4

0
0

文字

分享

4
0
0

超輕薄、超穩固、重要資料絕對不外洩…你的下一顆硬碟:大腸桿菌

鄭國威 Portnoy_96
・2011/01/11 ・733字 ・閱讀時間約 1 分鐘 ・SR值 483 ・五年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

大腸桿菌,圖片取自維基百科

不知道是否香港網路太快,學生下載量太大,才讓香港中文大學的生命科學研究團隊把研發資訊儲存媒介的腦筋動到細菌上,而且是會讓人拉肚子的大腸桿菌(更新:根據雨蒼所說,特定狀況下大腸桿菌才會造成疾病,正常狀況下是不會的)。根據Physorg.com報導,這個研究團隊成功的將海量資訊儲存在不同的大腸桿菌細胞中,然後可再利用DNA比對將資料重組,就像是分割的壓縮檔解壓縮之後重新恢復成原始檔案一樣。可以在一公克的大腸桿菌裡頭儲存900TB(terabyte)的各種資訊。

這個研究團隊的作法是按照一般進行基因改造的前奏進行:從大腸桿菌細胞裡將DNA移出來,用酶(enzymes)加以操縱,然後再把DNA置入到新的細胞裡頭。但他們目的並不是要改造生物,而是讓DNA背負許多額外資訊。研究團隊很有自信地說「駭客入侵不了細菌」,所以只要把資訊儲存在細菌裡,未來就不用擔心Wikileaks了…這我存疑,因為Wikileaks絕大部分機密是有人將機密透漏給Wikileaks的,而不是Wikileaks去駭來的。

這個突破將可以替基因改造食物加上許多附加資訊,像是版權宣告、生產履歷,跟烹調方法等等,當然也可以用來監測追蹤基改產品的流向,加上細菌能夠在許多極端環境,如冰凍、低氧,核污染之下存活,可能是可以長久保存人類智慧的好選擇。

那,我們真的能拿細菌當硬碟來用嗎?短期內還是不行的,因為要解碼儲存在細菌上的資訊得動用實驗室等級的設備。那如果真的可行了,這樣的細菌會不會造成危險疾病呢?中文大學的研究團隊說他們制定了嚴格的安全流程跟設計,只要細菌一離開豐富的合成培養基,就會馬上死亡;雖然保護人類不被細菌感染很重要,但其實他們花更多精神在保護這些細菌不被人類污染…嗯?

更新:下方網友雨蒼的對這篇報導的意見也要看喔!

文章難易度
所有討論 4
鄭國威 Portnoy_96
247 篇文章 ・ 720 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。現為泛科知識公司的知識長。

0

1
1

文字

分享

0
1
1
當人們對細菌一無所知、當醫生不洗手:生產,就像是去鬼門關前走一趟──《厲害了,我的生物》
聚光文創_96
・2022/09/13 ・1767字 ・閱讀時間約 3 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

無知的代價:產褥熱

故事說到這裡,此時此刻,人們依然只能透過顯微鏡、放大鏡等工具,追尋微生物的芳蹤。當然啦,發現微生物是一回事,要確認這些微生物與特定疾病的相關性,並且證實它們的致病性與致病機制,則完全又是另一回事。

在那個對微生物一無所知的年代,該有多可怕?圖/envatoelements

然而,產業救星巴斯德先生在拔了一根草、測了測風向以後,敏銳的發現,風向是會改變的。在與微生物和疾病的永恆戰鬥中,人類也不會永遠的屈居下風。

巴斯德的重心,逐漸從化學轉移到微生物之上。他雖然不是醫生,也不是婦女,卻對婦女的生死大關特別有興趣。

在十八世紀到十九世紀之間,有多達百分之三十的婦女,會在生產後的「產褥期」,受到細菌感染而持續發燒,稱為「產褥熱」(puerperal fever)。

當時,產褥熱的致死率相當高,一旦受到感染,有百分之七十五的產婦可能會挺不過去,一手接生一手送死,悲傷的故事在醫院裡不斷上演。

被忽視的警告:「不要碰完屍體去接生!」

一八四三年,美國醫生霍姆斯(O. W. Holmes)在論文中提到,不少醫生會在解剖完屍體之後,再為產婦進行接生,這些產婦中,染上產褥熱的比例也偏高。

但是,當時的醫學界並不認同霍姆斯的觀點,將他的提醒當成了耳邊風。

進產房前,別忘了先寫遺囑!圖/聚光文創

與此同時,在著名的維也納大學醫學院中,匈牙利醫師塞麥爾維斯(Ignaz Philipp Semmelweis),正為了附屬醫院中,遲遲無法下降的產婦死亡率而苦惱著。

即使進行了詳細的大體解剖,塞麥爾維斯也無法找出產褥熱的原因,只能眼睜睜的看著產婦一邊期待著新生命的降臨,一害怕著死神將揮舞著鐮刀,收割她們的性命。

心痛的塞麥爾維斯,於是將目光轉向產房細節。他注意到,如果產婦居住在解剖室旁的產房,產褥熱的比例更居高不下;反觀助產士教學病房裡的產婦,死亡率就明顯較低。

塞麥爾維斯於是推測,或許在屍體中帶有某種毒素,經由負責解剖的醫生、實習生的雙手,在接生或產檢之際進入產房,造成了產婦的死亡。

只是洗個手,死亡率剩下原本的 1/4

一八四七年,塞麥爾維斯決定,要求產科裡所有醫生、實習生,特別是那些剛進行過大體解剖的小夥伴們,在為產婦接生或檢查之前,務必要用肥皂與漂白水浸泡、清洗雙手,並澈底刷洗指甲底下的汙垢。

果不其然,一個簡簡單單的洗手動作,就讓院內產婦的死亡率,從百分之十二下降到百分之三!可喜可賀!

即使塞麥爾維斯發現「洗手」就可以降低產婦的死亡率,但它的發現並未被醫界重視。圖/envatoelements

按照常理思考,我們可以大膽推測,接下來的劇情發展應該是:「塞麥爾維斯被譽為英雄,他所推行的洗手習慣,立刻被全世界廣泛採用……」

NO~NO~NO,塞麥爾維斯拿到的,可不是這麼簡潔、老生常談的劇本,故事尚未劇終,本章節依然未完待續。

事實上,他的重要發現並沒有受到醫學界的認可,連病房主任也說,死亡率的下降,是醫護同仁們用心禱告的結果,跟洗不洗手什麼沒啥關係。

不僅論點違背主流風向,許多醫生甚至覺得,塞麥爾維斯的說法,根本就是在說「醫生手很髒」或「病從醫生來」,對此,他們表達強烈的不憤怒與不滿。

讀到這裡,我們或許會覺得,只是洗個手,有那麼痛苦那麼難嗎?殊不知,即便是疫情當前的今日,對於這個倡導手部衛生的建議,依然有人會感到不滿與抗拒。

如此一想,一百多年前的醫生們不想洗手,好像不是多麼不可思議的事情了。

沒想到竟然連醫生都會不想洗手!圖/聚光文創

──本文摘自《厲害了,我的生物》,2022 年 8 月,聚光文創,未經同意請勿轉載。

聚光文創_96
6 篇文章 ・ 2 位粉絲
據說三人出版社就算得上中型規模,也許是島嶼南方太過溫暖,我們對出版業的寒冬始終抱持著浪漫與天真。 作者們說,出版市場很艱困,但我們依然想在翻譯領軍的文學市場中,為本土的作者、原創故事發聲。 喜歡做為升學孩子減輕壓力的書,不要厚重百科類型、沒有艱澀的專有名詞,很多重大發現的背後故事更值得我們好好品味。

0

1
1

文字

分享

0
1
1
長達 5 億年的空白:真核生物從何而來?「洛基」是人類起源的解答嗎?──《纏結的演化樹》
貓頭鷹出版社_96
・2022/08/06 ・2927字 ・閱讀時間約 6 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

有細胞核的真核細胞,究竟從何而來?

當渥易斯去世時,還在爭議中的最大謎團之一便是真核細胞的起源,也就是說,我們生命最深處的開端,直至今日仍然沒有定論。

當時真核細胞的起源目前還沒有一個定論,不過可以確定的是,粒線體扮演著相當關鍵的角色。圖 / Pixabay

如果像渥易斯在一九七七年宣布的那樣,存在三個生命領域,其中一個領域是真核生物,包括所有動物、植物、真菌,和所有細胞裡面含有細胞核的微生物,那麼這個最終演化出人類和我們可見的所有其他生物的譜系的基礎故事是什麼?是什麼讓真核生物如此不同?

是什麼讓牠們走上如此不同的道路,從細菌和古菌的微小和相對簡單,走向巨大而複雜的紅杉、藍鯨和白犀牛,更不用說人類和我們對地球的所有特殊貢獻,像是美國職棒、抑揚五步格和葛利果聖歌?哪些部分以及哪些過程組合在一起,形成了第一個真核細胞?

如此重大的事件大概發生在 16 億到 21 億年前之間。這個足足有 5 億年之久的窗口,反映當前科學不確定性的程度。

最關鍵的線索?粒線體與「內共生理論」

不同陣營的意見強烈分歧,都提供了一些假設。

岩石中早期微生物形式的化石證據,並沒能提供多少解答,科學家還是從基因體序列中發掘出更精確多樣的線索,並且其中一些線索仍然來自 S 核糖體 RNA,這要歸功於渥易斯當初的洞察力,以及後來四十多年間他的追隨者的心血。

但是這些數據的涵義為何則見仁見智。現在所有的專家都同意,當年內共生作用發揮了重要作用:不知何故,某個細菌被另一個細胞(宿主)捕獲並且在體內被馴化,然後成為粒線體

它們一旦存在早期真核細胞中並且數量變多後,就會提供大量能量,遠遠超出當時可用的任何能量,讓這些新細胞可以增加體積與複雜性,進而演化成多細胞生物。

粒線體的構造,成為了生物學家探索原生生物起源的重要線索。圖/Elements Evato

複雜性增加的一個顯著特徵,就是控制,特別是對遺傳材料的控制。

從生命的起源之地尋找答案——前往深海

更具體地說,這意味著將每個細胞的大部分 DNA 包裝在一個內部胞器中,也就是由膜包圍住的細胞核。

因此,真核生物起源之謎包含三個主要問題:

一,原始宿主細胞是什麼?

二,粒線體的獲取是否觸發了最關鍵的變化?或者,是由它引起的嗎?

三,細胞核是從何而來的?

更簡化的提問方式則是:一個東西跑到另一個東西裡面,形成複雜之類的東西?這些「東西」到底是什麼?

關於前兩個問題,最近的新證據來自一個意想不到的地點:大西洋底部。它來自於格陵蘭和挪威之間,一個近兩千四百多公尺深的區域所挖掘出的海洋沉積物,這地區附近有一個稱為洛基城堡的深海熱泉。

洛基是北歐神話中既狡猾又會變形的神;挪威主導團隊在發現這個熱泉後取了這個名字,因為這個礦化的噴口看起來就像一座城堡,而且所在位置難以尋找。

為了尋找證據,科學家將目光投向了一般生物無法安然生長的海底熱泉,而科學家也把這個發現洛基古菌的地點命名為「洛基城堡」(Loki’s Castle)。圖 / Youtube

他們與其他科學家一起分析這些海洋沉積物裡面所包含的 DNA,發現這代表了一個全新的古菌譜系,這些細菌的基因體與已知的任何東西都截然不同,似乎代表一個獨特的分類門(門是非常高的分類位階;比方說,所有脊椎動物都同屬於一個門)。

帶領這項基因體研究的生物學家,是任職於瑞典一所大學的年輕荷蘭人,名叫艾特瑪。他結合深處城堡和狡猾神祇的語義,將這個族群命名為洛基古菌

全新的發現!最接近真核生物的古菌:洛基古菌

艾特瑪團隊於二〇一五年公布這項發現。這項發現具有廣泛報導的價值,因為洛基古菌的基因體,似乎與我們人類譜系起源的宿主細胞非常接近。

實驗室培養出來的洛基古菌在顯微鏡底下的樣貌。圖 / biorxiv

《華盛頓郵報》的一則標題說:「新發現的『失落的環節』顯示人類如何從單細胞生物演化而來。」這些從深海軟泥中提取的古菌,真的是二十億年前那些,自身譜系在經過激烈分化後,變成現代真核生物的古菌的表親嗎?這些古菌是我們最親近的微生物親戚嗎?也許真的是。這一點引起大眾的注意。

但是,使艾特瑪的研究在早期演化專家當中引發爭議的,還有另外兩點。

首先,艾特瑪團隊提出證據,表明洛基古菌等細胞在獲得粒線體之前,就已經開始發展出複雜性。也許是重要的蛋白質、內部結構、可以包圍並吞噬細菌的能力。

若是如此,那麼偉大的粒線體捕獲事件,就是生命史上最大轉變的結果,或一連串變化其中之一的事件,而不是原因。某些人,例如馬丁,會強烈反對。

雖然科學家發現了洛基古菌,但也引起了許多爭議和討論,真核生物的演化謎團仍然沒有被完全解答。圖 / Pixabay

其次,艾特瑪團隊將真核生物的起源置於古菌中,而不是古菌旁邊。如果這個論點正確的話,便意味著我們又回到一棵兩個分支的生命樹,而兩大分支不管哪一支,都不是我們長久以來珍而重之、視為己有的。

這也就是說,我們人類就是古菌這種獨立生命形式的後代,這在一九七七年之前是無法想像的。(這種情況會產生錯綜複雜的糾葛,牽扯到在我們的譜系開始之前,細菌的基因水平轉移到我們的古菌祖先中,結果導致細菌也混入我們的基因體內,但本質仍然是:喔,我們就是它們!)

某些人,例如佩斯,會強烈反對。渥易斯也不會同意,只是他在世的時間不夠長,無緣被艾特瑪二〇一五年發表在《自然》期刊上的論文激怒。

六月的一個早晨,在多倫多的一間會議室裡,艾特瑪向一屋子全神貫注的聽眾描述這項研究,其中包括杜立德和幾十名研究人員,還有我。

當我之後與杜立德碰面時,他用一貫的自嘲式幽默說:「我有點被洗腦了。」也是後來,我坐下來與艾特瑪對談。我們談到他當時仍未發表的最新研究,這會把同樣的涵義推得更進一步:粒線體是大轉變的次要因素,人類祖先植根於古菌中,位於兩分支的生命樹上。他很清楚反對的觀點,也清楚自己將會遭遇何等激烈的爭論。

他說:「我真的有在為某些可能迎面撲來的風暴做準備。」

——本文摘自《纏結的演化樹》,2022 年 7 月,貓頭鷹,未經同意請勿轉載。

貓頭鷹出版社_96
47 篇文章 ・ 20 位粉絲
貓頭鷹是智慧的象徵。1992年創社,以出版工具書為主。經過十多年的耕耘,逐步擴及各大知識領域的開發與深耕。現在貓頭鷹是全台灣最重要的彩色圖解工具書出版社。最富口碑的書系包括「自然珍藏、文學珍藏、台灣珍藏」等圖鑑系列,不但在國內贏得許多圖書獎,市場上也深受讀者喜愛。貓頭鷹的工具書還包括單卷式百科全書,以及「大學辭典」等專業辭典。貓頭鷹還有幾個個性鮮明的小類型,包括《從空中看台灣》等高成本的視覺影像書;純文字類的「貓頭鷹書房」,是得獎連連的知性人文書系;「科幻推進實驗室」則是重新站穩台灣科幻小說市場的新系列,其中艾西莫夫的科幻小說,已經成為台灣讀者的口碑選擇。

2

5
4

文字

分享

2
5
4
肉眼可見的「微生物」!科學家發現有史以來的最大細菌,平均長度大於 0.9 公分
細菌姐姐
・2022/07/25 ・2659字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

最近在《科學》(Science)期刊中刊出了一篇震驚微生物界的新發現!科學家們發現肉眼可見的超大細菌!

科學家找到了用肉眼就可以觀察到的細菌。圖/envato

從國中的生物課我們就學過,細菌是肉眼看不到的,必須透過顯微鏡才能觀察。細菌的大小,一般而言的認知是微米級(micrometer, μm),多數細菌的單一細胞直徑約為 2 微米左右。

然而,科學家們從美國紅樹(Rhizophora mangle)腐爛的葉子表面發現了一種很特殊的細菌 Candidatus Thiomargarita magnifica,它的細胞直徑平均大於 9000 微米( 0.9 公分)那麼這個「公分級(centimeter, cm)」的超巨大細菌究竟是何方神聖?

為什麼這個細菌可以這麼大?這麼大的細菌還算是微生物嗎?讓我們來一探究竟!

巨大細菌家族

其實早在 20 世紀中期就有許多巨大細菌的紀錄,例如芽孢桿菌綱 (Bacilli)中的幾種細菌、Sporospirillum屬和梭孢菌屬(Fusosporus)的細菌。然而,許多菌株在保存中遭到污染或是遺失,導致許多菌株沒辦法再取得,使得先前對於巨大細菌的研究資料非常有限。

目前已知的巨大細菌家族,包含:

  • 螺旋菌門(Spirochaetes),最長菌株紀錄為 300 微米。
  • 厚壁菌門(Firmicutes)中 Epulopiscium 屬的細菌,最長菌株紀錄為 600 微米左右。
  • 藍菌門(Cyanobacteria),最長菌株紀錄為 100 微米。

除此之外,許多硫化菌也常為巨超大細菌,例如變形菌門(Proteobacteria)中的 Beggiatoa 屬與 Thiomargarita 屬,也分別有超過 200 微米與、300 微米的紀錄。

細菌雖然有很多 200、300 微米的紀錄,但能夠長到 9000 微米是首次觀察到。圖/envato

到此,你應該清楚地發現,在 Candidatus Thiomargarita magnifica 被發現以前,在已知的細菌中,幾乎沒有長度超過 1000 微米,甚至接近 10000 微米的紀錄。

為什麼巨大細菌可以這麼大?

許多巨大細菌都有一個共通點:在細胞中央有一個超大的液胞 (vacuole),這個液胞內儲存的物質目前學界推測主要是硝酸鹽(nitrate)。

細菌的細胞生長往往高度依賴化學滲透作用,所以距離越遠,滲透作用越受限,因此細菌細胞沒辦法長得太大;然而,超大的液胞擋在細胞中央的話,這樣一來,化學滲透的傳導媒介的空間變小,細菌生長的限制就變小了!

既然這個新發現的超巨大細菌有辦法長得這麼大,細胞大小比一般的真核生物細胞(真核生物的細胞大小一般為 10-20 微米左右)還大,甚至還具有類似真核生物的液胞胞器(多數原核生物沒有液胞)。

那麼,這樣的細菌在演化上是否和真核生物具有某些相似之處呢?

超大液胞的巨大細菌:擁有真核生物特色的原核生物

從許多方面來看,巨大細菌確實具有許多類似真核生物的構造和特色。

除了細胞中央具有超大液胞之外,有趣的是,在許多巨大細菌中經常會發現,細胞之中具有特化獨立細胞膜的胞器(organelle),這個胞器內具有遺傳物質(如 DNA)和核醣體,科學家們推斷這疑似是原始的內共生構造(putative symbiont / intracytoplasmic structures)。

穿透式電子顯微鏡下菌大細菌的細胞:細胞膜(大箭頭)外為細胞壁(星形)、每個胞器被膜區隔(小箭頭),胞器內有多個囊泡(米字)。圖/參考資料 3

在此之前,基本上未曾在細菌或古菌的細胞中發現這種類似於真核細胞才具有的,可以同時獨立儲存遺傳物質和核醣體的有膜胞器。

註:細菌是原核生物,理論上不具有獨立細胞膜的胞器。

不僅是細胞內結構類似於真核生物,這個超巨大細菌 Candidatus Thiomargarita magnifica 的基因體非常的大,大小約為 1150 萬到 1220 萬個鹼基左右。其基因體大小幾乎和屬於真核生物的酵母菌(Saccharomyces cerevisiae,基因體大小約為 1210 萬個鹼基)所差無幾。

更甚者,在這株細菌上觀察到具有兩種不同的生長階段:生長期和傳播期(dispersive stage)。

生長期會慢慢長成細長類似於菌絲(filament)的形式,而傳播期間菌絲尖端(apical bud)的細胞會開始脫落以利散佈到環境之中,這樣的狀況和許多真菌傳播孢子(spore)的方式極為類似。

至於巨大細菌會不會是原核細胞演化成真核細胞過程中的過渡階段,可能還需要更多的研究進一步證實;但無庸置疑的是,巨大細菌確實擁有許多真核生物所具有的特色

這麼大的細菌,還算是微生物嗎?

什麼是微生物(microorganisms / microbes)?

在很早以前的微生物定義一般而言是:需要透過顯微鏡才能觀察到的微小生物,稱之「微生物」。

隨著科學演進,定義持續在修正,廣義的微生物包含:細菌(bacteria)、古菌(archaea)、真菌(fungi)、原生生物(protists)、病毒(viruses)等的微小生物。

其中,尤其是原核生物,之所以會這麼小,有很大的原因和細胞內營養傳遞受限於化學擴散作用,如果細胞太大,那養分運送時間就相對會拖得很長,不太可能在短期內快速繁衍,因此多數原核生物的細胞都非常的小。

但是,讓科學家意想不到的是,細菌竟然演化出了克服化學擴散作用,並且在高硫化物環境下生存的方式,進而演化出超大的細菌細胞。

從親緣關係上來看,這樣的巨大細菌是這些身為「微生物」的一般細菌的近親,理論上也算是「微生物」;但如果是從最早的微生物定義來看,這樣的細菌已經不再是「小到需要透過顯微鏡才能觀察到的生物」。

除了巨大細菌以外,其實,像是我們常見的麵包上的黑黴菌(bread mold,一種真菌)、或是森林裡的黏菌(slime mold,一種原生生物) 我們也都可以直接看到,但是兩者也都是普遍被認為的「微生物」。

麵包上會長一些黴菌。圖/維基百科

這麼大的細菌、真菌、和原生生物,「既可以是微生物,也不是微生物」,主要取決於定義的角度。

讀到這裡的你,也許會重新反思我們從小學習的細菌認知。

細菌依舊無所不在,但卻不一定是看不到的存在。

參考資料

  1. Levin PA. (2022). A bacterium that is not a microbe. Science 376 (6600): 1379-1380, doi: 10.1126/science.adc9387
  2. Ionescu, Danny and Bizic, Mina (July 2019). Giant Bacteria. In: eLS. John Wiley & Sons, Ltd: Chichester. doi: 10.1002/9780470015902.a0020371.pub2
  3. Volland J-M, Gonzalez-Rizzo S, Gros O, Tyml T, Ivanova N, Schulz F, Goudeau D, Elisabeth NH, Nath N, Udwary D, Malmstrom RR, Guidi-Rontani, Bolte-Kluge S, Davies KM, Jean MR, Mansot J-L, Mouncey NJ, Angert ER, Woyke T & Date SV. (2022). A centimeter-long bacterium with DNA contained in metabolically active, membrane-bound organelles.  Science 376: 1453-1458, doi: 10.1126/science.abb2634
  4. Willey, J., Sherwood, L. and Woolverton & C. (2013). Prescott’s Microbiology:9th Revised edition. London: MCGRAW HILL HIGHER EDUCATION. 
所有討論 2
細菌姐姐
2 篇文章 ・ 0 位粉絲
一位熱愛細菌學和微生物生態學研究的研究生,尤其喜歡細菌和其他微生物或動植物之間的互相依靠或是激烈戰爭。 總覺得微生物和動植物的互動和人類的社會很像。期待透過科普的文字將更多人感染成細菌學和微生物學愛好者。