Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

輻射其實離我們很近—輻射與生活

科學月刊_96
・2011/07/10 ・5310字 ・閱讀時間約 11 分鐘 ・SR值 576 ・九年級

-----廣告,請繼續往下閱讀-----

在今日,輻射普遍被應用在各式現代化設備,若能夠對它有正確的認知,注意安全防護,我們便可以安心享受其所帶來的各種便利。

 

張仕康、門立中

輻射在我們生活周遭無所不在,舉凡太陽光、燈光、X射線、γ射線(伽瑪射線)、微波、雷達、電視與調頻無線電波、手機用低頻通訊電波、地殼輻射、氡氣或人體內「鉀–40」元素所產生的輻射均屬之。因此若我們能夠對輻射有正確的認知、因勢利導,便能利用它增進生活利益,並避免身體健康的損害。

什麼是輻射?

輻射是一種能量傳遞的形式。通常依能量高低,可區分為游離輻射(>10 keV)與非游離輻射(<10 keV)兩大類。其中游離輻射又可分為不具質量的電磁輻射(如γ射線、X射線)與帶有質量的粒子輻射(如α粒子、β粒子、中子、高速電子、高速質子及其他粒子)兩種;非游離輻射則是紫外線、可見光、紅外線、微波、雷達波、電視,以及廣播電台所使用調頻(FM)無線電波、調幅(AM)無線電波、長波無線電波等。一般人所常接觸到的各類輻射如圖一所示。

-----廣告,請繼續往下閱讀-----
圖一:電磁波能譜圖。

以來源來說,輻射可區分為天然輻射(如宇宙射線、地殼輻射、氡氣、人體輻射),與人造輻射(如醫療輻射、核能發電、核爆落塵、加速器製造之核種)。天然的宇宙射線,源自天體各恆星不斷進行核融合,像是一座座活的核反應爐,不斷反應,放出光、熱以及各種放射線;地殼射線來自地球礦區含有鈾、釷系列等放射性元素,進行連鎖反應而釋出各種放射線;人體輻射則是因飲食間,攝入含放射性同位素「鉀–40」累積在體內造成的。

游離輻射產物種類及性質

因為核輻射的能量在百萬電子伏特(MeV)的範圍;原子輻射的能量在千電子伏特(keV)的範圍。這些游離輻射可游離物質之分子,產生正負離子對,照射生物體時,與細胞中的重要分子(如DNA)作用,可使分子鍵斷裂,干擾生物體內結構,引起生物效應,直接危害人體健康。游離輻射隨時隨地都存在,但因我們察覺不到,所以沒有警覺,等到身體受害,可能已為時過晚。因此在輻射領域內可說是最危險的部分,故有必要了解它們是什麼,以及有何性質。

游離輻射產物大致來說可分為α射線(阿法射線)、β射線(貝他射線)、γ射線、X光及中子。α射線為鈍氣氦(He)的原子核,帶2個正電,它對其它原子游離能力最強,但穿透力最弱,一張紙就可阻擋;β射線即電子,帶一個負電,以鋁板可阻擋;γ射線或X光均為光的形式釋放的一種能量,穿透力最強,需要混凝土或數公釐厚鉛板才可阻擋。這些射線都由很小的粒子構成,看不見、摸不到、嗅不到,需藉助輻射偵檢儀器才可知道它們的存在(圖二)。

圖二:三種游離輻射的穿透性。α粒子可被紙所阻擋,β粒子可被鋁箔所阻擋,γ射線則具有高度穿透性。

輻射的單位及單位換算

「劑量」是用來表示人體接受輻射多寡的量;一般常用「等效劑量」表示不同種類的輻射對人體產生相同之生物效應。過去常被使用的單位是「侖目」(rem),但近來已被新的國際單位是「西弗」(Sv)所取代(1西弗=100侖目=1000毫西弗=1000000微西弗)。

-----廣告,請繼續往下閱讀-----

「活度」是放射性同位素在單位時間內衰變的次數,活度愈大放射性愈強。活度的國際專用單位為「貝克」(Bq,即1次衰變),另一常用的舊單位為居禮(Ci),(1居禮=37億貝克)。上述單位除侖目外,西弗(Sievert)、居禮(Curie)、貝克(Becquerel)均為人名借用,以茲紀念他們對輻射研究的偉大貢獻。

輻射的劑量及限值

在日常生活中,人類常接觸到各種輻射,不同的輻射劑量對人體也會造成不同的影響。流行病學調查指出,當短期內所接觸到的輻射劑量低於100毫西弗時,對人體沒有危害,而任何個人多年累積的微量輻射劑量(低於100毫西弗),也不至造成負面的健康效應。各種活動所接觸之輻射劑量及限值如圖三所示。法規對從事輻射相關的從業人員訂定50000微西弗(即50毫西弗)年劑量的上限,一般民眾更低到5000微西弗,以玆保護大眾不受輻射傷害。電腦斷層掃描則視掃瞄區域多寡,自2000至1萬6000微西弗不等,而癌症放射治療一次更高達200萬微西弗,因治病所接受的劑量不在管制範圍內,但不必要的斷層掃描能免則免,避免遭到輻射傷害。

輻射防護方法

輻射防護可區分為體內及體外防護;體內防護方法為避免放射性物質經由呼吸、飲食或經由皮膚滲入體內,所以可視作業場所需要穿著防護衣、戴防護手套、戴呼吸防護面具、工作區禁止吸菸及飲食、工作後吃東西前要洗手等;體外防護採取遠離輻射源(輻射劑量與距離平方成反比)、減少輻射照射時間與增加屏蔽阻擋輻射等三種方法遂行輻射防護。

輻射在生活中的應用

圖三:輻射劑量限值圖。具「限值」名稱之項目為政府制定的上限標準,其它項目為從事各該活動所接受的劑量近似值。

不同頻率、來源的輻射,所造成的效應不盡相同,因此也有不一樣的用途,在此介紹在生活上常接觸的各式輻射應用,使讀者能夠了解輻射在我們身邊所扮演的角色。

-----廣告,請繼續往下閱讀-----

煙霧偵檢器:現代建築物中使用最廣泛的消防設備,裡面含有低放射活度的鋂–241(Am-241)射源,鋂–241放出α粒子而游離煙霧偵檢器內的空氣,使空氣具導電性,任何進入偵檢器內的煙霧微粒會抑低電流而啟動警報,告知火警。

手錶及時鐘:舊式手錶和時鐘用鐳–226當夜光的光源,當要維修這些鐘錶時,鐳–226可能會被碰觸或攝入體內,造成輻射傷害,現代則改用氚(H-3,一種氫的同位素)或鉅–147(Pm-147, Promethium)。

陶瓷器:包含磁磚、陶器等,一些陶瓷器為了美觀,添加含有鈾、釷、鉀等放射線的釉料,可燒出色彩艷麗的產品,這種產品避免當食器使用,以免攝入放射性物質。

玻璃:含鈾的玻璃可製成黃色或綠色的古董器皿,它在黑暗中會發出吸引人的光;甚至普通玻璃亦包含足夠高的鉀–40或釷–232,能被偵測器量到輻射;早期60年代照相機鏡頭經常使用釷–232塗裝以改變其折射率。

-----廣告,請繼續往下閱讀-----

電銲條:電銲使用的銲條中釷元素約占2%,約含30微居禮的放射活度,添加釷的原因是增加交流電流的運送容量及減少電極的腐蝕。

肥料:商業肥料被設計為含有各種氮、磷、鉀等特殊用途的配比,實際上當中含有放射性成分。被量到含放射性主要有兩個原因:一、鉀是天然的放射性元素;二、磷是從已提高鈾濃度的磷礦中開採而得。

手機與基地台:手機是傳送和接收微波的低功率無線電元件,頻率一般介於900~1800兆赫(MHz)之間。國際間對無線電波輻射的負面健康效應有一致的共識,手機發射的無線電波能量,有一部分會被使用者頭部吸收,大多屬表皮組織。英國國家放射防護局建議而被英國政府所採行的頭部防護標準為0.1瓦∕10克組織(六分鐘平均值),此計算值是基於,即使延長使用手機,所造成的頭部最大溫度上升值必須小於1℃。英國實務經驗指出這類似於人們正常每天身體溫度的變化值範圍內,且如此小的熱負載變化被認為太低而不致造成負面的健康效應。民眾正常由基地台天線接觸到的輻射,是全身性的均勻曝露,全身質量的能量平均限值是0.4瓦∕公斤質量(15分鐘平均值),使用手機傳送器所產生的無線電波是如此微弱,所以只有在一個人直接在天線正前方幾公尺範圍內才有可能接受到超過這輻射參考指引的值。離基地台天線距離愈遠輻射強度隨著距離的平方成比例下降,無線電波並沒有足夠的能量來傷害細胞內的基因物質(染色體DNA),所以不會致癌。

變電所:電場由電壓產生,一般家用兩孔插座的電壓為110伏特,電器設備則無論使用與否,只要在待機狀態其周圍便有電場,常用單位是千伏特∕公尺(KV/m),磁場是由電流產生,電器設備在使用時即有電流流通,其周圍就會產生磁場,常用單位為毫高斯;電磁場是一種非游離且無熱效應的輻射,能量很弱,遠比會產生溫度效應的微波或光為低。所謂電磁場包含「電場」及「磁場」,電場很容易被金屬外殼或鋼筋混凝土牆所隔絕,一般家電及電力設備,因有金屬外殼存在,故外表幾乎沒有電場。磁場卻很難隔絕,但如方向相反、大小相同的電流所產生的磁場可相互抵消,所以三相輸電的電力線比單相電力線所產生的磁場會小很多;台電公司的輸電線均為三相線路,故其產生磁場經相互抵消後,實際已甚低。

-----廣告,請繼續往下閱讀-----

依國內外資訊與文獻報導,磁場與人體健康的關聯性目前尚無定論,且關聯性未必表示有因果關係。目前先進國家或機構對於電力磁場之限制,在此提出推薦值供參考,例如國際輻射防護協會對於一般民眾全天候曝露於磁場限制之推薦值為1000毫高斯,此為世界各國中最嚴格的建議參考值。另外,家電產品中的吹風機及電鬍刀有上萬毫高斯的磁場值得注意,使用時間越短越好。

紫外線:人類曝露的紫外線主要來自陽光,依其波長及生物效應,分為近紫外線(UVA)、中紫外線(UVB)及遠紫外線(UVC)三類。其中UVA是到達地球表面最多的紫外線,它對皮膚極少有效應,但其可誘發光的毒害,如誘發狼瘡;UVB只占到達地球表面的10%,但其確具1000倍於UVA對日曬及相關皮膚的傷害,且會增加皮膚癌症的風險;UVC使用於殺菌燈,因其對皮膚的低穿透性所以幾乎不會有傷害。大氣臭氧層於清晨及下午過濾紫外光最有效,從上午十時至下午四時紫外光穿透量最大,UVB強度於海拔每升高300公尺便增加約3%,其跟光一樣會從各種物體表面反射,但水蒸氣不但不會吸附也不會反射很多的UVB,所以即使多雲的天氣也不會提供對UVB任何防護。

醫療輻射:在人造輻射中,醫療輻射占主要來源,包括X光檢查、核磁共振檢查、電腦斷層掃描及癌症放射治療等。醫療性輻射曝露所接受的劑量不計入法規限值。

核爆落塵:核武爆炸產生的落塵會隨氣流飄落世界各地,對人類影響最大,放射性物質不論降至水中或土壤,都經由食物鏈進入人體,造成永久性傷害。

-----廣告,請繼續往下閱讀-----

民生應用:農業上利用輻射照射改變基因,改良農作物,增加收成產量或使花卉植株矮化照樣開花,也可照射害蟲後使喪失生殖能力後野放,如果蠅即是;木材經照射後結構轉強,用於製造槍托;普通玉石經照射後顏色增艷提高價值;農產品照射後可以延長保存期限,如馬鈴薯、大蒜不會發芽屬之;醫療器材照射後達到消毒滅菌效果;考古學利用輻射進行年代測定,如碳–14定年法;工業上利用輻射進行非破壞檢測,例如飛機機身裂縫檢測、輪船水櫃或油櫃存量檢測等。

核能發電:核能電廠採行的是「深度防禦」的輻射安全防護設計,有多重可靠的工程屏蔽設計,加上管制上應用距離平方反比與時間的控制,在鄰近廠區周邊的輻射背景值均在自然輻射背景值的變動範圍內。

職業輻射:核能民生、工業及醫療應用從業人員,例如核能電廠員工、非破壞檢驗人員及X光機操作人員等,一方面其出於志願且經專業訓練合格或持有專業證照,所以會較一般人接受到輻射的機會與劑量較多,唯仍均合乎各國政府授權管制機構及國際放射防護委員會建議的安全值範圍內。

結 語

自1895年物理學家侖琴(Wilhelm Rontgen)發現X光後,輻射就逐漸被人們應用在生活相關的事物上。在醫療方面可用於診斷疾病,以更明確了解病情,使醫生更能對症下藥,同時也可用來殺死癌細胞以治療癌症患者,提昇疾病的療效。在農業方面,可以利用輻射從事農作物品種改良,食品照射使食物保存更久,減少採收後的損失;在工業上可利用輻射進行各種非破壞檢測及有關厚度、密度、液位等品質控制,這些都是輻射帶給我們的利益。雖然不可否認,濫用輻射的確可能會對人體造成不同程度的傷害,但只要正確的使用輻射,導致這些傷害的機率都是極低的。因此,實際上輻射就像水、火、瓦斯一般,在提昇人類生活品質方面扮演著重要的角色,只要能了解輻射的特性,注意輻射安全防護,我們就可以安心享受輻射帶給人類的福祉。

-----廣告,請繼續往下閱讀-----

參考資料

1. 鄭琨琮,《漫談生活中的輻射》,中華民國核能學會,2004年。
2. 行政院原子能委員會,《輻射知多少》,行政院原子能委員會,2009年。
張仕康、門立中:
任職行政院原子能委員會核能研究所

名詞解釋

keV:其定義為1千電子伏特,為能量單位。1電子伏特為1個電子經過1伏特的電位差所需的能量。

游離輻射:游離輻射是指可以把電子游離出來的輻射。原子由原子核及外圍環繞的電子組成,而原子核對外圍電子具有束縛能,牽引對方不使逸出正常運行的軌道,但當電子自外界獲得的能量大於原子核對該電子的束縛能量,則該電子會脫離原子而射出,使原先呈中性的原子,變成一帶正電,一帶負電的離子對。此種作用過程,即稱為「游離」。造成游離作用的輻射,就稱之為「游離輻射」。

非游離輻射:若電子自外界獲得的能量不足,僅能造成電子在原位置振動,或離開原位能階暫跳到較高能階上,則稱之為「激發」。而僅促成激發的輻射,或因能量過低,不足以造成任何反應的輻射,統稱之為「非游離輻射」。

電磁輻射:γ射線或X射線是種帶有高能量的光,本身不具質量,其前進時依賴電磁波方式進行,是為電磁輻射。

粒子輻射:α粒子、中子、電子、質子等都是具有質量的有形粒子,它前進時係以直線方式進行,是為粒子輻射。

鉀–40︰金屬鉀存在於天然環境中,主要以「鉀–39」、「鉀–40」、「鉀–41」等三種同位素同時存在,其含量百分率分別為93.2518、0.0117與6.7302。此三種同位素具相似之物理與化學性質,互為一體密不可分。其中只有鉀–40為不穩定態,會放出1460 keV之γ射線,它的半衰期(損失一半質量所需之時間)為1.25×109年。

一般人主要食物如米、蔬菜、水果中均有這種放射性物質存在。人類經由食物鏈吃進體內,並累積為一天然輻射源,然此微量之放射性早為人體接納,人體新陳代謝功能足以調節鉀的需求量,不致危害健康。

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3735 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

2
0

文字

分享

0
2
0
進軍太空產業!SpaceX 啟航,台灣太空中心佈局低軌衛星供應鏈——當商用電子產品從地面上太空,必經哪些環境測試?
宜特科技_96
・2024/12/02 ・4777字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

低軌衛星引爆全球商機,全球太空經濟在 2040 年預計突破 1 兆美元,許多國家跟科技大廠都加速投入太空市場,台灣也成立太空國家隊。但面對火箭與太空環境嚴苛的考驗,如何在地面模擬測試,使產品能在軌道順利運行?

本文轉載自宜特小學堂〈從地面到太空 商用衛星電子零組件必經的測試〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

點擊圖片收看影片版

自從 1957 年第一顆人造衛星發射後,現今已有近萬顆衛星在太空飛行,並且數量持續增加中。衛星已經跟我們的日常生活密不可分,例如地圖導航、實況轉播等,另外.俄烏戰爭中使用「星鏈」衛星通訊連網,台灣也在今年四月的花蓮地震首次使用低軌衛星技術,協助災區通訊。因此,發展衛星科技除了民生用途,也深具國家安全考量。

-----廣告,請繼續往下閱讀-----

台灣從 2019 年到 2029 年,於第 3 期「國家太空科技發展長程計畫」投入超過新台幣 400 億元,進行低軌通訊衛星的研製、規劃國家發射場與人才培育。工研院估算,至 2030 年全球每年將發射 1,700 顆衛星升空,屆時將創造至少 4,000 億美元的產值。根據美國衛星產業協(Satellite Industry Association)預計,全球太空經濟在 2040 年更有望突破 1 兆美元,其中衛星產業占比上看 88%,達 9,252 億美元。

衛星按軌道高度可分成低軌(LEO<2,000 Km)、中軌(MEO<10,000 Km)以及地球同步軌道衛星(GEO~35,800 Km),重量從幾公斤到數百公斤不等,其中 SpaceX Starlink 低軌通訊衛星近年轉商業化,開啟了新太空經濟模式。另外立方衛星(CubeSat)造價門檻相對低,成為切入衛星技術研究的熱門標的。衛星產業鏈日趨成熟,以及衛星發射和製造成本的降低,帶來龐大的太空商機,相應的電子零組件需求亦隨之增加,讓不少廠商對邁向太空市場摩拳擦掌。

衛星依據軌道高度的分類。圖/宜特科技

衛星是由幾個次系統整合而成,包含姿態控制、電力、熱控、通訊、推進和酬載(Payload)…等。例如遙測衛星(Remote Sensing Satellite),它的功能是繞地球軌道拍攝照片,其中姿態控制次系統使鏡頭能維持對著地球方向;影像感測器則是攝取影像的酬載,電力次系統負責電力儲存與電源管理,最後將照片透過通訊次系統傳回地面。

衛星內部有我們熟知的各種電子零組件,正統太空規的電子零組件要價不斐,且某些零件因各國管制政策不易取得,而商用現貨(Commercial Off-the-Shelf,簡稱 COTS),例如電腦、手機和汽車採用的電子零組件,價格親民、性能良好,供貨也較充沛,近年採用 COTS 執行太空任務是相當熱門的趨勢。

-----廣告,請繼續往下閱讀-----
衛星的次系統。圖/宜特科技

那麼,COTS 電子零組件要上太空,必須經過哪些驗證測試?本文將從火箭發射環境、太空環境,逐一說明 COTS 欲跨入太空應用將面臨的挑戰和驗證測試方式。

3.2.1 發射!火箭發射對電子零組件的影響

1. 振動測試

衛星在地面製造組裝,需考量溫度、濕度、粉塵汙染等影響;組裝好的衛星搭乘火箭從地面發射,首先會承受火箭的劇烈振動,振動測試機可以在地面模擬火箭發射,以垂直與水平方向進行振動測試。不同的火箭有不同的振動大小,例如美國 SpaceX 獵鷹重型火箭的振動測試參數,以每秒鐘 10~2,000 次的振動頻率,重力加速度到幾十倍,振動測試可用來確認衛星或電子零組件在經歷發射過程仍能正常運作。

美國 SpaceX 獵鷹重型火箭發射。圖/p.7, SPACE X FALCON USER’s GUIDE, August 2021

立方衛星振動測試。圖/Sat Search

2. 音震測試

火箭發射過程會產生音震(Acoustic Noise),尤其是面積大且薄的零件,特別容易受音震影響,例如太陽能電池板,天線面板等。音震可能會使這些零件破裂、機構損壞、功能異常。音震艙就是用來模擬火箭所產生的音震,測試時將液態氮汽化,此時液態氮體積會瞬間膨脹數百倍產生巨大壓力,再經由喇叭將氣流動能轉為聲波導入音震艙,測試音震艙內的衛星或零件。

音震艙測試。圖/European Space Agency

-----廣告,請繼續往下閱讀-----

3. 衝擊測試

當火箭離開地面抵達一定的高度時,各節火箭引擎開始陸續分離,接著整流罩展開釋放衛星入軌,這些過程都會產生衝擊(Shock),對衛星內部零件的焊接點、晶片,或其他脆性材料都是嚴苛的考驗。因此需要在地面先進行衝擊測試,了解衛星與其電子零組件對巨大衝擊的耐受程度。

火箭整流罩打開釋放衛星。圖/German Aerospace Center 

衝擊測試。圖/金頓

4. 電磁相容性測試

此外,因為各種電子零組件集中在火箭狹小空間內,衛星跟火箭之間的電磁干擾可能會影響任務,因此衛星在發射前也需經過電磁相容性測試(EMC),確保衛星所使用的電子零組件不會與火箭之間互相干擾。

電磁相容性測試。圖/ European Space Agency

  1. 熱真空循環測試

低軌衛星以每秒七公里的時速飛行,大約九十分鐘繞行地球一圈,衛星繞軌飛行處於真空環境,同時也會面臨溫差挑戰,當衛星被太陽正面照射時,其溫度高達攝氏 120 度,遠離太陽時,溫度可能低到零下 120 度。另外,真空環境可能使電子零組件因散熱不良燒毀,真空低壓也會造成零組件材料分解、腔體洩漏(Leak),或是零組件釋氣(Outgassing)產生汙染。

熱真空循環測試(Thermal Vacuum Cycling Test)可模擬太空環境真空狀態與溫度變化,測試時會將衛星或電子零組件架設於極低壓力的真空艙內,再經設備以輻射、傳導方式對衛星或電子零組件升降溫以模擬太陽照射,此時衛星或電子零組件處於通電運作狀態,須即時監控觀察其功能是否正常。熱真空循環通常測試為期一週甚至更長,也是衛星或電子零組件常見的失效項目。

-----廣告,請繼續往下閱讀-----

熱真空艙測試。圖/TriasRnD

  1. 輻射測試

少了大氣層的保護,電子零組件在太空環境會直接面對輻射的衝擊。以地球軌道而言,輻射環境包含輻射帶(Van Allen Belts)、銀河宇宙射線(Galactic Cosmic Rays,簡稱GCR)以及太陽高能粒子(Solar Energetic Particles,簡稱SEP),這些輻射環境充斥大量的電子、質子,以及少數的重離子(Heavy Ion)等,若擊中衛星的電子零組件可能造成資料錯亂(Upset)、當機,甚至永久性故障。衛星在軌道運行壽命短則幾個月,長則數十年,衛星在軌道運行時間越長,受輻射衝擊影響就越大。

地球軌道輻射環境。圖/宜特科技

輻射對電子零組件的影響有以下三大類:

-----廣告,請繼續往下閱讀-----

太空輻射對電子零組件的三大效應。圖/ESA

  1. 總電離劑量效應(Total Ionizing Dose Effect,簡稱TID)

電子零組件在太空環境長期累積大量質子與電子輻射是 TID 效應的主因, TID 會造成 MOS 電晶體 Threshold Voltage 緩慢飄移,零件漏電因此逐漸增加,漏電嚴重時則會導致零件燒毀。衛星可視為大型的無線行動裝置,依賴太陽能蓄電,電力相當珍貴,若衛星內諸多的電子零件都在漏電,將造成衛星電力不足而失聯或失控。

  1. 位移損傷效應(Displacement Damage,簡稱DD)

質子對電子零組件會產生另一種非輻射效應,稱為位移損傷效應(DD),屬長期累積大量質子的物理性損傷,質子會將半導體零件內的矽原子打出晶格外,形成半導體的缺陷,零件漏電也會逐漸增加,其中光電零件對 DD 效應較敏感,例如影像感測元件,DD 會造成影像品質降低,另外也會使衛星使用的太陽能電池(Solar Cell)轉換效率下降。

  1. 單一事件效應(Single Event Effect,簡稱SEE) 

TID 與 DD 可以看成慢性病,是電子零組件長期在軌累積大量質子與電子作用所造成的漏電效應,SEE 就是屬於急性症狀,隨機發生又難以預測。質子與重離子都會造成電子零組件的 SEE 效應,而重離子比質子更容易引發 SEE,太空環境的重離子數量雖然相對少,但殺傷力強,一顆重離子就可能使電子零組件當機或損壞。

-----廣告,請繼續往下閱讀-----

SEE 造成的故障可分成 Soft ERROR 與 Hard Error 兩大類。 Soft Error 的徵狀為資料錯亂、當機、功能異常等,重啟電路可恢復其運作,但若電子零組件對輻射很敏感,當機頻率過高則會影響任務執行,因此需以輻射測試評估其事件率(Event Rate)。Hard Error 則是永久性故障,例如重離子容易引發半導體零件栓鎖(Latch-Up)現象,若沒有對應機制,零件可能因大電流燒毀,因此 SEL (Single Event Latch-Up)是太空電子零件輻射耐受度最重要的指標之一。

單一事件效應的各種現象。圖/宜特科技

太空環境有各種能量的粒子,包含:質子、電子、重離子…,能量越高的粒子可穿透越厚的物質或外殼。低能量的粒子可被衛星外殼(鋁)阻擋,但衛星發射成本主要以重量計價,外殼厚度相當有限(通常為幾毫米厚的鋁材);而高能量的粒子則會穿透衛星外殼,影響電子零組件運作,因故使用於太空環境的電子零組件必定會被輻射影響,在上太空前必須經過輻射測試評估其特性。COTS 電子零組件,都有一定的抗輻射能力,但是必須經測試了解輻射耐受度是否適用於太空任務需求。

美國 NASA 的太空輻射實驗室。圖/NASA

COTS 電子零組件上太空前必須經過「發射環境測試」,包括模擬火箭發射時所產生的振動、音震、衝擊、電磁相容性測試,以及太空環境熱真空循環和輻射測試等,更多的測試項目就不一一細數,通過這些測試後,更重要的是取得「飛行履歷」(Flight Heritage),將產品發射上太空,若能成功執行各種任務,取得越多飛行履歷,產品的身價就越高,太空產業非常重視飛行履歷,飛行履歷也是產品的最佳保證書!

-----廣告,請繼續往下閱讀-----

宜特是亞洲最完整的太空環境測試第三方實驗室, 2019 年與國研院太空中心合作推動台灣太空產業發展。自 2021 年加入台灣太空輻射環境驗測聯盟以來,我們已完成多種電子零組件的輻射測試,涵蓋了類比、數位、記憶體、射頻等。我們將持續建構更完整的太空環境驗證測試能量,提供一站式服務。協助廠商可專注於產品的設計與製造。

本文出自 www.istgroup.com

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

宜特科技_96
12 篇文章 ・ 4 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

4
1

文字

分享

0
4
1
為什麼會被陽光曬傷?光有能量的話,為什麼照日光燈沒事?
PanSci_96
・2024/05/05 ・3185字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

唉!好曬呀!前兩集,一些觀眾發現我曬黑了。

在臺灣,一向不缺陽光。市面上,美白、防曬廣告亦隨處可見,不過,為什麼我們會被陽光曬傷呢?卻又好像沒聽過被日光燈曬傷的事情?

事實上,這也跟量子力學有關,而且和我們今天的主題密切連結。

之前我們討論到量子概念在歷史上的起點,接下來,我們會進一步說明,量子概念是如何被發揚光大,以及那個男人的故事。

-----廣告,請繼續往下閱讀-----

光電效應

在量子力學發展過程中,光電效應的研究是非常重要的轉捩點。

光電效應指的是,當一定頻率以上的光或電磁波照射在特定材料上,會使得材料發射出電子的現象。

在 19 世紀後期,科學家就已經發現某個奇特的現象:使用光(尤其是紫外線)照射帶負電的金屬板,會使金屬板的負電消失。但當時他們並不清楚背後原理,只猜測周遭氣體可能在紫外線的照射下,輔助帶負電的粒子從金屬板離開。

光電效應示意圖。圖/wikimedia

於是 1899 年,知名的英國物理學家 J. J. 湯姆森將鋅板放置在低壓汞氣之中,並照射紫外線,來研究汞氣如何幫助鋅板釋放負電荷,卻察覺這些電荷的性質,跟他在兩年前(1897 年)從放射線研究中發現的粒子很像。

-----廣告,請繼續往下閱讀-----

它們是比氫原子要輕約一千倍、帶負電的微小粒子,也就是我們現在稱呼的電子。

1902 年,德國物理學家萊納德發現,即使是在抽真空的玻璃管內,只要照射一定頻率以上的光,兩極之間便會有電流通過,電流大小跟光的強度成正比,而將光線移除之後,電流也瞬間消失。

到此,我們所熟知的光電效應概念才算完整成型。

這邊聽起來好像沒什麼問題?然而,若不用現在的量子理論,只依靠當時的物理知識,很難完美解釋光電效應。因為根據傳統理論,光的能量多寡應該和光的強度有關,而不是光的頻率。

-----廣告,請繼續往下閱讀-----

如果是光線把能量傳給電子,讓電子脫離金屬板,那為什麼需要一定頻率以上的光線才有用呢?比如我們拿同樣強度的紫外線跟紅外線去照射,會發現只有照射紫外線的金屬板才會產生電流。而且,當紫外線的頻率越高,電子的能量就越大。

另一方面,若我們拿很高強度的紅外線去照射金屬板,會發現無論如何都不會產生電流。但如果是紫外線的話,就算強度很低,還是會瞬間就產生電流。

這樣難以理解的光電效應,使得愛因斯坦於 1905 年一舉顛覆了整個物理學界,並建立了量子力學的基礎。

光電效應的解釋

為了解釋光電效應,愛因斯坦假設,電磁波攜帶的能量是以一個個帶有能量的「光量子」的形式輻射出去。並參考先前普朗克的研究成果,認為光量子的能量 E 和該電磁波的頻率 ν 成正比,寫成 E=hν,h 是比例常數,也是我們介紹過的普朗克常數。

-----廣告,請繼續往下閱讀-----

在愛因斯坦的詮釋下,電磁波的頻率越高,光子能量就越大,所以只要頻率高到一定程度,就能讓電子獲得足以逃脫金屬板的能量,形成電流;反過來說,如果電磁波的頻率不夠高,電子無法獲得足夠能量,就無法離開金屬板。

這就像是巨石強森一拳 punch 能把我打昏,但如果有個弱雞用巨石強森百分之一的力道打我一百拳,就算加起來總力道一樣,我是不會被打昏,大概也綿綿癢癢的,不覺得受到什麼傷害一樣。

而當電磁波的強度越強,代表光子的數目越多,於是脫離金屬板的電子自然變多,電流就越大。就如同我們挨了巨石強森很多拳,受傷自然比只挨一拳要來得重。

雖然愛因斯坦對光電效應的解釋看似完美,但是光量子的觀點實在太過激進,難以被當時的科學家接受,就連普朗克本人對此都不太高興。

-----廣告,請繼續往下閱讀-----

對普朗克來說,基本單位能量 hν,是由虛擬的「振子」發出的;但就愛因斯坦而言,電磁波本身的能量就是一個個光量子,或現在所謂的「光子」。

然而,電磁波屬於波動,直觀來說,波是綿延不絕地擴散到空間中,怎麼會是一個個攜帶最小基本單位能量的能量包呢?

美國物理學家密立根就堅信愛因斯坦的理論是錯的,並花費多年時間進行光電效應的實驗研究。

到了 1914 年,密立根發表了世界首次的普朗克常數實驗值,跟現在公認的標準數值 h=6.626×10-34 Js(焦耳乘秒)相距不遠。

-----廣告,請繼續往下閱讀-----

在論文中,密立根更捶心肝(tuî-sim-kuann)表示,實驗結果令人驚訝地與愛因斯坦那九年前早就被人拋棄的量子理論吻合得相當好。

這下子,就算學界不願相信愛因斯坦也不行了。愛因斯坦也因為在光電效應的貢獻,獲得 1921 年的諾貝爾物理獎。

1921 年,愛因斯坦獲得諾貝爾物理學獎之後的官方肖像。圖/wikimedia

光電效應的應用

在現代,光電效應的用途廣泛。我們日常生活中常見的太陽能發電板,利用的就是光電效應的一種,稱為光生伏打效應,材料內部的電子在吸收了光子的能量後,不是放射到周遭空間,而是在材料內部移動,形成正負兩極,產生電流。

而會不會曬傷也跟光子的能量有關。

-----廣告,請繼續往下閱讀-----

曬傷是皮膚受到頻率夠高的太陽光,也就是紫外線裡的 UVB 輻射造成的損傷。這些光子打到皮膚,會讓 DNA 分子裡構成鍵結的電子逃逸,引起皮膚細胞中 DNA 的異常變化,導致細胞損傷和免疫反應,這就是為什麼曬傷後皮膚會出現紅腫、疼痛和發炎的原因。

而頻率較低的光線,因為光子能量偏低,所以就不太會造成傷害,這也是為什麼我們沒聽過被日光燈曬傷這種事。

結語

從 17 世紀後半,惠更斯和牛頓各自提出光的波動說和微粒說開始,人們就聚焦於光到底是波動還是粒子的大哉問;19 世紀初,湯瑪士.楊用雙狹縫干涉實驗顯示了光的波動性,而到 19 世紀中後期,光屬於電磁波的結論終於被馬克士威和赫茲分別從理論和實驗兩方面確立。

經過約莫兩百年的研究發展,世人才明白,光是一種波動。

怎知,沒過幾年,愛因斯坦就跳出來主張光的能量由一個個的光量子攜帶,還通過實驗的檢驗——光又成為粒子了。

物理學家不得不承認,光具有波動和粒子兩種性質,而會呈現哪一種特性則依情況而定,稱為光的波粒二象性。

愛因斯坦於 1905 年提出的光量子概念,顛覆了傳統認為波動和粒子截然二分的觀點,將光能量量子化的詮釋也被實驗印證,在那之後,除了光的能量之外,還有其他物理量被發現是「量子化」的,像是電荷。

我們現在知道,電荷也有個基本單位,就是單一電子攜帶的電荷大小。

儘管之後又發現組成原子核的夸克,具有 -1/3 和 +2/3 單位的基本電荷,但並沒有改變電荷大小是不連續的這件事,並不是要多少的電量都可以。

如果你覺得很奇怪,不妨想想,我們用肉眼看會覺得身體的每一個部位都是連續的,但其實在微觀尺度,身體也是由一個個很小的原子和分子組成,只是我們根本看不出來,才覺得是連續的。

光子的能量和電荷的大小,其實也是像這樣子,細分下去就會發現具有最基本的單位,不是連續的。

事實上,量子力學在誕生之後,一直不斷地為人們帶來驚喜,簡直就是物理學界突然闖進一隻捉摸不定的貓。我們下一個故事,就要來聊量子力學發展過程中,打破世間常識的某個破天荒假說,而假說的提出者,是大學原本主修歷史和法律,擁有歷史學士學位,但後來改念物理,並憑藉博士論文用 5 年時間就拿到諾貝爾物理學獎的德布羅意。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
2

文字

分享

0
3
2
量子力學可以幫你判斷物體溫度?從古典物理過渡到近代的一大推手——黑體輻射
PanSci_96
・2024/03/24 ・3639字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

1894 年,美國物理學家邁克生(Albert Abraham Michelson)作為芝加哥大學物理系的創立者,在為學校的瑞爾森物理實驗室(Ryerson Physical Laboratory)落成典禮致詞時,表示:「雖然無法斷言說,未來的物理學不會比過去那些驚奇更令人驚嘆,但似乎大部分的重要基本原則都已經被穩固地建立了。」

以我們現在的後見之明,這段話聽起來固然錯得離譜,但在當時,從 17、18 到 19 世紀,在伽利略、牛頓、馬克士威等前輩的的貢獻之下,物理學已經達成了非凡的成就。

我們現在稱為古典的物理學,對於整個世界的描述幾乎是面面俱到了,事實上沒有人預料到 20 世紀將出現徹底顛覆世界物理學認知的重要理論,量子力學。

而這最一開始竟只是出自於一件不起眼的研究,關於物體發出的光。

-----廣告,請繼續往下閱讀-----

萬物皆輻射

在此我們要先理解一個觀念:所有物體無時無刻不在發出電磁波輻射,包括了你、我、你正使用的螢幕,以及我們生活中的所有物品。

至於為什麼會這樣子呢?其中一個主要原因是,物體都是由原子、分子組成,所以內部充滿了帶電粒子,例如電子。這些帶電粒子隨著溫度,時時刻刻不停地擾動著,在過程中,就會以電磁波的形式放出能量。

除了上述原因之外,物體發出的電磁波輻射,還可能有其他來源,我們就暫時省略不提。無論如何,從小到大我們都學過的,熱的傳遞方式分成傳導、對流、輻射三種,其中的輻射,就是我們現在在談的,物體以電磁波形式發出的能量。

那麼,這些輻射能量有什麼樣的特徵呢?為了搞清楚這件事,我們必須先找個適當的範本來研究。

-----廣告,請繼續往下閱讀-----

理想上最好的選擇是,這個範本必須能夠吸收所有外在環境照射在上面的光線,只會發出因自身溫度而產生的電磁輻射。這樣子的話,我們去測量它發出的電磁波,就不會受到反射的電磁波干擾,而能確保電磁波是來自它自己本身。

這樣子的理想物體,稱為黑體;畢竟,黑色物體之所以是黑的,就是因為它能夠吸收外在環境光線,且不太會反射。而在我們日常生活中,最接近理想的黑體,就是一點也不黑、還超亮的太陽!這是因為我們很大程度可以肯定,太陽發出來的光,幾乎都是源於它自身,而非反射自外在環境的光線。

或者我們把一個空腔打洞後,從洞口發出的電磁波,也會近似於黑體輻射,因為所有入射洞口的光都會進入空腔,而不被反射。煉鐵用的鼓風爐,就類似這樣子的結構。

到目前為止,一切聽起來都只是物理學上一個平凡的研究題目。奇怪的是,在對電磁學已經擁有完整瞭解的 19 世紀後半到 20 世紀初,科學家儘管已經藉由實驗得到了觀測數據,但要用以往的物理理論正確推導出黑體的電磁波輻射,卻遇到困難。正是由此開始,古典物理學出現了破口。

-----廣告,請繼續往下閱讀-----

黑體輻射

由黑體發出的輻射,以現在理論所知,長得像這個樣子。縱軸代表黑體輻射出來的能量功率,橫軸代表黑體輻射出來的電磁波波長。

在理想狀況下,黑體輻射只跟黑體的溫度有關,而跟黑體的形狀和材質無關。

以溫度分別處在絕對溫標 3000K、4000K 和 5000K 的黑體輻射為例,我們可以看到,隨著黑體的溫度越高,輻射出來的能量功率也越大;同時,輻射功率最高的波段,也朝短波長、高頻率的方向靠近。

為了解釋這個曲線,物理學家們開始運用「當時」畢生所學來找出函數方程式,分成了兩派:

-----廣告,請繼續往下閱讀-----

一派是 1896 年,由德國物理學家維因(Wilhelm Carl Werner Otto Fritz Franz Wien),由熱力學出發推導出的黑體輻射公式,另一派,在 1900 與 1905 年,英國物理學家瑞立(John William Strutt, 3rd Baron Rayleigh)和金斯(James Jeans),則是藉由電磁學概念,也推導出了他們的黑體輻射公式,稱為瑞立-金斯定律。

你看,若是同時擺上這兩個推導公式,會發現他們都各自對了一半?

維因近似 Wien approximation 只在高頻率的波段才精確。而瑞立-金斯定律只對低頻率波段比較精確,更預測輻射的強度會隨著電磁波頻率的提升而趨近無限大,等等,無限大?――這顯然不合理,因為現實中的黑體並不會放出無限大的能量。

顯然這兩個解釋都不夠精確。

-----廣告,請繼續往下閱讀-----

就這樣,在 1894 年邁克生才說,物理學可能沒有更令人驚嘆的東西了,結果沒幾年,古典物理學築起的輝煌成就,被黑體輻射遮掩了部分光芒,而且沒人知道,這是怎麼一回事。

普朗克的黑體輻射公式

就在古典物理學面臨進退維谷局面的時候,那個男人出現了——德國物理學家普朗克(Max Planck)。

1878年學生時代的普朗克。圖/wikimedia

普朗克於 1900 年就推導出了他的黑體輻射公式,比上述瑞立和金斯最終在 1905 年提出的結果要更早,史稱普朗克定律(Planck’s law)。普朗克假想,在黑體中,存在許多帶電且不斷振盪、稱為「振子」的虛擬單元,並假設它們的能量只能是某個基本單位能量的整數倍。

這個基本單位能量寫成 E=hν,和電磁輻射的頻率 ν 成正比,比例常數 h 則稱為普朗克常數。換言之,黑體輻射出來的能量,以hν為基本單位、是一個個可數的「量」加起來的,也就是能量被「量子化」了。

-----廣告,請繼續往下閱讀-----

根據以上假設,再加上不同能量的「振子」像是遵循熱力學中的粒子分佈,普朗克成功推導出吻合黑體輻射實驗觀測的公式。

普朗克的方程式,同時包含了維因近似和瑞立-金斯定律的優點,不管在低頻率還是高頻率的波段,都非常精確。如果我們比較在地球大氣層頂端觀測到的太陽輻射光譜,可以發現觀測數據和普朗克的公式吻合得非常好。

其實有趣的是普朗克根本不認為這是物理現象,他認為,他假設的能量量子化,只是數學上用來推導的手段,而沒有察覺他在物理上的深遠涵意。但無論如何,普朗克成功解決了黑體輻射的難題,並得到符合觀測的方程式。直到現在,我們依然使用著普朗克的方程式來描述黑體輻射。不只如此,在現實生活中,有許多的應用,都由此而來。

正因為不同溫度的物體,會發出不同特徵的電磁波,反過來想,藉由測量物體發出的電磁波,我們就能得知該物體的溫度。在疫情期間,我們可以看到某些場合會放置螢幕,上面呈現類似這樣子的畫面。

-----廣告,請繼續往下閱讀-----

事實上,這些儀器測量的,是特定波長的紅外線。紅外線屬於不可見光,也是室溫物體所發出的電磁輻射中,功率最大的波段。只要分析我們身體發出的紅外線,就能在一定程度上判斷我們的體溫。當然,一來我們都不是完美的黑體,二來環境因素也可能產生干擾,所以還是會有些許誤差。

藉由黑體輻射的研究,我們還可以將黑體的溫度與發出的可見光顏色標準化。

在畫面中,有彩虹背景的部分,代表可見光的範圍,當黑體的溫度越高,發出的電磁輻射,在可見光部分越偏冷色系。當我們在購買燈泡的時候,會在包裝上看到色溫標示,就是由此而來。所以,如果你想要溫暖一點的光線,就要購買色溫較低,約兩、三千 K 左右的燈泡。

結語

事實上,在黑體輻射研究最蓬勃發展的 19 世紀後半,正值第二次工業革命,當時鋼鐵的鍛冶技術出現許多重大進步。

德國鐵血宰相俾斯麥曾經說,當代的重大問題要用鐵和血來解決。

就傳統而言,煉鋼要靠工匠用肉眼,從鋼鐵的顏色來判斷溫度,但若能更精確地判斷溫度,無疑會有很大幫助。

德國作為鋼鐵業發達國家,在黑體輻射的研究上,曾做出許多貢獻,這一方面固然可能是學術的求知慾使然,但另一方面,也可以說跟社會的需求與脈動是完全吻合的。
總而言之,普朗克藉由引進能量量子化的概念,成功用數學式描述了黑體輻射;這件事成為後來量子力學發展的起點。儘管普朗克本人沒有察覺能量量子化背後的深意,但有另一位勇者在數年後繼承了普朗克的想法,並做出意味深長的詮釋,那就是下一個故事的主角――愛因斯坦的事了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。