Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

【Gene思書齋】丈量世界的雄心壯志

Gene Ng_96
・2014/01/14 ・3408字 ・閱讀時間約 7 分鐘 ・SR值 538 ・八年級

-----廣告,請繼續往下閱讀-----

634920211486841819Die Vermessung der Welt

 

《丈量世界》Die Vermessung der Welt)是部很不好分類的書,因為它即不是傳記,也非科學小說。是少數竟敢以科學家為主題,結合真實的歷史事件,然後還膽敢大賣的小說!單單在德國就售出兩百卅萬冊!去年還拍成了電影:

《丈量世界》是說,18世紀末,兩位德國青年分別以自己的方式「丈量世界」。一位是亞歷山大·封·洪堡(Friedrich Wilhelm Heinrich Alexander von Humboldt,1768-1859),雖然他貴為貴族,可是卻不辭勞苦地著迷於科學冒險,不僅強迫僕人電爆他,還上山下海地親赴原始森林、大草原,深 入南美洲的奧利諾科河(Río Orinoco),探勘洞穴、攀登火山,經歷千驚萬險;另一位是數學家暨天文學家卡爾·費德烈·高斯(Johann Karl Friedrich Gauß,1777-1855),他被認為是歷史上最重要的數學家之一,並有「數學王子」的美譽。和幾乎對女人完全沒有慾望而且終生未娶的洪堡不同的, 《丈量世界》裡的高斯少了女人就活不下去。1828年,兩人都已上了年紀,可是也已名滿天下,兩人首次在柏林碰面,展開《丈量世界》裡一章高斯、一章洪堡的的故事。

洪堡出生於普魯士(Preußen)首都柏林(Berlin),出身於一個地方貴族家庭,自幼受到良好的教育,曾任礦區的檢查員和主任。1799年至 1804年間曾和老法邦普蘭(Aimé Bonpland,1773–1858)前往拉丁美洲旅行探險,就當地自然環境包括洞穴、火山、海洋、植物、礦產、氣候、水文等各方面都進行科學研究與分析,並在當地發現許多新物種。隨後曾於美國、西伯利亞和中亞進行科學考察。他於1804年回到歐洲,從1808年起留居巴黎整理資料,先後長達21年。他 在巴黎出版不少著作,例如探險的成果收錄在卅卷巨著《新大陸熱帶地區旅行記》(Le voyage aux régions equinoxiales du Nouveau Continent, fait en 1799–1804, par Alexandre de Humboldt et Aimé Bonpland)。晚年著有五卷本的《宇宙》(Kosmos)五卷,是他描述地球自然地理的著作。

哥倫布為歐洲人發現了美洲,洪堡為他們瞭解了美洲!世界上以洪堡的名字命名的地名有澳洲、紐西蘭的山脈,美國的湖泊與河流,甚至月亮上的山等;他所涉獵的 科目非常廣泛,包過天文學、地理學、生物學、地質學等,並在每個領域都有重大貢獻;他最先確定了等溫線(isotherm)與等壓線(isobar)的概念,並繪制了全球等溫線圖,使同緯度各地的氣候得以互相比較,大陸氣候和海洋氣候的差別才因此得以顯示;他也是研究動植物群落與地球環境關系的先驅,而且把植被依景觀的不同而把全世界分為16個區;在對火山的考察中,他認識到了岩石水成論(Neptunism)的侷限。他也是近代氣候學、地貌學、火山學、 植物地理學、地球物理學的創始人之一!

-----廣告,請繼續往下閱讀-----

他和哥哥威廉·封·洪堡(Friedrich Wilhelm Christian Carl Ferdinand von Humboldt,1767-1835)創立了柏林洪堡大學(Humboldt-Universität zu Berlin,HU Berlin),是第一所新制的大學,擁有十分輝煌的歷史,對於歐洲乃至於全世界都有相當深遠影響。柏林洪堡大學於2012年6月入選為11所德國「精英大學」之一。威廉的主要研究對象是文化科學,如教育學、國家理論、語言、文學和文化的分析。他是普魯士的教育改革的推動者,同時也是普魯士的外交官。

和出身貴族世家的洪堡不同的,高斯是布倫瑞克(Braunschweig)一對普通夫婦的兒子,幼時家境貧困,但聰敏異常,受卡爾·威廉·斐迪南大公 (Karl Wilhelm Ferdinand, Fürst und Herzog von Braunschweig-Wolfenbüttel,1735–1806)資助才進學校受教育。據說高斯三歲時便能夠糾正他父親的借債帳目。他曾表示, 他能夠在腦袋中進行複雜的計算。

高斯九歲時利用很短的時間就計算出了小學老師提出的問題:自然數從1到100的求和。他所使用的方法是:對50對構造成和101的數列求和(1+100,2+99,3+98……),同時得到結果:5050。這個天才的結果在《丈量世界》裡讓他的老師興奮得痛扁他一頓XD

當他16歲時,預測在歐氏幾何(Euclidean geometry)之外必然會產生一門完全不同的幾何學,即非歐幾里德幾何學(Non-Euclidean geometry);他導出了二項式定理(binomial theorem)的一般形式,將其成功的運用在無窮級數,並發展了高級微積分(advanced calculus)的理論;18歲時,高斯轉入哥廷根大學(Georg-August-Universität Göttingen)學習。在他19歲時,首次成功的用尺規構造出了規則的正17邊形,解決了兩千年來懸而未決的難題;在他21歲出版的經典著作《算術研 究》 (Disquisitiones Arithmeticae)中,作出了二次互反律 (law of Quadratic Reciprocity)的證明,成為數論(Number theory)繼續發展的重要基礎。在《算術研究》中,他也導出了三角形全等定理的概念;他也發現了最小二乘法(least squares),並猜測了質數定理(prime number theorem)。

-----廣告,請繼續往下閱讀-----

一般上,數學家的主要成就在廿幾歲就差不多完成了,高斯也不例外,所以他轉向往對數學家來說,和乾淨的純數學相比,髒兮兮的天文學、大地測量和物理學發展,持續作出重要的貢獻!

1807年高斯成為哥廷根大學的教授和當地天文台的台長直到逝世為止。高斯應用了最小二乘法基礎上創立的測量平差理論,測算天體的運行軌跡。用這種方法, 成功測算出了小行星穀神星 (Ceres)的運行軌跡。穀神星於1801年被義大利天文學家皮亞齊 (Giuseppe Piazzi,1746-1826)發現,但他因病耽誤了觀測,就再也找不到穀神星的軌跡。皮亞齊把以前觀測的數據發表出來,希望全球的天文學家共襄盛舉 一起尋找。奧地利天文學家海因里希·歐伯斯(Heinrich Olbers,1758-1840)根據高斯計算出的軌道成功地再發現了穀神星。

高斯發現通過對足夠多的測量數據的處理後,可以得到一個機率性質的測量結果,他隨後專注於曲面與曲線的計算,他提出的函數被命名為標準常態分佈 〔normal distribution,或高斯分布(Gaussian distribution)〕,並在機率計算中大量使用。

1818年至1826年間,高斯主導了漢諾威公國(Königreich Hannover)的大地測量(geodesic survey)工作。為此,他發明了日光反射儀(heliotrope)。就像《丈量世界》中描寫的那樣,高斯親自參加測量工作。他白天觀測,夜晚計算, 五六年來,親自計算過的大地測量數據超過百萬個。當觀測走上正軌後,他集中精力到處理數據上,發表了近廿篇對現代大地測量學具有重大意義的論文。為了利用 橢圓在球面上的正形投影理論以解決大地測量中出現的問題,高斯從事的曲面和投影的理論,成為了微分幾何(differential geometry)的重要基礎。

-----廣告,請繼續往下閱讀-----

1831年,高斯開始與小他27歲的韋伯 (Wilhelm E. Weber,1804-1891) 以亦師亦友的身份,在電磁學領域共同工作。1833年,高斯發明了磁強計( magnetometer)。通過受電磁影響的羅盤指針,他向韋伯發送出電報,是世界首個電話電報系統,儘管線路才八公里長。1840年,他們畫出了世界 第一張地球磁場圖,並且定出了地球磁南極和磁北極的位置。他的姓--高斯(Gauss),後來甚至正式成為磁感應強度的單位。

雖然高斯在數個領域進行的研究只發表了155篇論文,只把他把認為已經成熟的理論發表出來,他拒絕發布他不認為完整和無懈可擊的作品。他經常吐槽同事說, 他們的發現自己早就證明過了,只是因為基礎理論的不完備而沒有發表,讓人批評他愛搶出風頭。他過世後,廿部紀錄著他的研究結果和想法的筆記被發現,證明高 斯並非打嘴砲。

雖然高斯身為一位教授,但他並不熱愛教書。儘管如此,他還是有學生成為有影響的數學家,例如後來聞名於世的戴德金(Richard Dedekind,1831-1916年)和黎曼(Bernhard Riemann,1826-1866) 。可惜《丈量世界》對高斯和他學生的關係沒有著墨。

描述兩位偉大科學家的《丈量世界》雖然大受歡迎,可是身為科學工作者,《丈量世界》的筆調實在是輕鬆到過份了XD 不可否認,《丈量世界》的故事頗幽默,而且多處令人莞爾,可是對科學家奮不顧身,不畏世俗眼光而全心全意投身科學研究和知識的探索的心思和心境,描寫得卻 不夠深入,他們倆對後世的巨大貢獻也著墨不夠。雖然科學家也是凡人,可是這兩位偉大科學家的許多行為,在動機、心境和心思不明之下,對外人而言就不過是耍 寶而已Orz 當然,也可能如此,讓許多非科學本科的讀者也能樂在其中,可是對科青而言,就太不夠味了!

-----廣告,請繼續往下閱讀-----

儘管如此,讀者在《丈量世界》應該就能看出,洪堡和高斯和兩種類型極端的科學家,前者熱衷在田野裡四處奔波,拚命收集他所能想到的材料,而後者主要在書房 裡苦思理論,以及在室內做觀察,即使要外出測量也從未想要出國去探險。在許多科學領域,也有這兩種迴然不同的科學家,例如理論物理和實驗物理,田野生物學 如分類學、生態學,以及在實驗室為主的分子生物學、生物化學等等。雖然我不是田野生物學家,不過讀完《丈量世界》,我也想到野外去探險了呢XD

可是無論是何種科學家,科學研究最大的動力就是旺盛的好奇心!同樣是認識世界,有人用行腳天下的方式,有人用科學理論,兩者的結合,就像《丈量世界》兩位不貌似竿子打不著的相遇,卻能激起知性的火花!科學家不僅丈量世界,也改變了世界!

本文原刊登於【GENE思書軒】,並同步刊登於The Sky of Gene

-----廣告,請繼續往下閱讀-----
文章難易度
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

3
1

文字

分享

0
3
1
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
231 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

3

5
4

文字

分享

3
5
4
鑑識故事系列:德國免費電玩,邀玩家扮法醫
胡中行_96
・2023/03/20 ・1664字 ・閱讀時間約 3 分鐘

本系列以往藉由講解真實案件,來分享鑑識科學;這篇則摘要免費電玩的虛構情境,鼓勵讀者親自體驗辦案。2023 年 1 月的《國際法醫期刊》(International Journal of Legal Medicine),介紹了一款德國漢堡開放線上大學(Hamburg Open Online University)的遊戲,名叫「Adventure Legal Medicine」(非官方中譯:法醫歷險)。論文詳述開發過程與教學功能,還強調玩家不管有無醫學知識,皆能輕易上手。[1]

=========微劇情,防雷線=========

想避開遊戲情境簡介的讀者,請跳過圖片後的第一段,謝謝。

電玩《Adventure Legal Medicine》的繪畫風格。圖/參考資料 1,Figure 1(CC BY 4.0)

情境設定

依照學習的領域,此遊戲有下列 5 個故事情境,可供選擇:

-----廣告,請繼續往下閱讀-----
  1. 估計死亡時間(time of death estimation):有人死在公寓裡。玩家必須選取正確的驗屍工具,例如:直腸體溫計(rectal thermometer)或神經反射錘(reflex hammer),來推估死亡時間。[1, 2]
  2. 體外驗屍檢查(external post-mortem examination):河岸上死者的某些身體部位,藏有非自然死亡的線索。[1]像是顱骨和手肘擦傷等,都有待玩家一探究竟。[2]
  3. 鑑識人類學(forensic anthropology):森林裡,散落著人類骨骸。觀察並測量骨頭,以推估年紀、性別和身高。將結果拿去跟失蹤人口的檔案比對,玩家或許就能找出死者的身份。[1]
  4. DNA親子鑑定(DNA analysis/paternity test):不知從哪迸出 4 個人,想繼承情境 2 那名死者的巨額財產。[1]玩家得從唾液樣本,分析他們的 DNA,判斷誰才是真有血親關係的子嗣。[1, 2]
  5. 解剖、酒精與藥物(autopsy/alcohol and drug influence):玩家幫車禍死者體外驗屍;解剖以檢查器官;並進行毒物學分析。最後,判讀以上檢查所得的結果。[1]

開發過程

這個遊戲是鑑識病理學家、鑑識人類學家、心理學家、醫科學生、遊戲工程師和插畫藝術家,共同合作的結晶。類似於商業開發的線上遊戲,產品正式釋出之前,得先找人來封閉測試。2 名分別為 25 和 49 歲的男性;以及 21、25 與 54 歲的 3 名女性,率先嘗試情境 1 和 2 的前期測試版。研發團隊根據他們的感想與建議,改進遊戲,並設計情境 3。接著,請 40 名醫學系的學生,操作情境 1 至 3 的測試版。另外,其他不同教育程度的學生,作為一般大眾的樣本,也受邀試玩。最終統合大家的評論後,團隊設計出情境 4 和 5 的遊戲。[1]

嚴肅遊戲

德國研發團隊將產品定位成「嚴肅遊戲」(serious game),以教學而非娛樂為主要目的,而且在視覺上多採灰階,來保持中性。[1]筆者試玩了一小部份,又觀賞攻略影片,覺得繪圖和音效雖不華麗,但頗為用心。由於遊戲全程都有電子版的課本唾手可得,玩家本身無須具備專業知識。每個階段結束後,還能透過小測驗,了解學習成效。對相關科系而言,也可用於輔助教學或自學。從 2020 年 1 月在 Google Play 上架以來,有數千人下載,並獲得平均 4.5 星的評價;可惜不曉得線上網頁版的使用人次。[1]下面是此遊戲的基本資料、連結與攻略,歡迎讀者分享闖關心得。

Adventure Legal Medicine

  • 名稱:Adventure Legal Medicine[1](英文別名:Forensic Medicine Adventure;德文名稱:Abenteuer Rechtsmedizin)[2]
  • 對象:醫學相關科系的學生及一般愛好者。[1]
  • 語言:英文和德文。[1]英文版的故事敘述,用字不難;但基於辦案的情境,勢必會出現骨骼、基因等,鑑識科學常見的專有名詞。
  • 行動裝置版:僅支援Android系統的平板電腦和手機;沒有 iOS 的版本。請點超連結下載,或上Google Play搜尋「Abenteuer Rechtsmedizin」。[1]
  • 線上網頁版http://elearning.uke.de/HOOU/RechtsmedizinSeriousGame/ (完全載入後,可以按下方代表德文的「DE」,將語言改為英文「EN」。)[1]
電玩《Adventure Legal Medicine》英文版,前 4 個情境的攻略。影/參考資料 2

  

  1. Anders S, Steen A, Müller T, et al. (2023) ‘Adventure Legal Medicine: a free online serious game for supplementary use in undergraduate medical education’. International Journal of Legal Medicine, 137, 545–549.
  2. SLY MobileGaming (15 JAN 2021) ‘Forensic Medicine Adventure Abenteuer Rechtsmedizin | Point and Click Game Walkthrough’. YouTube.
-----廣告,請繼續往下閱讀-----
所有討論 3
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

1

4
1

文字

分享

1
4
1
華勒斯的演化論與生物地理學,源自亞馬遜的燦爛之火
寒波_96
・2023/02/22 ・3721字 ・閱讀時間約 7 分鐘

公元 1823 年華勒斯在英國誕生,於 1913 年以 90 歲高壽去世,今年 2023 年是他誕生 200 年。我們懷念他是因為,他曾經和達爾文聯名發表演化觀點,以及提出解釋東南亞海島間生物分佈差異的「華勒斯線」。

Alfred Russel Wallace 在台灣常翻譯為華萊士,不過如威廉華勒斯等等 Wallace 都翻譯作華勒斯,本文就統一作華勒斯。

達爾文會提出演化論,深受他知名的小獵犬號之行影響。華勒斯的東南亞考察也給予他不少啟示,一如達爾文的加拉巴哥群島等地;然而在此之前,華勒斯已經在亞馬遜有 4 年經歷。為了紀念華勒斯兩百歲生辰,Nature 期刊 2023 年初刊登兩篇文章,緬懷他的亞馬遜之旅。

華勒斯 1860 年代的畫像,當時 40 歲左右。圖/Mondadori Portfolio via Getty

與強者朋友一起前進亞馬遜,然後分道揚鑣

和前輩達爾文相比,華勒斯的家境普通,也沒有受過正規的學術研究訓練。所幸身處文化發達的大英帝國,有志青年仍有不少學習和出人頭地的機會。何況他爸爸是學過法律的自耕農,文化資本其實不算低。

-----廣告,請繼續往下閱讀-----

成年後喜歡生物的華勒斯在 1844 年,21 歲之際遇見小他 2 歲的貝茲(Henry Walter Bates),兩人志同道合;華勒斯也從一般愛好者,升級為有系統的標本搜集者,可謂一隻腳踏入研究領域的門檻。

1848 年,華勒斯 25 歲之際與貝茲一同航向大西洋對岸的亞馬遜。不過兩人大部分時候分開行動,貝茲在亞馬遜南部,華勒斯在北部的尼格羅河(Rio Negro)一帶。

華勒斯年輕時在談笑無鴻儒,往來皆白丁的階段,我猜朋友大概不會只有貝茲一位。不過貝茲後來提出的貝氏擬態(Batesian mimicry)沿用至今,可謂華勒斯的強者我朋友,事後諸葛的我們建構歷史敘事時,也就津津樂道兩人的友誼。

英國病人碰上船難,買保險很重要!

離家萬里的華勒斯,依然透過經紀人與國內保持聯繫,郵寄異鄉產品回英國賺錢。在亞馬遜待了 4 年後他決定返鄉,期間一直被疾病威脅生命,可謂現實意義上的英國病人(The English Patient)。

-----廣告,請繼續往下閱讀-----

最慘的是他弟弟 1849 年遠渡重洋來照顧他,卻自己也感染黃熱病,返國途中不幸病逝。而華勒斯要等到幾個月後才收到消息。

1852 年華勒斯搭乘海倫號(Helen)貨船返國,沒想到出海三個星期後火燒船,使他漂浮在大西洋海面上,眼睜睜看著攜帶的行李大多損毀。最後他耗費 80 天返回英國,比起與貝茲的去程 29 天漫長得多。好在經紀人有買保險,讓華勒斯獲得部分補償,不至於血本無歸。

返回英國的海倫號火燒船事件後,沒有損毀的少數紀錄。圖/The Natural History Museum/Alamy

回到英國的華勒斯將近 30 歲,闖出一些名號,卻沒有受到太多重視。所幸保住生命加上幾年累積的知識,賦予他東山再起的契機。1854 年他得到前往東南亞的機會,1858 年 35 歲時就和達爾文聯名發表歷史巨作。

從亞馬遜參透生命的奧秘:生物地理學

華勒斯僅管在亞馬遜一直生病,也淬煉出不侷限於觀察的科學眼光,從船難撿回一條命回到英國後,展露學術鋒芒。1852 年 12 月 14 日,他在倫敦的動物學會發表研究亞馬遜猴子的論文,主張亞馬遜各地的猴子款式,受到大河形成的地理障礙強烈影響。

-----廣告,請繼續往下閱讀-----

當時華勒斯受到一些批判,後來證明他的論點無誤,而且是生態分佈的普遍現象。現在我們知道更多:亞馬遜的河道歷史上改道多次,導致生物的分佈範圍持續變化。

用現代標準看,前往亞馬遜考察的 4 年差不多等同華勒斯的博士班修行,回國後發表的報告則是他的博士論文。這篇博士級論文中還觸及一個要點,所謂的「亞馬遜雨林」內部其實差異不小,他是首先有意識提及此事的研究者。

華勒斯觀察到亞馬遜的不同地區,物種組成不太一樣。他劃分 4 大區域:幾內亞、厄瓜多、秘魯、巴西,由其間的亞馬遜河、尼格羅河、馬德拉河(Madeira)這些大河分割出不同地區的地理障礙。如今所知更多,還可以切得更細。

具體是觀察到有幾條河分割出幾塊地,超乎其上普世性的生物學道理是,由於地理環境的阻隔,各地會形成不同的「特有種(endemism)」。華勒斯領悟地理障礙會影響生物分佈,可謂生物地理學的先驅。

-----廣告,請繼續往下閱讀-----
華勒斯 1853 年出版書籍中的亞馬遜地圖。圖/Mary Evans/Natural History Museum

自學成才的英國洞觀者

現在的人可能覺得上述觀點都是些普通常識。可是華勒斯是在 1852 年提出,那時演化論尚未問世,跟他同齡的孟德爾,當時也尚未開始種植豌豆。

一百多年後的常識,首度問世時常常是驚天動地的新突破!

年輕的華勒斯沒有受過正規學術訓練,還是需要持續賣標本換錢的月光族,提出的研究成果竟有如此理論性。由此可知亞馬遜之行,確實讓華勒斯從所謂的集郵者,蛻變為具備洞察力的科學家。

法國詩人韓波(Arthur Rimbaud)認為,詩人必需是能看穿事物表面,有洞察力的洞觀者(voyant),我想這也是頂級科學家必需配備的能力,亞馬遜的神秘力量加持過後,華勒斯可謂成功通靈。

-----廣告,請繼續往下閱讀-----

這類自學成才的科學家,當時英國不只華勒斯一位。以時代來說,那時的英國社會有點厲害。後來華勒斯沈迷於「唯靈論(spiritualism )」就是另一個故事了……

華勒斯年輕的南美洲經歷,讓人聯想到更早將近一百年的洪堡(活到很老,1859 年 90 歲時去世)。身為晚輩,華勒斯讀過洪堡作品,他站在洪堡巨人的肩上,觸及到更高的思想境界。

許多人覺得遺憾,遺傳、演化並稱,但是孟德爾提出遺傳學法則後被埋沒超過 30 年,等到 1900 年代才重現於世,因此 1882 年去世的達爾文沒有機會知悉。這方面華勒斯比較幸運,他年紀比孟德爾小半歲,又一直活到 90 歲,有機會見證遺傳學的發揚光大。

華勒斯 1853 年出版書籍中提到的「黑暗中一團燦爛之火(sitting amidst the gloom, shining out like a mass of brilliant flame)」圭亞那動冠傘鳥。圖/Hein Nouwens/Getty

燦爛之火多年以後依舊燃燒

多年在亞馬遜、東南亞走跳的華勒斯,有不少接觸原住民的機會。照文字紀錄看來,他年輕時的思想應該和同時期的普通英國人差距不大,沒有特別進步或反動;不過相比於同時代人,他更尊重在地知識,這也有助於他的成功。

-----廣告,請繼續往下閱讀-----

亞馬遜的生物多樣性如今依然天下第一,世界卻變化不少。尼格羅河盆地的原住民,在華勒斯時代是被觀察者,類似實驗動物的角色,現在漸漸變成主動的研究者,他們用源自不同文化的手法探索自己的世界,成為現代知識體系的一份子。

然而,曾經啟發華勒斯的尼格羅河盆地,至今仍缺乏一流的研究機構,無法培育本土的研究人才,本地學子必需離鄉背井。科學從華勒斯到現代突飛猛進,仍有不少進步空間。

上圖是華勒斯描述為「黑暗中一團燦爛之火」的圭亞那動冠傘鳥(Guianan cock-of-the-rock ,學名 Rupicola rupicola),目前沒有滅團危機,依然在華勒斯探索過的雨林中飛翔。希望燦爛之火永不熄滅,但是不要變成失控的森林大火。

延伸閱讀

參考資料

  1. Alfred Russel Wallace’s first expedition ended in flames
  2. Escaping Darwin’s shadow: how Alfred Russel Wallace inspires Indigenous researchers
  3. Evolution’s red-hot radical

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
寒波_96
193 篇文章 ・ 1117 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。