平常事件。

人類未來的挑戰:暗物質、暗能量與宇宙「暴脹」的引力波

二十一世紀的人類,面臨嚴峻的智慧挑戰,一定要弄懂暗物質和暗能量的物理規律(圖 30)。引力波的出現為人類打開了一扇巨大嶄新的天文窗口,電磁波無法照亮的宇宙黑暗角落,引力波可通行無阻,和暗能量、暗物質親密互動,探清它們的底細。

-----廣告,請繼續往下閱讀-----
圖 30 宇宙組成成分示意圖。暗物質和暗能量是面臨二十一世紀人類最嚴峻的智慧挑戰。

但宇宙中還有另一類的引力波,也在愛氏相對論管轄範圍之內。這類引力波起源於宇宙「暴脹」(inflation)前後的極高能量混沌初開時期,它可能像電磁背景微波一樣,仍然在宇宙中蕩漾。宇宙凝聚後的雙黑洞合併引力波,如 GW150914 和 GW151226, 由於捕捉訊號的窗口狹窄,時機稍縱即逝。但宇宙混沌初開時的原初(primodial)引力波永遠在那蕩漾,等待人類的發掘,只是它更遙遠、更微弱、更低頻。

人類得投入比 LIGO 昂貴 10 倍以上的經費,再花個 10 年、20 年時間,在地球繞日軌道籌建一座「雷射干涉太空天線」(Laser Interferometer Space Atenna,LISA), 如圖 31, 三道雷射束通道距離 500 萬公里, 靈敏度高於 LIGO 上千倍,覆蓋的宇宙空間體積大於 LIGO 上億倍(LISA 目前因NASA 方面經費情況膠著,由 ESA 以 eLISA 繼續發展。)

愛氏的場方程,波濤壯闊,歷久彌新,它將帶領二十一世紀的人類,解讀宇宙暗能量與暗物質的奧祕。

  • 直接偵測到引力波的發現,獲 2017 年諾貝爾物理獎。引力波三傑之一的追沃(Donald Drever, 1931-2017)不幸於2017 年 3 月 7 日逝世,令人扼腕。維思、巴利許(Barry Barish,1936-)和索恩(Kip Thorne, 1940-)獲頒 2017 年諾貝爾物理獎。

 

 

 

本文摘自《宇宙的顫抖:談愛因斯坦的相對論和引力波》,台大出版中心出版。

-----廣告,請繼續往下閱讀-----

 

 

 

 

-----廣告,請繼續往下閱讀-----
文章難易度
臺大出版中心_96
10 篇文章 ・ 14 位粉絲

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
1

文字

分享

0
3
1
用「世界上最大的望遠鏡」觀測黑洞!臺灣也參與其中!
PanSci_96
・2024/07/15 ・3876字 ・閱讀時間約 8 分鐘

台北時間 1 月 18 號下午四點,中研院天文所公布了一張黑洞照!別小看這張照片,裡頭有玄機!不論是驗證愛因斯坦的廣義相對論,還是要研究 M87 黑洞有沒有什麼特性,都得從這張照片著手。

為什麼我們能拍到比之前更清楚的照片呢?這是因為,這次「事件視界望遠鏡」的團隊,加入了格陵蘭望遠鏡的觀測數據。它不僅是全球第一座位於北極圈內的重要天文觀測站,此外,這座觀測站,也和台灣脫不了關係喔!

就讓我們來看看,這張黑洞照到底是怎麼拍的?這幾張黑洞甜甜圈照,又藏有哪些重要資訊?

近年的黑洞觀測

大家應該都還記得 2019 年的黑洞熱潮,當年 4 月,人類第一張黑洞照——M87 的真面目,被公開了,我們終於取得了黑洞存在的最直接證據。3 年後的 2022 年 5 月,我們也終於看清楚那個在我們所在的星系中,在銀河系最深處的黑洞——人馬座 A*。這兩張像是甜甜圈的照片,掀起黑洞熱潮,也帶給我們不少感動,想必很多人都還記得。

-----廣告,請繼續往下閱讀-----
圖/ESO、EHT Collaboration

但是,這兩張模糊的甜甜圈,不管對於科學家還是我們,想必都還不滿足!我們想看到的,是能跟電影星際效應中一樣,帶給我們強烈震撼的完整黑洞樣貌。

很快就有好消息,在 M87 照片公開的三年後。2022 年 4 月,天文學家展示了另一組 M87 的照片,除了原本的黑洞以外,還能看到外圍三條噴流,與圍繞在黑洞旁邊的吸積流,更加完整的黑洞結構同時存在在一張照片上。

圖/Lu, RS., Asada, K., Krichbaum, T.P. et al. A ring-like accretion structure in M87 connecting its black hole and jet. Nature 616, 686–690 (2023). https://doi.org/10.1038/s41586-023-05843-w

有趣的是,在 2022 發表的觀測結果中,黑洞似乎胖了一圈,直徑比 2019 年發表的結果大了 50%。這可不是說黑洞在幾年間就變胖了 1.5 倍,不用擔心,宇宙不會因此毀滅。這主要是選用觀察的電磁波波段不一樣,2019 年觀察的電磁波波長是 1.3 毫米,2022 年的波長則是 3.5 毫米。但其實,1.3 毫米比 3.5 毫米的電磁波穿透力更好。也就是 2019 年的影像更接近黑洞的實際長相。

對了,2022 年的黑洞照並不是事件視界望遠鏡發的。你知道「事件視界望遠鏡」並不是唯一在進行黑洞觀測的計劃嗎?

-----廣告,請繼續往下閱讀-----

為了觀測黑洞,全球的電波望遠鏡進行同步串聯,打算打造一個等效直徑幾乎等於地球直徑的超大望遠鏡。因為我們無法直接打造一面面積跟地球一樣大的望遠鏡,因此我們得將分布在各地的望遠鏡同步串聯,由數據分析來拼湊出整體樣貌。你可能不知道,全球的大型黑洞觀測國際合作計畫其實有兩個,一個就是大家比較常聽到的「事件視界望遠鏡 」,簡稱 EHT,主要以 1.3 毫米的波段進行觀測,也就是大家熟悉的甜甜圈照。而另一個大計畫是「全球毫米波特長基線陣列」,簡稱 GMVA,以 3.5 毫米為主要觀測波段。2018 年 GMVA 還加入了新成員,讓我們能看到最新的這張照片。其中一個是超強力助手 ALMA,另一個,就是第一座位於北極圈內,由台灣中研院主導的格陵蘭望遠鏡 GLT。

為什麼黑洞會那麼難觀察?

現在大家都知道,我們已經能確實拍到黑洞了。即使黑洞的本體是全黑的,圍繞在黑洞周邊快速旋轉的物質,也會因為彼此摩擦與同步輻射,放出強烈的電磁波,被我們看到。

但即便它會發光,仍然是個難以觀測的天體,直到近年,我們才補捉到它樣貌。這是因為,比起亮度,更難的地方在於尺寸,黑洞好小,更準確來說,是看起來好小。M97 和人馬座 A* 實際上都比太陽大上不少,但因為距離我們十分遙遠,從地球上來看,人馬座 A* 與 M87 黑洞的陰影尺寸,分別是 50 微角秒和 64 微角。從我們的視角來看,就跟月球上的一顆甜甜圈一樣大。

但即便很困難,看到黑洞對我們來說十分重要,我們需要有確切的證據來證明我們對於黑洞的預測並沒有錯。例如在 2022 年有照片證明「銀河系中間真的有黑洞!」之前,2020 的諾貝爾物理獎頒獎時,仍以「大質量緻密天體」來稱呼銀河系中央的「那個東西」。現在,從黑洞噴流、吸積盤、自轉軸、到光子球層,我們還有好多黑洞特性,需要更高解析度的照片來幫我們驗證,驗證廣義相對論的預測是否正確,而我們對於黑洞與宇宙的認識是否需要調整。

-----廣告,請繼續往下閱讀-----

好的,我們知道為了追星,嗯,是追黑洞,科學家無不卯足全力提升望遠鏡的解析度。但是為何格陵蘭望遠鏡的加入,就能提升照片解析度呢?

組成世界上最大的望遠鏡?

越大的望遠鏡看得越清楚,為了將全世界的電波望遠鏡串聯,打造等效口徑幾乎等於地球的超大望遠鏡。這些望遠鏡使用了特長基線干涉測量法,這些望遠鏡則稱為電波干涉儀。

這些電波干涉儀通常由一系列的天線組成,例如位於智利的阿塔卡瑪大型毫米及次毫米波陣列 ALMA,就是由 66 座天線組成,最遠的兩座天線距離長達 16 公里。在觀測同一個訊號時,透過比較每座望遠鏡收到訊號的相位差,就能計算出訊號的方位角,進一步推算出原始訊號的樣貌。而當這些天線數量越多、距離越遠,就等於是一座更高解析度、口徑更大的望遠鏡。例如 ALMA 的影像解析度高達 4 毫角秒,能力比知名的哈伯太空望遠鏡還要好上 10 倍。另一座位於夏威夷的次毫米波陣列望遠鏡 SMA,則是由 8 座天線組成,雖然單座天線的直徑只有 6 公尺,卻足以以模擬出一座直徑 508 公尺的大型望遠鏡。

利用相同技術,只要透過原子鐘將全球的望遠鏡同步,就能模擬出直徑幾乎等於地球直徑的超巨大望遠鏡,也就是「事件視界望遠鏡 」或是「全球毫米波特長基線陣列」。

-----廣告,請繼續往下閱讀-----

沒錯,格陵蘭望遠鏡 GLT 也扮演重要角色。但為什麼要把望遠鏡建在北極圈內?

畢竟這可不簡單,為了讓望遠鏡能在最低零下 70 度 C 的嚴苛環境中工作,還期望它能發揮超越過去的實力,科學家改造了不少設備,甚至還要加裝除霜裝置。

但這一些都是值得的,因為光是 ALMA、SMA、GLT 三座望遠鏡,就可以在地球上構成一個大三角型,等於一台巨大的電波干涉儀。

圖/First M87 Event Horizon Telescope Results. II. Array and Instrumentation – Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Map-of-the-EHT-Stations-active-in-2017-and-2018-are-shown-with-connecting-lines-and_fig1_333104103 [accessed 15 Jul, 2024]

而對於事件視界望遠鏡來說也十分重要,因為在地球的南邊已經有南極望遠鏡了,東西向則有許多來自中低緯度的望遠鏡。剩下的關鍵位置,當然就是北極的格陵蘭望遠鏡了。而特長基線干涉技術要在不同頻段發揮作用,每個望遠鏡的相對位置也十分重要。格陵蘭的地理位置與良好的大氣環境,讓格陵蘭望遠鏡可以觀測 230GHz 這個特殊波段的訊號,並且補足黑洞的諸多細節。根據官方消息,未來還要真的登高望遠,更上一層樓地把整座格陵蘭望遠鏡搬上格陵蘭島山頂的峰頂站台基地 (Summit Camp ),觀測 690GHz 的特殊訊號,期待能看到黑洞的光子球層,驗證廣義相對論的預測。

-----廣告,請繼續往下閱讀-----

順帶一提,這邊提到的 SMA、ALMA 和格陵蘭望遠鏡,不僅合作關係密切,這些重要計畫台灣還都參與其中!

SMA 是 2003 年啟用,全世界第一座可觀測次毫米波的望遠鏡陣列,也是史密松天體物理台與台灣中研院天文所合作興建與運作的望遠鏡,每年也有許多台灣參與或主導的研究發表。

2013 年啟用,位於智利的 ALMA,則是由東亞、歐洲、北美共同合作的國際計畫,台灣當然也參與其中。擁有66座望遠鏡的 ALMA,也是地面上最大的天文望遠鏡計畫。而有趣的是,由中研院主導的格陵蘭望遠鏡所使用的天線,就是使用 ALMA 的原型機改造而成的!

最後,這次最新的黑洞照就是這張,在 2018 年 4 月拍攝,歷經將近 6 年分析,才正式公布的照片。它與 2017 拍攝,2019 年公開的第一張黑洞照一樣,主角都是 M87。

-----廣告,請繼續往下閱讀-----

你說兩張照片看起來都一樣?嗯,沒錯,雖然還是看得出差異,但兩張照片大致上看起來的確差不多。

這兩張照片所得出的光環半徑相同,代表在相隔一年的拍攝期間,黑洞半徑並沒有產生變化。因為 M87 並不會快速增加質量,所以這個觀測結果非常符合廣義相對論對於光環直徑的預測。並且這張照片也讓我們更加確定,2017 年拍攝到的甜甜圈結構,並不是黑洞的偶然樣貌。

有相同的地方,也有不一樣的地方。這兩張照片光環上最亮的位置逆時針偏轉了 30 度,光是這點,就將開啟下一波的黑洞研究熱潮。透過比較不同時間拍攝的照片,科學家將可以深入研究黑洞的自轉軸角度,以及自轉軸隨著時間偏轉的「進動」現象,並更進一步分析黑洞周圍的磁場與電漿理論。

因為 GLT 的加入,有效提升了 EHT 的影像保真度,科學家能取得更加真實的黑洞照,為未來的黑洞研究打下基礎,例如挑戰很難被拍到的光子環。

-----廣告,請繼續往下閱讀-----

特別感謝中研院天文所研究員,同時也是格陵蘭望遠鏡計畫執行負責人的陳明堂老師協助製作。我們還有一場與陳明堂老師的直播對談,直接來和大家聊聊這次的黑洞結果以及回答各式各樣的黑洞問題。一起繼續來體驗黑洞的魅力吧!

也想問問大家,現在有了一批新資料,你最期待下一次的黑洞成果發表,帶來什麼消息呢?

  1. 我們成功觀察到了霍金輻射!
  2. 黑洞的模擬結果發現超越廣義相對論的新理論!
  3. 黑洞中其實有其他文明,而且我們已經成功接觸了!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1259 篇文章 ・ 2384 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
1

文字

分享

0
1
1
電磁波全揭秘:了解頻帶、頻寬、頻率和通信技術的基礎知識
數感實驗室_96
・2024/06/13 ・672字 ・閱讀時間約 1 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

先前我們介紹了多位為通信科技發展做出貢獻的科學家。現在,我們要深入探討無線通信的技術層面。

無線通信,顧名思義不像傳統的電話或電報那樣需要一條實體的線路來傳遞信號。但這些信號並非憑空傳遞,它們依賴的正是電磁波。

電磁波在現代社會無處不在,從微波爐、手機到基地台,這些設備都會發射電磁波。但其實即使沒有這些科技裝置,電磁波依然存在於我們周圍。什麼意思呢?答案就是:當我們白天走到戶外,看到的光,它其實也是電磁波的一種。

-----廣告,請繼續往下閱讀-----

希望大家掌握了這些電磁波、頻帶、頻寬等基礎知識後,未來在閱讀相關的電信新聞時更加了解他們提到的術語,以及各種縮寫。以後無論是科技發展的動態還是市場新技術,都能更有概念地理解。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/