0

0
0

文字

分享

0
0
0

小工程巧轉乾坤,紅外望遠鏡轉行偵查系外行星

臺北天文館_96
・2013/10/11 ・2310字 ・閱讀時間約 4 分鐘 ・SR值 495 ・六年級

feature13-07_Rec即將慶祝十歲生日的Spitzer(史匹哲)太空望遠鏡有另一好消息,它已成功轉型將用來看系外行星!當初2003年時Spitzer發射升空開始服役,系外行星觀測完全是個太瘋狂的念頭,當時的科學家和工程師心中全然沒想到過觀測系外行星這件事,所以此項目標當然根本沒列入原始設計規格中。不過,還好當初有些前瞻性的設計,很特別地打造出一個系統穩定的環境,也留下餘裕空間,今天工程人員只需再經一些巧思便能將它改造完成、發揮新功能。系外行星是現今當紅的研究領域,這故事不僅只關於一魚兩吃,也是一項可津津樂道的工程傳奇。

Spitzer看紅外光,肉眼可見的是「可見光」,兩者略有不同,前者能量稍弱,特性上卻能夠輕易地穿透宇宙塵和氣體,讓我們能不受阻礙地在多塵埃環境下觀測到恆星育嬰房、星系中心區、新生行星系統等。

Spitzer在紅外光的視力讓它同樣也可用來查找系外行星藏身之處。原理是,如果系外行星經過本身恆星前面,我們觀測到的恆星光量會略為下降,藉由這個微型的「食」現象,Spitzer可估出系外行星大小。

此外,其實系外行星也發出紅外光,所以,藉由在紅外光波段收集到的訊號,Spitzer還能了解到的是關於該行星的大氣成分。系外行星在軌道上繞母恆星公轉,行星表面各不同區域皆在Spitzer觀測中,這麼一來,紅外光波段的整體變化,就可用來估算其氣候狀況,行星要是躲到了恆星後面,造成該行星的紅外光亮度降低了,又可推測出行星的溫度。

-----廣告,請繼續往下閱讀-----

研究恆星形成以及行星如何在多塵埃環境中形成,向來是Spitzer最穩紮穩打,最擅長的科學領域,但如何跨入系外行星的那個領域,就非要靠超高的靈敏度不可,並且,需要的靈敏度更遠超過原始設計規格。

話說Spitzer的設計藍圖,是早在1996年就畫好的,當時不僅沒觀測到半顆系外行星的掩星現象,史上無前例可循,並且,誰要是想在紅外光裡觀測系外行星的掩星現象,所需的靈敏度之高,更是任何紅外光儀器想都不敢想的天方夜譚。

儘管如此,由於Spitzer原先設計時內建的溫度變化控管極強,並且,在瞄目標恆星的指向功能上它的配備也是超規格,有了這兩種基本功,儘管研究系外行星掩星現象需要極高精準度,但當初這兩項前瞻伏筆,後來才能在滿足科學研究需求上,畫下八字的第一撇。

事後諸葛來說,Spitzer難能可貴的繼續參與科學研究到如今,歸功的是早期那些創新十足的規劃。當時Spitzer,重裝登場,滿載很多冷卻劑為的是要提供低溫需求嚴苛的三座儀器至少夠用兩年半,事實上,經過一場「冷卻劑大作戰」奮勇演出,它最後是滿足了近五年半的運轉,才光榮退場,超水準演出。

-----廣告,請繼續往下閱讀-----

冷卻劑用完,故事還沒完。換上當初有備而來的後援方案,Spitzer繼續執勤。這座望遠鏡就在被動式冷卻系統環境下,繼續讓一組紅外相機仍可在超低溫下繼續作業,這個所謂超低溫,大約是攝氏零下244度(換算為絕對溫度等於29度K)。在紅外照相機高靈敏度沒有打折的情況下,Spitzer演奏出不再極度酷冷的二部曲。雖然說是沒那麼冷,別忘了,以地球標準來說,這個溫度仍然是「冷到不行」。

它用什麼來保持低溫呢?撇步一是,將背向太陽的那面望遠鏡的殼,漆成黑的,讓望遠鏡的熱能盡量散發太空,二是在面向太陽那面殼塗上亮亮的一層,使太陽光和太陽能面板產生的熱會直接從表面反射掉。這個Spitzer紅外望遠鏡首開風氣之先的創舉,在後繼太空任務中從此成為廣受採用的標準做法。

讓Spitzer完美變身成「系外行星偵查隊」的一員需要透過一些巧妙的喬裝易容術,尤其它早已進入太空中的軌道許久,這些後續的工程動作更不容易進行。即便它的穩定度相當高,指向恆星時,偶爾仍有些微小的晃動,這讓恆星以光點形式經過相機上的某一點像素時,仍會有些輕微的亮度起伏,這兩項因素都為測量掩星現象帶來難題,測量掩星現象本身的精細度要求就是很高。

解決之道,首先要找出哪裡出了問題。如果說望遠鏡會抖的話,事實上它抖得很規律,每小時一次。這個週期正好和一組加熱器的工作週期是相同,加熱器的作用是要讓望遠鏡上的電池不低於特定溫度。加熱器造成星軌追蹤器和望遠鏡中間的一支支架略彎,影響所及,望遠鏡和受追蹤的恆星間之相對位置就會微微抖動。

-----廣告,請繼續往下閱讀-----

到了2010年10月,工程人員已確認到,加熱器工作週期並不需要維持每小時一次,縮短到30分鐘即可,目標溫度也可以只達到一半就夠用,這樣,晃動幅度先砍一半。

這個結果並沒讓他們滿足太久,到了2011年9月,工程師又把Spitzer望遠鏡上指向控制參考用的感應相機Peak Up也改良升級。這臺Peak Up照相機在任務初期本是用來協助收集並集中紅外光,讓光路對準到光譜儀,執行星軌追蹤儀例行校準用,可讓望遠鏡對得更準。望遠鏡本來在瞄準恆星或天體時,本來無可避免地就會前搖後晃,考慮到這個晃動變因,把光會進到紅外相機的哪裡做到最好的控制,也就成為精確測量的關鍵之一。幫Peak Up相機完成了升級,天文學家能精確地將來自恆星的光點集中在像素正中央位置。

但是這個項目改良升級完畢,他們又找到著墨之處,甚至為相機上的個別像素的表現優劣都製圖追蹤,基本上他們發現有一個「好球區」會專門產出品質穩定的觀測結果。由於Spitzer做系外行星觀測時,所瞄準的目標有90%是比相機上的一個像素更小,甚至僅有像素的1/4大,好好運用紅外指向瞄準像機,基本上就能把定位弄得很精準,準到,直接能把觀測目標送進像素的「好球帶」中,以進行時間夠長的曝光。

所以,總結上述三項成果:修改的加熱器工作週期、升級的紅外指向集光相機、個別規劃每顆像素的好球帶,加總起來,就讓Spitzer的穩定性和指向精密度直接向上跳了二級,能以特優級的靈敏度測量系外行星掩星時微小變化。

-----廣告,請繼續往下閱讀-----

也是經由這些工程上的精益求精,Spitzer轉型成一座系外行星望遠鏡,未來也將協助系外行星科學貢獻許多深度的發現。(Lauren譯)

資料來源:How Engineers Revamped Spitzer to Probe Exoplanets

轉載自網路天文館2013.10.02

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 43 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

6
2

文字

分享

0
6
2
歐幾里得望遠鏡開工——目標是尋找暗物質證據!一起從科學家的角度欣賞這片夢幻光景!
PanSci_96
・2024/01/27 ・6276字 ・閱讀時間約 13 分鐘

14 億歐元天文望遠鏡拍出的照片,你看過了嗎?你看到現在這些照片,揭開了宇宙過去與現在、空間與時間所交織的祕密嗎?

今年 11 月 7 日,位在 L2 拉格朗日點的歐幾里得望遠鏡,終於傳回來它升空後的第一批照片。這 5 張照片不只展示了望遠鏡的強大性能,更讓我們窺見過去無法看到的,宇宙深處的幽美與奧秘。就讓我們一起透過這些獨特的照片,來一場探索宇宙的奇異之旅吧!

歐幾里得望遠鏡有什麼厲害之處?

今年 7 月 1 號升空的歐幾里得望遠鏡,任務是觀察宇宙大尺度結構,來研究暗物質與暗能量在宇宙中的分布與性質,讓我們進一步了解自己身處的這個宇宙。

去年七月,接棒哈伯望遠鏡任務的詹姆斯.韋伯太空望遠鏡,傳回來了升空後的第一批相片,每張照片都美的震撼人心,也帶著我們從全新的視角,眺望遙遠的系外行星、恆星、星雲與早期宇宙。當時,我們製作了一集節目,和大家分享這批照片背後的重要意義。我們也提到,每個望遠鏡在完成校準以後,都會發布一批「開光照」,向外界傳達望遠鏡已經可以順利運作的好消息,同時也讓大家了解這台新望遠鏡身上,背負了哪些重要的使命與任務。

-----廣告,請繼續往下閱讀-----

而這次,新升空的歐幾里得望遠鏡也終於完成校正,傳回來不同於韋伯望遠鏡,從另一個視角看宇宙的開光照。先讓我們來了解一下歐幾里得望遠鏡。它的觀測波段是可見光到近紅外線波段,目標是觀測大範圍、不同遠近的宇宙天體。預計在 6 年的服役期間,建立完整清晰的宇宙 3D 立體圖像。只是,剛退役的哈伯太空望遠鏡,主要任務就是可見光波段的研究,去年剛任務正式開始的韋伯太空望遠鏡,則是紅外線波段的佼佼者。那歐幾里得望遠鏡有什麼突破之處嗎?這座花費 14 億歐元的望遠鏡當然有它獨到之處,它強大的地方在於,可以在更短時間內獲得更高解析度的照片,同時拍攝更大範圍的宇宙。比如哈伯太空望遠鏡需要好幾天觀測的天體,歐幾里得望遠鏡一個小時就可以搞定,而且解析度更高。

歐幾里得太空望遠鏡。圖/wikimedia

其實看它們的任務目標就能很快理解,現在在天空上的韋伯和歐幾里得,雖然有部分任務重疊。但韋伯更著重在尋找系外行星與觀察星系、恆星系統的演化。歐幾里得呢,則是將視野放大到整個宇宙,希望了解暗物質、暗能量在整個宇宙間扮演的角色。所以比起韋伯太空望遠鏡著重在拍攝小範圍、高解析度的天體照片,歐幾里得望遠鏡一開始的設計,就是要在短時間內掃描更大片的宇宙。因此,歐幾里得望遠鏡也確實成為建立宇宙 3D 立體圖像的最佳望遠鏡,定期的大範圍掃描天空,讓我們能一窺宇宙隨時間的演化動態。

那麼,就讓我們來欣賞歐幾里得望遠鏡的第一批照片吧!

歐幾里得望遠鏡第一批照片公開!

第一張照片,像是在宇宙這張巨大的黑布上,撒下大小珍珠。它是一張距離地球 2.4 億光年,英仙座星系團的影像照。

-----廣告,請繼續往下閱讀-----

宇宙中有許多星系團,英仙座星系團就是其中之一,裡面包含超過 1000 個星系,是宇宙中最大的結構之一。除此之外,這張照片不僅清楚拍下了星系團,如果將照片放大來看,還會發現背景中有許多過去難以看到的星系,數量超過 10 萬個,最遠的甚至達 100 億光年。為什麼第一批照片要選擇拍攝星系團呢?因為研究星系團能幫助我們了解宇宙大尺度結構,進一步推算暗物質與暗能量的比例。

宇宙中的星系分佈其實是不均勻的,有些地方有許多星系,有些區域則幾乎沒有。整個宇宙中天體的分布看起來就像是一張巨網。可是,為什麼宇宙的大尺度結構是網狀的呢?天文學家認為宇宙大爆炸之後,物質在宇宙中的分佈會有些微的不均勻。當宇宙逐漸冷卻,氣體物質密度較高的地方會因為重力吸引而塌縮。但因為溫度很高,高溫產生的巨大壓力又讓氣體團反彈回來,就像擠壓一個壓力球一樣。來回震盪的過程中氣體會像聲波朝四面八方傳遞出去,稱為重子聲學振盪(BAO,baryon acoustic oscillations)。最後整個宇宙就像下毛毛雨時的池塘,形成由許多漣漪交織的網狀結構,波腹的地方氣體密度較高,變成星系高度聚集的區域,我們稱為星系團。其他地方氣體密度低,形成的星系數量較少,就像是宇宙間的孔洞。

而根據宇宙學家計算,要形成星系團、宇宙網(cosmic web)這類的宇宙大尺度結構,只靠已知物質提供的重力是不夠的,很可能還有許多我們還不了解的物質參與其中,也就是暗物質。這張照片不僅能幫助科學家研究宇宙大尺度結構,更彰顯歐幾里得望遠鏡的重要任務之一,就是幫助科學家深入了解暗物質的分佈與本質。

第二張照片是螺旋星系 IC342,離地球只有 1100 萬光年,算是離地球很近的星系,但由於它被明亮的銀河系盤面擋住了,觀測的難度非常高。歐幾里得望遠鏡利用近紅外線儀器穿透塵埃進行觀察,並移除許多銀河系中的恆星光芒,最後才形成這張極高解析度的照片,展現了它觀測隱藏星系的實力。

-----廣告,請繼續往下閱讀-----
IC342。圖/Judy Schmidt

這個螺旋星系在天空中的大小相當於一個滿月那麼大,要一次觀測這樣大範圍的天空,同時保有超高解析度,目前只有歐幾里得望遠鏡才辦得到。由於螺旋星系 IC342 和銀河系很像,觀察它的演化有助於科學家理解銀河系的形成過程。未來歐幾里得望遠鏡也會觀測更多隱藏星系和遙遠的天體,繪製出它們的 3D 分佈圖。

第三張照片是不規則星系 NGC 6822。雖然跟 IC342、銀河系一樣也是星系,但形狀不是螺旋而是不規則的。

透過光譜分析,我們知道這個星系中的重元素含量很低。重元素是透過大質量恆星核融合所產生的,重元素含量少表示星系裡的恆星才剛形成,也就是一個很早期、相對年輕的星系。科學家認為,在宇宙早期星系剛開始演化時,大部分的星系就長得像這樣,質量小、形狀也不太規則。之後這些小星系會因為重力吸引其他星系,彼此相撞、融合成更大的星系,逐漸產生旋轉的結構,形成像銀河系這樣的大質量螺旋星系。所以藉由觀測這些早期星系,可以幫助科學家了解星系的形成過程。

另外,照片中一顆顆藍色的圓形區域,是球狀星團。球狀星團中的星星都是由同一團氣體產生,是宇宙最早形成的天體之一,有些甚至比星系本身還早。透過觀測這些球狀星團的運動,能協助我們更了解這個星系的形成史。

-----廣告,請繼續往下閱讀-----

球狀星團大部分分佈在星系的外圍,以很慢的速度繞行星系,可能要好幾年才能觀察到要它們的運動。那科學家要怎麼知道這些星團是如何移動的呢?凡走過必留下痕跡,其中一種方式就是觀察到它們與星系本身互動所留下的痕跡。在歐幾里得望遠鏡傳回來的第四張照片中,就呈現了這些細節。第四張照片是球狀星團 NGC 6397,一個繞行銀河系的球狀星團。

當星團經過星系中的高密度區域,比如暗物質集中區、旋臂或星系盤面,星團中的星星會受到不同強度的重力吸引,使得星星彼此遠離,這個力量稱為潮汐力。顧名思義與潮汐的產生是相同的原理,由於地球各處受到太陽與月亮的重力總和不相同,在重力較強的地方海水受拉伸而漲潮,重力較弱的地方就會退潮。同樣道理,球狀星團在靠近星系中心的一側受重力較強,遠離星系的一側則較弱,球狀星團因而被拉伸,形成一條由星星組成的尾巴,稱為潮汐尾。

透過觀測潮汐尾,就可以了解球狀星團,乃至星系的演化過程。如果沒有潮汐尾,也可能代表有暗物質暈阻止外層恆星逃脫,能幫助我們進一步了解暗物質在星系當中的分佈。但要瞭解潮汐尾的形成過程,必須有星團中每顆星星的移動資料,也就是需要同時進行大範圍、短時間、高精度的觀測。而歐幾里得望遠鏡的優勢此時就能充分發揮,它可以一次拍攝整個球狀星團,而且只須一小時就可以得到這張高解析度的照片,連裡面的很暗的星星也看的一清二楚。只要每隔一段時間拍攝一張照片,就可以製作成動畫,了解星團中星體的運動軌跡。

最後,我們來介紹最後一張照片。它看起來最為夢幻,猶如一張宇宙中以繁星點綴的絲綢。它是距離地球約 1375 光年的馬頭星雲,也是離我們最近,正在形成新生恆星的區域。在星雲的上方(照片之外),有一顆明亮的恆星:獵戶座 sigma 星,這顆星輻射出的紫外光激發了位在馬頭後方的星雲,形成明亮、宛若薄紗的區域。組成馬頭的暗星雲氣體則因為溫度較低,只有些微的熱輻射,形成較為黯淡的前景,並稍微遮掩背後的明亮星雲。前後星雲層層堆疊,就像一幅宇宙給我們的水彩畫。更進一步,藉由歐幾里得望遠鏡高解析度的照片,科學家得以從中看到更多類木星、棕矮星、嬰兒恆星等,協助科學家了解星雲中的恆星形成過程。

-----廣告,請繼續往下閱讀-----
圖/wikimedia

對了,在我們介紹韋伯望遠鏡時有提到過,這些宇宙照通常不是它可見光波段下,真正我們肉眼所見的樣貌。而是選定特定波長後透過顏色校正,甚至將不同波段的照片疊合,才得到的結果。也就是說,選則不同的電磁波波段,或是採取不同的調色方式,得到的照片都會有不同風味。

所以如果你覺得這張淡麗的馬頭星雲不滿意,也有這張,特別強化氫元素的紅色光譜與氧元素藍色光譜後,成為一張猶如滅世風格,帶有點詭譎濾鏡的另一種美照,是不是跟剛才的氛圍完全不一樣呢?

馬頭星雲。圖/wikimedia

順帶一提,對我來說,一樣是星雲照片,韋伯望遠鏡校色出來的照片還是覺得比較好看。例如之前介紹過的,韋伯望遠鏡開光照之一的船底座星雲。還有原本是望遠鏡大前輩哈伯代表作,後來韋伯又重新翻拍的創世之柱,都更令人讚嘆不已,對比與彩度都高上許多,給人一種正在仰望廣闊宇宙的壯烈感。

韋伯望遠鏡所拍攝的船底座星雲。圖/wikimedia
創生之柱,左哈伯、右韋伯。圖/PanSci YouTube

我們更了解這個宇宙了嗎?

我們對於宇宙的瞭解還太少,目前宇宙中的已知物質,包括元素週期表上的所有原子,根據計算只佔宇宙質能的 5%,剩下的估計都是暗物質與和能量。

-----廣告,請繼續往下閱讀-----

但宇宙的奧秘就像一張複雜的拼圖,每拼上一小塊,都會給我們一些線索,猜測周圍的拼圖可能會是什麼。當拼的夠多,我們終有一天能得知宇宙整體的圖畫長什麼樣貌。恆星形成、星系演化方式、暗物質、暗能量等等,都各自是一塊塊重要的拼圖,唯有了解它們才能逐步得知暗物質與暗能量的奧秘。

舉例來說,暗物質所提供的重力在星系形成中扮演重要角色,目前最被科學界接受的冷暗物質(cold dark matter)模型,假設暗物質是由質量很大的粒子所組成,透過重力吸引聚集成許多小塊,小塊暗物質再彼此融合成更大的暗物質團塊,質量足夠大的團塊就可以吸引夠多的氣體,形成早期星系,之後再彼此融合成為更大的螺旋或橢圓星系。但透過數值模擬,科學家發現這個模型有些問題。理論上來說應該要有數百到數千個小衛星星系,繞行像銀河系這麼大的螺旋星系旋轉。但是天文學家實際上只觀測到約十個小星系繞行銀河系,這是著名的衛星遺失問題(Missing satellite problem)。

因此科學家又提出更多暗物質模型,比如與冷暗物質相對的熱暗物質(warm dark matter)模型,可以透過熱運動所產生的壓力抵銷重力,使得小暗物質團塊變得不穩定,從而解釋為何小星系的數量這麼少。除了熱暗物質以外,還有眾多的暗物質模型。但要證明哪個模型是正確的,就需要更多觀測數據與星系演化的模擬結果進行比較,才能得到答案。

不過看過歐幾里得望遠鏡傳回來的第一批照片,並了解其中代表的重要意義,就能充分感受到我們離解開這個謎團又更近了一步。還沒完,預計於 2027 年升空的羅曼太空望遠鏡(Nancy Grace Roman Space Telescope),與歐幾里得望遠鏡相同,都肩負研究暗能量與暗物質的重要任務。兩座望遠鏡將一同一個從可見光,一個從紅外線波段觀察大範圍宇宙,期待能為科學家帶來寶貴的數據,解開這盤旋好幾十年的謎團。

-----廣告,請繼續往下閱讀-----

最後問問大家,在這批照片中,你最喜歡的是哪一張呢?

  1. 英仙座星系團,大尺度的宇宙圖像,原來長這樣。
  2. 螺旋星系 IC342,我們的鄰居竟然這麼漂亮,這麼具有螺旋力。
  3. 馬頭星雲,有層次感的星雲照,真的令人目不暇給。
  4. 更多你喜歡的照片,或希望我們來介紹的天文照片,分享給我們吧!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
0

文字

分享

0
2
0
賽道上高溫與摩擦的平衡!賽車最重要的配件「剎車」——《黏黏滑滑》
晨星出版
・2023/01/06 ・3272字 ・閱讀時間約 6 分鐘

度影響剎車的抓力

雖然似乎有點違背直覺,但是煞車是高速駕駛不可或缺的一環。不管是在哪個賽車場,駕駛的目標之一就是保持在賽道的最佳路徑(racingline)—繞行賽道的最短路徑。所以駕駛過彎時不會沿著急轉彎處長長的外彎道前進,而是「夾著」彎道的內側,稱為彎頂點(apex,即過彎路線中最接近彎道內側的點)的地方,以將他們必須行駛的距離縮到最短。

這麼做需要非常精準的煞車:要在剛剛好的時間對煞車踏板施予剛剛好的壓力。當他們辦到時,駕駛就會出現在賽道轉彎處的絕佳位置,且依然帶有征服下一段賽程所需的速度。但是這樣的開車方式會耗損煞車;而且有些賽道沒什麼機會可以讓煞車冷卻。

以世界知名的摩納哥街賽道來說。雖然僅長3.34 公里(2 哩多),是F1 賽程中最短的賽道,但是卻必須不斷踩煞車和加速。煞車製造商布雷博(Brembo)指出,2019 年賽季中,駕駛們每一圈使用煞車 18.5 秒,多過總賽程的四分之一。

在需求最高的轉彎處,汽車要在不到 2.5 秒的時間內將時速從 297 公里(185 哩)減至 89 公里(55 哩);這會將大量動能快速轉換成熱能,難怪煞車碟盤會冒出火花。為了要負荷這樣龐大的熱負載,製造商在每個煞車碟盤的邊緣鑽入細小的徑向孔—數量超過 1000 個。

-----廣告,請繼續往下閱讀-----

這樣的小孔可以增加煞車碟盤的表面積,比較容易散熱。但是也具有通氣孔的功能。與安裝在各個輪框上的大型冷卻管相結合時,可以把冷空氣拉入煞車碟盤中心,把熱空氣從邊緣帶走。還有個額外優點,這些F1 煞車碟盤相當輕,重量約各為1 公斤(2.2 磅),相較之下,差不多大小的鑄鐵煞車碟盤則為 15 公斤(33 磅) 。

所以為什麼不全面使用這種煞車碟盤呢?有個原因是價格—每片煞車碟盤可能要價高達 2000 美元(約 1500 英鎊) ,而且要六個月的時間才能製成。它們也不太耐久,通常每次比賽後就得更換。最後,它們受限於一定的工作溫度,只能處於 350 ∼ 1000℃。

低於溫度下限時,它們幾乎不具有停止能力—煞車片與煞車碟盤無法產生足夠的抓力。但是如果煞車的溫度高於上限值太久,則會災難性地失靈。如馬歇爾對我描述的,「彷彿在踩縫紉機。當這種狀況發生時,煞車碟盤耗盡『材料』的速度有多快,簡直難以置信。」

科技有助於車隊和駕駛控制他們的煞車,但是就跟 F1 的大部分狀況一樣,沒那麼簡單。冷卻管的大小與形狀可控制流經煞車碟盤的空氣量,所以你可以想像管子愈粗愈好。

-----廣告,請繼續往下閱讀-----

但是如 F1 傳奇工程師帕特.西蒙茲(PatSymonds)告訴《賽車工程》(Racecar Engineering)雜誌的,冷卻有其後果:「遇到像蒙特羅這樣需要一直踩煞車的賽道,我們被迫使用一些該賽季最粗的管子。從最細的冷卻管換到最粗的冷卻管,會犧牲 1.5%的空氣動力學效率,這代表最高速度時速會減少 1 公里。」

我可以想像這會引發車隊的煞車工程師與他們的空氣動力學家爭辯。就連測量煞車配件的溫度都不容易。馬歇爾告訴我,在奧斯頓馬丁 F1 車隊中,他們會在煞車片的安裝托架中埋入高溫的熱電偶,和一系列直接朝向煞車碟盤的遠紅外線感測器。電視轉播賽事時偶爾會出現的彩色熱影像,主要是為了給我們這些觀眾看—顯示出他們建議的最高溫度。

剎車片的抓力在彎道時高速剎車時至關重要。圖/envatoelements

摩擦介面與溫度控制

煞車片與煞車碟盤之間還有另一個重要的過程是磨耗。所有滑動與摩擦都會對兩個表面造成實質傷害;每次煞車作動,兩者都會有微粒破裂。在煞車系統的使用期間,這會逐漸降低材料的摩擦係數—換句話說,會失去它們的抓力。

但這不只是因為彼此的表面被「磨光」,或是失去黏性。磨耗也會形成摩擦膜(tribofilm)這種東西—煞車片與煞車碟盤相接觸時壓碎的一層非常薄的細粒狀材料。「談到磨耗與摩擦力,摩擦膜非常有影響力,」英國里茲大學(University of Leeds)的沙赫里爾.柯沙利(Shahriar Kosarieh)說。

-----廣告,請繼續往下閱讀-----

「我們把這層膜視為『第三體』,因為儘管它是由互相滑動的那兩種材料製成,其化學與機械性質還是與那兩種材料不同。」關注各式各樣市售鑄鐵煞車片的德國研究人員發現,無論煞車片是什麼材質,形成的摩擦膜總是會受到氧化鐵(Fe3O4)控制,其他成分的影響力則相當微弱。

「摩擦膜會控制散熱,且能減少摩擦力—它會主導性能,」柯沙利繼續說道。「煞車製造商很清楚這一點,調配自己的煞車片配方時會考量這一點。煞車片與煞車碟盤要互相搭配,才能產生最佳性能。只要你更動了任一個材料,就會改變界面產生的結果。」

柯沙利最近的研究關注鑄鐵煞車碟盤輕量替代物的摩擦表現,這些輕量煞車碟盤主要都是鋁製。不只有他這麼做—整個汽車產業都對減輕重量很執著,主要是因為汽車的重量愈輕,消耗的燃料就愈少,環境影響也愈少。目前是以鋁為主流。

「那是一種低密度金屬,約比灰鑄鐵(grey cast iron)還低 2.5 倍,所以減輕重量的可能性很高,」他跟我在電話中閒聊。「鋁的導熱性也很高,在表面形成的氧化物也具有一些防蝕效果。」把鋁合金與碳化矽等硬質陶瓷材料結合也能提升其強度。

-----廣告,請繼續往下閱讀-----

「但是鋁的問題在於當溫度高於400℃時會開始熔化。就煞車而言,這代表摩擦力突然銳減,也是你能想像最糟的狀況。所以更加促使工程師更努力找出方法,既能讓表面有比較好的熱穩定性,使用壽命又能更持久。」

工程師致力於找出剎車在溫度與磨損上的平衡。圖/envatoelements

對柯沙利而言,最有意思的其中一種方法是電漿電解氧化(plasmaelectrolytic oxidation, PEO),這是用一個電場在鋁的表面形成一層複雜又高度耐磨的薄層。當他測試各種不同以電漿電解氧化處理過的鋁盤性能時,發現有些可以撐過約 550℃。不過,許多案例的摩擦係數太低—低於實際煞車系統所需的最低閾值。

柯沙利並不洩氣。「煞車是整個系統一起作動。如果你拿到一個新的煞車碟盤,那你也需要把對位碟盤調整到最佳狀態。製造商設計出專供電漿電解氧化塗層煞車碟盤使用的新煞車片配方。」我只找到幾篇已發表的研究,結合了電漿電解氧化煞車碟盤與這些新的摩擦片,但是結果看起來大有希望。輕量的鋁製煞車在未來的道路車輛上可能有機會亮相。

F1 在 1970 年代晚期為它們的煞車碟盤和煞車片找到了不同的解決方法,從那時候起就沿用至今:一種稱為碳-碳(carbon-carbon)的材料,在石墨基質裡包埋高度有序的碳纖維。其散熱效果非常好,所以也用在太空梭上。雖然它聽起來可能跟F1 賽車底盤用的碳纖維很類似,但其實是非常不一樣的猛獸。

-----廣告,請繼續往下閱讀-----

製造碳-碳很緩慢且複雜,此材料是由原子薄層堆疊成層。它在摩擦力方面勝出,提供的抓力比傳統煞車配件高 2 倍(在其理想工作溫度範圍內)。但是那並非魔法。在競速的壓力之下,這種材料終究會磨耗殆盡,部分是由於摩擦,但也有化學方面的因素。溫度上升時,碳-碳會與空氣中的氧氣產生反應,而氧氣會提高其劣化程度。你有時候會看到F1 駕駛大力踩煞車時冒出黑塵,這就是原因。

藉由感測器數據調整剎車系統

這個過程代表車隊需要監測的煞車項目不只是溫度。馬歇爾跟我說,他們會使用壓力感測器留意流經管子的氣流。他們也有針對磨耗的電子感測器,可以測量胎側的活動。

「我們使用這些儀器測量煞車片還能接觸煞車碟盤多久。由此可以推論總磨耗程度—也就是煞車片與煞車碟盤的磨耗總和。」為了推算總磨耗比例與煞車片的關係,以及對煞車碟盤的磨耗程度,車隊會把感測器數據對照以往試駕和賽事所蒐集的煞車數據。

「我們可以從所有資料中追溯比賽時的磨耗速率。如果太快,我們可以調整煞車平衡,以免磨耗最高的車輛壽終正寢,或可以請駕駛找一些乾淨的空氣冷卻煞車。」不管怎麼做,目標都是確保駕駛在需要的時間和地點擁有阻擋能力。任一賽季都會面臨數以千計的彎道,這些系統,當然還有駕駛,都表現卓越。

-----廣告,請繼續往下閱讀-----

——本文摘自《黏黏滑滑》,2022 年 11 月,晨星出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----