0

0
0

文字

分享

0
0
0

監測預警 有線還是無線?

陳 慈忻
・2013/08/08 ・1550字 ・閱讀時間約 3 分鐘 ・SR值 547 ・八年級

-----廣告,請繼續往下閱讀-----

光纖是有線通訊的新趨勢,它有高速傳播、確保資料格式等優點。(圖片來源:Flickr作者Andrew.T@NN)

2013年7月13日,苗栗中港大橋、北勢大橋因應蘇力颱風過境,進行預防性的封閉,目的是為了避免人車通行,發生意外。橋梁預警工作仰賴即時監測順暢的通訊,搭配災害經驗研究的警戒值,將「是否採取預防措施」取捨間的損失最小化。光纖與無線通訊科技是近年來的關注焦點,在橋梁預警上,有線與無線究竟如何選取?而橋梁的監測功能未來趨勢又是如何?

有沒有線 有什麼差別?

橋梁的監測的通訊技術可以分為有線及無線兩種,有線的光纖與無線通訊方式在這幾年來,受到科技產業的注目與爭論,究竟兩者孰優孰劣?

光纖科技目前已經發展得相當成熟,是一種端點對端點(end-to-end)的有線連結,除了可以確保快速的通訊速度,在橋梁監測中,如果將光纖解構,還可以作為感測器來量測溫度及應變,有線的光纖優點也同時是它的限制,儘管有線的傳輸速度目前還是比較快,但是需要鋪設線路,時間和金錢的成本較高。

無線的感測技術快速進步,除了讓研究監測更穩定,較不易受到線路破壞的影響以外,最大的優點就是在時間及金錢的節省上,可以很快地布下大範圍的監測器,然而缺點就是頻寬壅塞,收訊品質受到距離和使用人數影響,這個部分會隨著技術成熟而改善。

-----廣告,請繼續往下閱讀-----

目前有線光纖和無線通訊兩者,都尚未完全取代對方,在許多場合是混合式的使用,因應兩者的優缺點,適合應用在不同的項目上。比方說,山區的橋梁礙於地形阻隔,使用無線傳輸較為合適。

此外,作為對應大眾、行動手機的「廣播」功能,無線具有更普及、可行動的功能;但是在專業的研究用途上,兩個機組之間的來回資料傳輸需要更穩定的速度,同時光纖來回傳輸的過程可以保留原始資料格式,不同於無線通訊必須轉換為無線電波可攜帶的格式,更適合精密儀器之間的資料傳輸。

橋梁監測的預警功能

橋梁的監測技術會隨著通訊技術的研發而逐漸成熟,可以提供橋梁設計方式更多的評估資料,然而,橋梁監測除了研究橋梁的設計之外,也有災害發生期間的預警功能。

透過無線技術的發展,國家地震研究中心希望可以發展連結大眾之間的災情通訊,告訴駕駛者、或是直接與車輛溝通,以達到災害預警的效果。之所以冠上「智慧」,是因為它不像一般的感測器只能被動的監測,還能夠依照監測到的訊號數值,直接採取適當的控制行為,也就是說包含了監測及控制兩種功能。

-----廣告,請繼續往下閱讀-----

控制行為是能自動執行橋梁的預警措施,包括「警示人車」和「強化橋梁」兩種功能,警示人車是在橋梁監測的訊號已達到預警門檻時,透過橋梁兩側的交通燈號或者柵欄來限制人車通行,避免橋梁的毀損造成人命傷亡;強化的部分則是針對特定種類的橋梁,例如斜張橋是一種沒有橋墩、依靠橋梁兩側的鋼筋線拉住橋梁主體的橋梁設計,當橋梁遭受環境變動時,可以調整兩側鋼筋線的角度、緊度,強化橋梁受環境動盪的調適能力。

避免災害擴大、減少災害損失,是橋梁監測的重點。或許智慧型橋梁在不久將來會成為每一座橋梁的稱號,若沒有扎實跟在地的科學研究,包括對河川、河床、颱風、地震、工程、無線訊號傳輸等領域的通盤理解以及活用,是沒辦法走到這一步的。

延伸學習:

本文原發表於行政院國家科學委員會-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

-----廣告,請繼續往下閱讀-----
文章難易度
陳 慈忻
55 篇文章 ・ 1 位粉絲
在丹麥的博士生,專長是用機器學習探索人類生活空間,正在研究都市環境變遷與人類健康的關係。曾擔任防災科普小組編輯、社會創新電子報主編。

0

1
1

文字

分享

0
1
1
說好的颱風呢?!氣象預報不準?要準確預測天氣有多難?
PanSci_96
・2023/09/12 ・4646字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

小心啊,打雷囉,下雨收衣服啊!

氣象報告說好是晴天的,怎麼一踏出門就開始下雨了?

昨天都說要直撲的颱風,怎麼又彎出去了?

多麼希望天氣預報能做到百分之百正確,只要出門前問一下手機,就能確定今天是出大太陽還是午後雷陣雨,是幾點幾分在哪裡?又或是最重要的,颱風到底會不會來?

-----廣告,請繼續往下閱讀-----

但你知道,現在的氣象預報,已經動用全球最強的超級電腦們了嗎?既然如此,我們現在的氣象預報能力到底有多準?我們什麼時候能徹底掌握這顆蔚藍星球上發生的所有天氣現象?

天氣預報有多困難?

雖然我們常常嫌說氣象預報不準、颱風路徑不準、預測失靈等等。但我們現在的實力如何呢?

目前美國國家海洋暨大氣總署的數據分析,對西太平洋颱風的 24 小時預測,誤差平均值約 50 英哩,也就是一天內的路徑誤差,大約是 80 公里。其他國家的氣象局,24 小時的誤差也約在 50 到 120 公里之間。台灣呢?根據中央氣象局到 2010 年的統計,誤差大約在 100 公里內。也就是臺灣對颱風的預測,沒有落後其他先進單位。

現在只要打開手機隨便開個 APP,就能問到今天的天氣概況,甚至是小區域或是短時間區間內的天氣預報。但在過去沒有電腦的時代,要預測天氣根本可以不可能(諸葛孔明:哪泥?)。

-----廣告,請繼續往下閱讀-----

近代且稱得上科學的天氣預測可追溯回 1854 年,那個只能靠人工觀測的年代,英國氣象學家為了保護漁民出海的安危,利用電報傳遞來蒐集各地居民的觀察,並進行風暴預報。後來演變成天氣預報後,卻因為有時預報不準,預報員承受了輿論與國會批判的巨大壓力,最後甚至鬱鬱離世。

19 世紀的氣象學家為了保護漁民出海的安危,會利用電報蒐集各地居民的觀察進行風暴預報。圖/Giphy

在電腦還在用打洞卡進行運算的年代,一台電腦比一個房間還大。氣象局要預測天氣,甚至判斷颱風動向,得要依賴專家對天氣系統、氣候型態的認知。因此在模擬預測非主流的年代,我們可以看到氣象局在進行預測時,會拿著一個圓盤,依據量測到的大氣壓力、風速等氣象值,進行專家分析。

當時全球的氣象系統,則是透過全球約一千個氣象站,共同在 UTC 時間(舊稱格林威治時間)的零零時施放高空探測氣球,透過聯合國的「World Weather Watch」計畫來共享天氣資料,用以分析。關於氣象氣球,我們之前也介紹過,歡迎看看這集喔。

也就是說,以前的颱風預測就是專家依靠自身的學理與經驗,來預測颱風的動向,但是,大氣系統極其複雜,先不說大氣系統受到擾動就會有所變化,行星風系、科氏力、地形、氣壓系統這些系統間互相影響,都會造成預測上的失準,更遑論模擬整個大氣系統需要的電腦資源,是非常巨大的。

-----廣告,請繼續往下閱讀-----

那麼,有了現代電腦科技加持的我們,又距離全知還有多遠呢?是不是只要有夠強的超級電腦,我們就能無所不知呢?

有了電腦科技加持,我們的預報更準了嗎?

當然,有更強的電腦,我們就能算得更快。才不會出現花了三天計算,卻只能算出一個小時後天氣預報的窘況。但除了更強悍的超級電腦,也要更先進的預測模型與方法。現在的氣候氣象模擬,會先給一個初始值,像是溫度、壓力、初始風場等等,接著就讓這個數學模型開始跑。

接著我們會得到一個答案,這還不是我們真正要的解,而是一種逼近真實的解,我們還必須告訴模型,我容許的誤差值是多少。什麼意思呢?因為複雜模型算出來的數值不會是整數,而是拖著一堆小數點的複雜數字。我們則要選擇取用數值小數點後 8 位還是後 12 位等等,端看我們的電腦能處理到多少位,以及我們想算多快。時間久了,誤差的累積也越多,預測就有可能失準。沒錯,這就是著名的蝴蝶效應,美國數學暨氣象學家 Edward Norton Lorenz 過去的演講題目「蝴蝶在巴西揮動了翅膀,會不會在德州造成了龍捲風?」就是在講這件事。

回到颱風預報,大家有沒有發現,我們看到的颱風路徑圖,颱風的圈怎麼一定會越變越大,難道颱風就像戶愚呂一樣會從 30% 變成 100% 力量狀態嗎?

-----廣告,請繼續往下閱讀-----
輕颱鴛鴦的颱風路徑潛勢圖。圖/中央氣象局

其實那不是颱風的暴風圈大小,而是颱風的路徑預測範圍,也就是常聽到的颱風路徑潛勢圖,​是未來 1 至 3 天的颱風可能位置,颱風中心可能走的區域​顯示為潛勢圖中的紅圈,機率為 70%,所以圈圈越大,代表不確定性越大。​

1990 年後,中央氣象局開始使用高速電腦,並且使用美國國家大氣研究中心 (NCAR) 為首開發的 Weather Research and Forecasting 模型做數值運算,利用系集式方法,藉由不同的物理模式或參數改變,模擬出如同「蝴蝶效應」的結果,運算出多種颱風的可能行進路線。預測時間拉長後,誤差累積也更多,行進路徑的可能性當然也會越廣。

「真鍋模型」用物理建模模擬更真實的地球氣候!

大氣模擬不是只要有電腦就能做,其背後的物理複雜度,也是一大考驗。因此,發展與地球物理相關的研究變得非常重要。

2021 年的諾貝爾物理學獎,就是頒給發展氣候模型的真鍋淑郎。他所開發的地表模式,在這六十年間,從一個沒考慮地表植物的簡單模型,經各家發展,變成現在更為複雜、更為真實的模型。其中的參數涵蓋過去沒有的植物反應、地下水流動、氮碳化合反應等等,增強了氣候氣象模型的真實性。

-----廣告,請繼續往下閱讀-----
2021 年的諾貝爾物理學獎得主真鍋淑郎。圖/wikimedia

當然,越複雜的模型、越短的時間區間、越高的空間精細度,需要更強大的超級電腦,還有更精準的觀測數據,才能預測接下來半日至五日的氣象情況。

世界上前百大的超級電腦,都已被用來做大氣科學模擬。各大氣象中心通常也配有自己的超級電腦,才能做出每日預測。那麼,除了等待更加強大的超級電腦問世,我們還有什麼辦法可以提升預報的準度呢?

天氣預報到底要怎樣才能做得準?

有了電腦,人類可以紀錄一切得到的數據;有了衛星,人類則可以觀察整個地球,對地球科學領域的人來說,可以拿這些現實資訊來校正模擬或預測時的誤差,利用數學方法將觀測到的單點資料,乃至衛星資料,融合至一整個數值模型之中,將各種資料加以比對,進一步提升精準度,這種方法叫做「資料同化 (Data Assimilation)」。例如日本曾使用當時日本最強的超級電腦「京」,做過空間解析度 100 公尺的水平距離「局部」超高解析氣象預測,除了用上最強的電腦,也利用了衛星資料做資料同化。除了日本以外,歐洲中程氣象預測中心 (ECMWF),或是美國大氣暨海洋研究中心 (NOAA),也都早在使用這些技術。

臺灣這幾年升空的福衛系列衛星,和將要升空的獵風者等氣象衛星,也將在未來幫助氣象學家取得更精準的資料,藉由「資料同化」來協助模擬,達到更精準的預測分析。

-----廣告,請繼續往下閱讀-----

如果想要進一步提升預報準度呢?不用擔心,我們還有好幾個招式。

人海戰術!用更多的天氣模型來統計出機率的「概率性模擬」

首先,如果覺得一個模型不夠準,那就來 100 個吧!這是什麼意思?當我們只用一種物理模型來做預測時,我們總是會追求「準」,這種「準確」模型做的模擬預測,稱為「決定性模擬」,需要的是精確的參數、公式,與數值方法。就跟遇上完美的夢中情人共度完美的約會一樣,雖然值得追求,但你可能會先變成控制狂,而且失敗機率極高。

「準確」的模型就跟遇上完美情人共度完美約會一樣,雖然值得追求,但失敗機率極高。圖/Giphy

不如換個角度,改做「概率性模擬」,利用系集模擬,模擬出一大堆可能的交往對象,啊不對,是天氣模型,再根據一定數量的模擬結果,我們就可以統計出一個概率,來分析颱風路徑或是降雨機率,讓成功配對成功預測的機率更高。

製造一個虛擬地球模擬氣象?

再來,在物理層面上,目前各國正摩拳擦掌準備進行等同「數位攣生 (Digital Twin) 」的高階模擬,簡單來說,就是造出一個數位虛擬地球,來進行 1 公里水平長度網格的全球「超高」解析度模擬計算。等等,前面不是說日本可以算到 100 公尺的水平距離,為什麼 1 公里叫做超高解析度?

-----廣告,請繼續往下閱讀-----

因為 500 公尺到 1 公里的網格大小也是地表模式的物理適用最小單位,在這樣的解析度下,科學家相信,可以減少數值模型中被簡化的地方,產生更真實的模擬結果。

電腦要怎麼負荷這麼大的計算量?交給電腦科學家!

當然,這樣的計算非常挑戰,除了需要大量的電腦資源,還需要有穩定的超級電腦,以及幾個 Petabyte,也就是 10 的 15 次方個位元組的儲存設備來存放產出的資料。

不用為了天氣捐贈你的 D 槽,就交給電腦科學家接棒上場吧。從 CPU、GPU 間的通訊、使用 GPU 來做計算加速或是作為主要運算元件、到改寫符合新架構的軟體程式、以及資料壓縮與讀寫 (I/O)。同時還要加上「資料同化」時所需的衛星或是全球量測資料。明明是做氣象預報,卻需要等同發展 AI 的電腦科技做輔助,任務十分龐大。對這部分有興趣的朋友可以參考我們之前的這一集喔!

結語

這一切的挑戰,是為了追求更精確的計算結果,也是為了推估大魔王:氣候變遷所造成的影響必須獲得的實力。想要計算幾年,甚至百年後的氣候狀態,氣象與氣候學家就非得克服上面所提到的問題才行。

一百年來,氣候氣象預測已從專家推估,變成了利用龐大電腦系統,耗費百萬瓦的能量來進行運算。所有更強大、更精準的氣象運算,都是為了減少人類的經濟與生命損失。

對於伴隨氣候變遷到來的極端天氣,人類對於這些變化的認知還是有所不足。2021 年的德國洪水,帶走了數十條人命,但是身為歐洲氣象中心的 ECMWF,當時也只能用叢集式系統算出 1% 的豪大雨概率,甚至這個模擬出的豪大雨也並沒有達到實際量測值。

我們期待我們對氣候了解和應對的速度,能追上氣候變遷的腳步,也由衷希望,有更多人才投入地球科學領域,幫助大家更了解我們所處的這顆藍色星球。

也想問問大家,你覺得目前的氣象預報表現得如何?你覺得它夠準嗎?

  1. 夭壽準,我出門都會看預報,說下雨就是會下雨。
  2. 有待加強,預報當參考,自己的經驗才是最準的。
  3. 等科學家開發出天候棒吧,那才是我要的準。更多想法,分享給我們吧

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

2

4
3

文字

分享

2
4
3
精準預測氣象的「掩星技術」,讓你知道颱風放不放假!
科技大觀園_96
・2021/11/16 ・2380字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

新颱風生成後,大家最關心的就是颱風的路徑、帶來的風雨大不大,以及——到底放不放颱風假?要能預測和評估颱風的走向影響,可靠的氣象觀測資料是不可或缺的。這就不得不提,在我們頭頂上認真執行觀測任務的人造衛星,以及它們身懷測知氣象變化的絕技!

每次颱風來襲,大家都關心會不會放颱風假。圖/pixabay

貢獻全球氣象資料,福爾摩沙衛星功不可沒

過去福爾摩沙衛星三號(福三)執勤十年,為全世界多個氣象中心與研究單位提供無以計數的資料,可謂台灣在國際氣象上的外交大使,於減少天氣預報誤差的貢獻度上,更曾被評為全球前五。福三榮退後,接棒的福爾摩沙衛星七號(福七)也在今年二月完成任務軌道的全部部署。福三和福七都不只有一枚衛星,而是由各 6 枚衛星組成的衛星星系(constellation)。每一枚衛星就像在不同位置巡守、收集氣象情報並互相通報的將士,使得觀測範圍可以覆蓋地球各個區域,提供即時而完整的三維觀測數據。

福衛七號結構示意圖。圖/國家太空中心

但福七與行經南北極的「繞極衛星」福三不同的是,它在南北緯 50 度間軌道繞行,主攻台灣、赤道與中低緯度颱風盛行區的觀測。因此福七可以提供密集度更高、更多的溫度、壓力、水氣等氣象資料。國家太空中心推估,它可提升氣象預報準度 10% ——以颱風為例,可以讓 72 小時的路徑誤差改善 10%,協助我們更精準地評估氣象變化與預防災害。

每日可提供 4000 點大氣垂直剖線資料、大幅提升全球氣象預報準確度的福七,究竟是怎麽辦到的?答案就是掩星技術 (Radio Occultation) 。

掩星技術,讓衛星成為太空中最精準的溫度計!

在天文學上,「掩星」指的是一個天體,在另一個天體與觀測者之間通過,產生的遮蔽現象。但英文中的「Occultation」,也可以指前景中的物體,阻擋遮蔽背景中任何物體的情形。而所謂的「掩星技術」,就是利用電磁波訊號在經過大氣層時,會因穿透不同溫度、壓力或濕度的空氣層,被「遮蔽」而產生轉向、變慢、減弱等的特性,來反演出地球上空之溫度、氣壓和濕度。

-----廣告,請繼續往下閱讀-----

衛星與衛星之間,本來因為地球的阻隔看不到彼此,但可以接受來自彼此的電磁波訊號。福七的主要酬載儀器——全球衛星導航系統無線電訊號接收儀」(TGRS),可以接受美國全球定位系統(GPS) 和俄羅斯全球導航衛星系統(GLONASS)全球定位衛星通過大氣與電離層的折射訊號。接著,通過計算電波訊號的偏折程度,就可以反演出大氣與電離層中的溫度、水氣、壓力、電子密度等數據。

掩星技術在 1995 年才開始投入應用,而從 2006 年的福三,到如今福七計劃中積累的研究經驗,使台灣成為這項新穎技術領域的佼佼者。掩星技術所得到的資料具備高準確度和解析度,也擁有不需要大量接收訊號的衛星,就可以得到大範圍數據、降低成本的優勢,不僅可以用作氣象預報,更能幫助我們監控和增進對氣候變遷的瞭解。

衛星加上同位素的助攻,可以使天氣預報更精準

另一方面,除了改善觀測一般氣象資料如溫度、濕度、大氣壓力等參數的準確度,在氣象觀測中新增測定不一樣的參數——如大氣水分子的同位素,也可以讓我們的天氣預報更精準!

過去礙於資料的取得有限,同位素分析在氣象觀測與預報中常被忽略。但近年來人造衛星技術的發展,為氣象科學推開新的一扇窗。來自歐洲太空總署、搭載光譜分析儀的衛星 IASI ( Infrared Atmospheric Sounding Interferometer ),讓東京大學的研究團隊,可以利用其所搜集到的大氣水氣資訊,在氣象預報的模型中,第一次嘗試納入同位素資訊的考量來做分析。

-----廣告,請繼續往下閱讀-----

我們都知道,擁有相同質子數、不同中子數的氫與氧元素之同位素,會讓個別水分子的重量變得更重或輕一些。水分子同位素對氣相和液相轉換相當敏感,與一般的水分子 H2O 相比,較重的水分子如 H2HO 或H218O 會更傾向於凝結成水珠,或更難蒸發。因此蒸發與降雨過程等大氣運動,便會影響不同同位素水氣分子的分佈。追蹤它們的行跡,能增進我們對氣象系統的瞭解。

研究團隊以 2013 年在日本發生的低壓事件作為參照,發現納入同位素的數據之後,氣象模型能更好地模擬這次事件的整體氣壓情形。而在全球的尺度,尤其是中緯度及北半球地區,融合同位素資訊後,氣象預報如氣溫及濕度預測的準確度,也都有所提高。雖然這只是初步的探究,但科學家期許,未來進一步完善氣象觀測衛星對同位素資料的收集,能使人類更往精準氣象預測的目標邁進。

人造衛星就像是科學家的千里眼,能觀測千里之外的風雲變化。發展衛星技術,不僅能讓我們更精準預測氣象,在全球化的現代,也能在國際上發揮「Taiwan Can Help」及互助的精神;各國對航太技術的投入與數據資源共享,更是科研工作與人類社會的一大福音。

福爾摩沙衛星拍攝的美麗福爾摩沙島。圖/國家太空中心

參考文獻

所有討論 2
科技大觀園_96
82 篇文章 ・ 1124 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

3
3

文字

分享

0
3
3
可發展 6G 無線通訊,還能超感知透視!科技新星「太赫茲技術」到底是什麽?
科技大觀園_96
・2021/08/03 ・5035字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

「太赫茲」是物理單位,英文為 Terahertz(THz),字首「Tera-」是 1012 的意思,所以太赫茲就是 1012 赫茲,也就是每秒 1012 次的意思,亦可翻譯為「兆赫茲」。目前常聽到的「太赫茲」,其實是指太赫茲波段,就是電磁波的一組特定波段,頻率範圍是 0.1 THz~10 THz,對應電磁波波長為 3 mm~30 µm,介於微波和可見光之間,因此也稱為毫米波和次毫米波。

研究太赫茲技術的清華大學電機系助理教授楊尚樺認為,對一般人來說,「太赫茲」依然是陌生名詞,因此就像之前的「奈米」和「量子」一樣,被許多廠商拿來當成行銷用語。 

橘色區間為太赫茲波段。圖/沈佩泠繪

太赫茲波段有什麼特別的?

楊尚樺強調,太赫茲波有三個特點:辨識化學分子、透視和不破壞生物體。不同波段的電磁波和物質都有很特殊的交互作用,比如說可見光就和人眼細胞有互動(註 1),柱狀和錐狀細胞可以感知可見光波段。相對地,太赫茲波可以辨識出特定的化學分子,得知物質成份,可應用在分析藥品、毒品或蛋白質的種類等。 

另外,太赫茲波可以做到「透視」,人眼看不到的東西,太赫茲波可以穿透表層到達內部。以行李箱為例,太赫茲波可以偵測行李箱裡面是什麼,可應用於機場安檢與毒品檢測。而且太赫茲波不僅可以檢測固體,還可以檢測液體和氣體。 

-----廣告,請繼續往下閱讀-----
太赫茲波影像檢測的特點。圖/沈佩泠繪

 太赫茲波的「透視」有別於 X 光檢測。人體的生物分子(如 DNA、RNA)照射 X 光會受損,因為光子能量太強,容易把分子裡的電子打出來,成為游離電子;而失去電子的分子變得不穩定,會引發人體罕見與不正常的化學反應。反之,太赫茲波的光子能量很小,無法破壞生物分子,更無法將分子內的電子游離出來,因此太赫茲波對生物體是安全的。 

太赫茲波可以做到非破壞性的偵測,很適合工業製造與品質管控的應用,例如半導體廠在晶片封裝之後,檢查內部有無斷線,或是評估 3D 晶片封裝是否完好;藥廠則可以檢查膠囊成品內部有無破損等。

太赫茲技術前景看好

提到當初為什麼想要研究太赫茲技術,楊尚樺笑著說:「其實是有點誤打誤撞。」2011 年楊尚樺申請密西根大學博士班面試時,未來的指導教授Prof. Mona Jarrahi 提到實驗室是做太赫茲技術,這是他首次聽聞這個名詞。當時臺灣僅有少數團隊研究太赫茲科學與技術,多為物理系或應用物理的學者,太赫茲相關元件(發射器或接收器等)也很難取得。 

跟隨著 Mona Jarrahi,楊尚樺從太赫茲最重要的元件「太赫茲發射源」(terahertz emitter)開始接觸,博士班念到第 4 年和第 5 年時,他開始懷疑這項技術是否在 10 年內真的有出口。「因為遇到的困難比你成功要多很多,幾乎都是困難的,看不到出口的,出口的光相當微弱」,楊尚樺說道。 

-----廣告,請繼續往下閱讀-----

甚至後期和指導教授 Mona 討論未來任教是否繼續研究太赫茲技術時,楊尚樺坦白和 Mona 說不會。當時專注在工程技術的楊尚樺認為,在許多人類所需的工程應用上,太赫茲很難和其他相對成熟的領域競爭,前景相當限縮。Mona自然不這麼認為,卻也沒有多說什麼。 

後來,在申請教職的期間,楊尚樺從更全面的角度看待太赫茲技術,不只看業界技術和資金來源,更看向 10 年後和 20 年後的研究發展。他認為如果太赫茲元件能夠量產,且 6G 無線通訊帶來大量市場需求,應可克服許多困難。再來,太赫茲研究對於學界是有挑戰性的問題,不僅符合臺灣半導體、電子、光電通訊產業的脈絡,又有很多題目,可以做長期的研究,很有發展前景。

檢測晶片內部破損、超感知透視藝術文物

現在楊尚樺實驗室的研究核心是太赫茲裝置(Terahertz Device),可分為主動元件和被動元件。主動元件包括最重要的太赫茲發射源或是太赫茲探測器被動元件則有太赫茲透鏡或太赫茲的訊號與空間調變器等。有了這些元件,就可以做出想要的太赫茲系統。 

楊尚樺目前已做出一套影像系統,用於工業破損檢測時,可以看出晶片內部的破損,或是看太陽能板裡面的隱裂位置和大小。這套影像系統還可以用來觀察植物,例如豆莢內部的豆子長得如何,以及水分子輸送的情況。生醫用途上,也可以從混和物中準確辨識出血糖、胺基酸和蔗糖的成份與比例。以上,是屬於太赫茲光譜學(Terahertz Spectroscopy)的應用。 

-----廣告,請繼續往下閱讀-----

與影像系統有關的,還有超感知(Super sensing)的研究,例如太赫茲波可以直接看透一本書,在不碰觸到書的情況下,把每一頁的訊息解析出來。而且太赫茲波段不會破壞物質分子,也相當適合用來解析故宮文物,讓文物修復更順利。楊尚樺笑著說,如果有機會的話,真的非常想看看裡面藏有什麼祕密。 

楊尚樺指出,2013 年國外太赫茲團隊曾經發表過一項有趣的研究。知名的西班牙畫家 Goya,平常在作品上一定都會簽名,但是有一幅畫作「Sacrifice to Vesta」很特別,從整體風格來看,大家都認為是 Goya 畫的,卻看不到簽名。 

因此 C. Seco-Martorell 等人就用太赫茲影像系統解析了這幅畫,才發現原來 Goya 把自己的簽名簽在畫作底下,被上層的顏料蓋住了,他們將結果發表在光學期刊《Optics Express》(參考資料 1)。  

畫作「Sacrifice to Vesta」不同透明度的影像。(a)是原始畫作,(b)是可見光與太赫茲成像各占一半的情況,(c)則是 100% 太赫茲的成像情況,可以看到原作底下隱約有一位頭部朝左的女人。圖/參考資料 1
將畫作「Sacrifice to Vesta」的太赫茲成像加以放大,團隊終於在右下角找到 Goya 的簽名痕跡。(a)是原始畫作的太赫茲成像,(b)是畫家Goya的簽名對照組,(c)(d)(e)則代表 Goya 隱藏簽名在不同振幅強度的太赫茲成像,(c)是最大振幅,簽名圖像最為清楚。圖/參考資料 1

從影像系統邁向 6G 應用

除了影像系統外,楊尚樺團隊也努力將太赫茲技術應用在 6G 無線通訊的產業鏈之中。目前的工作主要是將 5G 的通訊系統頻率範圍轉移到太赫茲頻率範圍(0.1 THz~10 THz),同時要把很高速的訊號加載在太赫茲的載波頻段(註2)上,目標是做到每秒可傳輸 1012 位元,也就是在一秒要加載 1012 個 0 或 1。 

-----廣告,請繼續往下閱讀-----

現在相關研究遇到了一些困難,與太赫茲元件有關。雖然從 5G 到 6G(太赫茲頻段)的頻寬擴大許多,但是系統的發射端和接收端是否能夠運作?如果太赫茲發射源能量很低,訊號很難到達接收端。如果太赫茲接收器不夠靈敏,也很難獲取資料,並且也要確保龐大的資料量得以順利解碼。 

為了評估通訊系統是否夠好,也可以從訊噪比(訊號和雜訊的比例,Signal-to-noise ratio)來看,如果訊號和雜訊的比例愈高,訊號就愈乾淨,也更容易成功解碼。因此,提升訊噪比也是將來改善的重點。

仍有重重困難有待突破

太赫茲系統為什麼難以量產?相關元件非常昂貴,市面上買不到整套消費級的太赫茲系統,一套系統造價約數萬到數十萬美元,公尺級別的大尺寸也相當占空間。 

楊尚樺表示,目前技術的最大問題在於「太赫茲發射源」,大家還不知道如何做出完善、實用、微小又可在室溫環境操作的太赫茲發射器,只能先借助過去的知識幫忙。太赫茲波段落在微波和可見光之間,是電學領域和光學領域的交集地,微波那端研究電學的人,會想要把頻率做高,靠近太赫茲波段;但是元件頻率愈高,電容影響愈大,輻射功率會急速下降。 

-----廣告,請繼續往下閱讀-----

另一方面,電磁波段高頻那端研究光學的人,會從材料著手,通常會選用不同能隙(energy gap)大小的材料測試,比如說藍光 LED 的氮化鎵(GaN),能隙大,輻射出的光子頻率較高。如果要將輻射頻率降低,靠近太赫茲波段,能隙要夠小,但自然界找不到可以直接輻射出太赫茲波的窄能隙材料,必須要用特殊的技術才有辦法達成。 

即便達成了上述的窄能隙條件,例如輻射出頻率 1 THz 的光子,對應的能隙能量是 4 meV(milli-electron volts,能量單位),這個能量已經小於室溫下電子熱擾動的動能(幾十個 meV),所以很難控制每個電子從能隙掉下來的時機,以便讓材料發出一致的同調光。必須要在極低溫,例如低於 -196.15 °C(77 K)的液態氮環境下,才有辦法達成。 

楊尚樺強調,不論是電或光的方式,都很難在太赫茲波段輻射出足夠的功率,也就難以做出好的太赫茲發射源。發射源就像一支手電筒,如果不亮(功率不足),就無法探測周圍的環境,更不用說還要傳遞什麼訊號了。 

「太赫茲發射源」目前還沒有找到完美的解決方案,不過楊尚樺團隊已經可以做到足夠亮的發射源,下一步要往可量產、輕巧化的太赫茲發射源邁進。為了搭配臺灣在半導體製程的專業,除了主流的 III – V 族光電元件之外,更開發 IV 族光電元件,目前實驗室已可獨立實現這兩類的主/被動元件。 

-----廣告,請繼續往下閱讀-----

楊尚樺團隊的 10 年研究目標是將整個太赫茲系統微縮到晶片大小(毫米等級,mm),這樣才有辦法讓太赫茲技術進入一般民眾的生活。

年輕學者如何在教學與研究中取得平衡?

在清大做研究的負擔很重,而楊尚樺也熱衷於教學,所以兩邊都忙,「我也不知道我有沒有取得平衡。」楊尚樺笑著說。他認為一般人都會直觀認為教學就是在課堂上教學生,但其實研究同時也是教學,因為必須讓本來習慣在課本做習題的學生,轉換成可以實作的初階研究者,這本身就要花很多心力教導。同時,行政角色上的導生,又或是其他系的學生,如果對太赫茲研究題目有興趣,他也會予以指點。 

「總之,做就對了!」他說道。在授課的同時,自己本身也會感受到某方面知識不足,會特別去學習。還有,因為在教學時強烈感受到每一屆學生思考模式都不同,所以楊尚樺認為不可能用同一套教學方法教 3 年,必須要想新招。每次看到學生學會知識有所成長,心中就很有成就感。

楊尚樺勉勵大學生要做自己有熱情的事。圖/簡克志攝)

要做自己有熱情的工作

楊尚樺認為,從他帶過專題的清大大學部學生和研究生來看,絕大多數都很積極,有很多東西想學。甚至有的學生不只在他這邊做研究,也同時要求自己在臺灣大學或是中央研究院做其他領域研究。通常多工的研究路線會需要儲備更多的專業知識,以及分散研究力道,導致多方都做不好的情況。而這些學生卻產出了不錯的成果,讓他感到相當驚訝。

-----廣告,請繼續往下閱讀-----

不過,楊尚樺也提到,就他在學校的觀察,清大表現不錯的學生,普遍也都非常焦慮。即便在課業上、研究上、綜合表現上的成果在他看來已經相當出色了,但學生依然覺得想要再多做一些事情補強。這種好學和堅毅的態度,楊尚樺打從心裡給予高度肯定。然而,讓他覺得不好的原因在於:學生無法專注做好一件重要的事。若伴隨著患得患失的心態,卻沒有發展適合自己的主要路線,即便真的做了更多的事,表現往往也不會更好。換句話說,學東西不是因為想要學多而去做,而是自己本身有強烈的動機想要專注學習。 

楊尚樺看過一些很厲害的學生,他們並沒有一個好的目標,而且做事時會很快去計算短期之內能夠看到什麼樣的效益。沒有看到可能的效益,就很有可能會轉向。這些學生不怕做事情,怕的是沒有看到短期內的回饋,這其實不是好的學習態度,因為有些工作的效益,是不能只看短期的。 

最後,楊尚樺也勉勵清大的學弟妹,要做自己有熱情又喜歡的事。因為如果你在做「別人」認為不錯的事情時,若這件事和你的興趣並不相符,當過程中遇到挫折時,就很容易考慮要不要往另一個方向走,而沒有辦法堅持下去。 

但是,如果你是做自己有熱情的事情時,不管遇到什麼困難,你會廢寢忘食地不斷破關,獲得很多技能,當解決一個難題之後,你還會願意挑戰下一個關卡。看到的危機多了、功夫下得深了,你就比別人有更好的危機處理能力。堅持的道路上走得會比別人長、比別人久,你的獨特性就出來了,就比較容易出類拔萃。 

注釋

  • 註 1:不只人眼細胞,許多地球上的生物都和可見光有互動
  • 註 2:載波頻段(Carrier frequency band):用以乘載資料的電磁波頻率區間。 

參考資料

1. Seco-Martorell, C., López-Domínguez, V., Arauz-Garofalo, G., Redo-Sanchez, A., Palacios, J., & Tejada, J. (2013). Goya’s artwork imaging with Terahertz waves. Optics Express, 21(15), 17800. https://doi.org/10.1364/oe.21.017800

科技大觀園_96
82 篇文章 ・ 1124 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。