0

0
0

文字

分享

0
0
0

小工程巧轉乾坤,紅外望遠鏡轉行偵查系外行星

臺北天文館_96
・2013/10/11 ・2310字 ・閱讀時間約 4 分鐘 ・SR值 495 ・六年級

feature13-07_Rec即將慶祝十歲生日的Spitzer(史匹哲)太空望遠鏡有另一好消息,它已成功轉型將用來看系外行星!當初2003年時Spitzer發射升空開始服役,系外行星觀測完全是個太瘋狂的念頭,當時的科學家和工程師心中全然沒想到過觀測系外行星這件事,所以此項目標當然根本沒列入原始設計規格中。不過,還好當初有些前瞻性的設計,很特別地打造出一個系統穩定的環境,也留下餘裕空間,今天工程人員只需再經一些巧思便能將它改造完成、發揮新功能。系外行星是現今當紅的研究領域,這故事不僅只關於一魚兩吃,也是一項可津津樂道的工程傳奇。

Spitzer看紅外光,肉眼可見的是「可見光」,兩者略有不同,前者能量稍弱,特性上卻能夠輕易地穿透宇宙塵和氣體,讓我們能不受阻礙地在多塵埃環境下觀測到恆星育嬰房、星系中心區、新生行星系統等。

Spitzer在紅外光的視力讓它同樣也可用來查找系外行星藏身之處。原理是,如果系外行星經過本身恆星前面,我們觀測到的恆星光量會略為下降,藉由這個微型的「食」現象,Spitzer可估出系外行星大小。

此外,其實系外行星也發出紅外光,所以,藉由在紅外光波段收集到的訊號,Spitzer還能了解到的是關於該行星的大氣成分。系外行星在軌道上繞母恆星公轉,行星表面各不同區域皆在Spitzer觀測中,這麼一來,紅外光波段的整體變化,就可用來估算其氣候狀況,行星要是躲到了恆星後面,造成該行星的紅外光亮度降低了,又可推測出行星的溫度。

研究恆星形成以及行星如何在多塵埃環境中形成,向來是Spitzer最穩紮穩打,最擅長的科學領域,但如何跨入系外行星的那個領域,就非要靠超高的靈敏度不可,並且,需要的靈敏度更遠超過原始設計規格。

話說Spitzer的設計藍圖,是早在1996年就畫好的,當時不僅沒觀測到半顆系外行星的掩星現象,史上無前例可循,並且,誰要是想在紅外光裡觀測系外行星的掩星現象,所需的靈敏度之高,更是任何紅外光儀器想都不敢想的天方夜譚。

儘管如此,由於Spitzer原先設計時內建的溫度變化控管極強,並且,在瞄目標恆星的指向功能上它的配備也是超規格,有了這兩種基本功,儘管研究系外行星掩星現象需要極高精準度,但當初這兩項前瞻伏筆,後來才能在滿足科學研究需求上,畫下八字的第一撇。

事後諸葛來說,Spitzer難能可貴的繼續參與科學研究到如今,歸功的是早期那些創新十足的規劃。當時Spitzer,重裝登場,滿載很多冷卻劑為的是要提供低溫需求嚴苛的三座儀器至少夠用兩年半,事實上,經過一場「冷卻劑大作戰」奮勇演出,它最後是滿足了近五年半的運轉,才光榮退場,超水準演出。

冷卻劑用完,故事還沒完。換上當初有備而來的後援方案,Spitzer繼續執勤。這座望遠鏡就在被動式冷卻系統環境下,繼續讓一組紅外相機仍可在超低溫下繼續作業,這個所謂超低溫,大約是攝氏零下244度(換算為絕對溫度等於29度K)。在紅外照相機高靈敏度沒有打折的情況下,Spitzer演奏出不再極度酷冷的二部曲。雖然說是沒那麼冷,別忘了,以地球標準來說,這個溫度仍然是「冷到不行」。

它用什麼來保持低溫呢?撇步一是,將背向太陽的那面望遠鏡的殼,漆成黑的,讓望遠鏡的熱能盡量散發太空,二是在面向太陽那面殼塗上亮亮的一層,使太陽光和太陽能面板產生的熱會直接從表面反射掉。這個Spitzer紅外望遠鏡首開風氣之先的創舉,在後繼太空任務中從此成為廣受採用的標準做法。

讓Spitzer完美變身成「系外行星偵查隊」的一員需要透過一些巧妙的喬裝易容術,尤其它早已進入太空中的軌道許久,這些後續的工程動作更不容易進行。即便它的穩定度相當高,指向恆星時,偶爾仍有些微小的晃動,這讓恆星以光點形式經過相機上的某一點像素時,仍會有些輕微的亮度起伏,這兩項因素都為測量掩星現象帶來難題,測量掩星現象本身的精細度要求就是很高。

解決之道,首先要找出哪裡出了問題。如果說望遠鏡會抖的話,事實上它抖得很規律,每小時一次。這個週期正好和一組加熱器的工作週期是相同,加熱器的作用是要讓望遠鏡上的電池不低於特定溫度。加熱器造成星軌追蹤器和望遠鏡中間的一支支架略彎,影響所及,望遠鏡和受追蹤的恆星間之相對位置就會微微抖動。

到了2010年10月,工程人員已確認到,加熱器工作週期並不需要維持每小時一次,縮短到30分鐘即可,目標溫度也可以只達到一半就夠用,這樣,晃動幅度先砍一半。

這個結果並沒讓他們滿足太久,到了2011年9月,工程師又把Spitzer望遠鏡上指向控制參考用的感應相機Peak Up也改良升級。這臺Peak Up照相機在任務初期本是用來協助收集並集中紅外光,讓光路對準到光譜儀,執行星軌追蹤儀例行校準用,可讓望遠鏡對得更準。望遠鏡本來在瞄準恆星或天體時,本來無可避免地就會前搖後晃,考慮到這個晃動變因,把光會進到紅外相機的哪裡做到最好的控制,也就成為精確測量的關鍵之一。幫Peak Up相機完成了升級,天文學家能精確地將來自恆星的光點集中在像素正中央位置。

但是這個項目改良升級完畢,他們又找到著墨之處,甚至為相機上的個別像素的表現優劣都製圖追蹤,基本上他們發現有一個「好球區」會專門產出品質穩定的觀測結果。由於Spitzer做系外行星觀測時,所瞄準的目標有90%是比相機上的一個像素更小,甚至僅有像素的1/4大,好好運用紅外指向瞄準像機,基本上就能把定位弄得很精準,準到,直接能把觀測目標送進像素的「好球帶」中,以進行時間夠長的曝光。

所以,總結上述三項成果:修改的加熱器工作週期、升級的紅外指向集光相機、個別規劃每顆像素的好球帶,加總起來,就讓Spitzer的穩定性和指向精密度直接向上跳了二級,能以特優級的靈敏度測量系外行星掩星時微小變化。

也是經由這些工程上的精益求精,Spitzer轉型成一座系外行星望遠鏡,未來也將協助系外行星科學貢獻許多深度的發現。(Lauren譯)

資料來源:How Engineers Revamped Spitzer to Probe Exoplanets

轉載自網路天文館2013.10.02


數感宇宙探索課程,現正募資中!

文章難易度
臺北天文館_96
482 篇文章 ・ 23 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!


0

22
2

文字

分享

0
22
2

極目遠眺的意義:天文學家為何追尋第一代星系

Tiger Hsiao_96
・2022/05/15 ・3764字 ・閱讀時間約 7 分鐘
  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

近日,來自東京大學和倫敦大學學院的科學家 播金優一(Yuichi Harikane) 在天文物理期刊《The Astrophysical Journal》發表了一篇論文,宣稱他們可能找到目前最遠的星系(名為 HD-1,紅移值 z 約為13),打破了原本最遠(GNz-11,z 約為 11)的紀錄。

天文學家為什麼執著要找最遠的星系呢?
是單純為了破紀錄而破、抑或是蘊藏了什麼科學涵義?
天文學家們又是怎麼尋找、並且推論這些星系多遠的呢?

HD1 的影像。圖/Harikane et al.

時間推回到二十世紀初,當時的科學家們對宇宙大小到底是恆定或是膨脹爭論不休,其中,愛因斯坦(Albert Einstein)便是支持「宇宙穩恆態理論」的知名科學家。而支持膨脹宇宙的科學家們,一直到西元 1929 年,愛德溫.哈伯(Edwin Hubble)透過測量其他星系,發現了宇宙在膨脹,才為膨脹宇宙(也就是日後人們所說的「大爆炸理論 The Big Bang Theory」)注入了一劑強心針。

接下來的各種證據,如宇宙微波背景輻射、宇宙中元素的比例等,讓天文學家們越來越確信宇宙的年齡是有限的,並開始利用紙筆與超級電腦,來推測最早、也就是第一代星系及恆星的樣貌,並嘗試用望遠鏡,來尋找早期星系是否和我們預測的相符。

科學家是如何知道距離的呢?

天文學家並沒有一把長達「一百多萬光年」的尺,那他們是如何尋找,並且知道這些早期星系距離我們有多遠呢?讓我們把兩個問題分開,先來探討在宇宙學尺度下的距離是怎麼得到的。

由於我們知道宇宙在膨脹,而這些遠離我們的星系所發出的光,也會因為類似都卜勒效應的影響,有著紅移的現象。而越遠的星系遠離我們的速度越快,它們紅移值也就越大;而從實驗室中,我們知道每種元素都會發出特定的譜線,藉由測量到星系光譜中特定譜線的實際位置,並與那條譜線所該在的位置比較,就能夠計算這些星系的紅移值了。

而結合紅移值和其他測量到的宇宙學參數(例如哈伯常數),就可以從星系的紅移值計算出物理上的距離,比如大家常會看到的「光年」。

星系的紅移(Redshift)與它跟地球的距離(Distance)可以互相換算。圖/林彥興

那既然這樣,我們只要測量所有星系的光譜,不就能知道最遠的星系是哪一個了嗎?可惜事情並沒有這麼簡單。

一來,很多星系(尤其是越遠的星系)都很黯淡,難以測量光譜,二來,測量光譜實際上是又貴又耗時的。所以,以「尋找」的為目的,做單一波段的搜索通常是比較實際的作法。但若是使用單一波段,不就代表我們沒有光譜,這樣不就又不知道距離了?

Well yes, but actually no。大家應該都聽過盲人摸象的故事,透過觀測越多的波段,我們就越能描繪出實際上的光譜,再根據現有的理論模型,我們就可以利用光譜擬合來推論出這些星系的紅移值。

那要如何鎖定這些早期的星系?

天文學家總不可能對每個能測量到的星系都做很多波段的觀測,並且大費周章的利用理論模型去擬合他們。很多特定的望遠鏡(例如 ALMA、JWST)是要寫觀測計畫書和其他天文學家競爭觀測時間的,總要給出一個有力的理由,才能讓你的觀測計劃脫穎而出。

但還沒有資料之前,天文學家要怎麼知道哪個星系是最遠的?這便產生了一個「沒有工作要怎麼有工作經驗」的迴圈。怎麼辦呢?天文學家就是要想辦法,在已經觀測的深空資料庫中去尋找最遠的星系。

哈伯太空望遠鏡拍攝的「哈伯極深空 Hubble Extreme Deep Field」影像。藉由比較圖片中不同紅移的星系的性質,天文學家就能重建出過去百億年來星系的形成與演化歷史。圖/NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team

而要怎麼在龐大的資料庫中尋找遙遠的星系呢?讓我們再次簡單回顧歷史。量子物理在十九世紀末至二十世紀初逐漸開始發展時,瑞士物理學家約翰.巴耳末(Johann Balmer)研究激發態的氫原子所放出的光譜,發現在可見光波段,氫原子只會發射一系列特定波長的譜線。隨後美國物理學家西奧多.萊曼(Theodore Lyman)也接著發現,氫原子從受激態回到基態時,會放出一系列位於紫外線波段的譜線,這些特定的譜線也被稱為萊曼系。

氫原子的各個譜線家族,由上而下分別是位於紫外線的萊曼系,位於可見光的巴耳末系,以及位於紅外線的帕森系。圖/Szdori, OrangeDog

而用來尋找早期星系的第一種方法,也是最主要的搜索方法,就與萊曼系關係密切。天文學家發現,宇宙中有一種名為「萊曼斷裂星系(Lyman-break galaxies; LBGs)」的星系,這種星系的光譜有一個很明顯的特徵,便是在特定的波長以下就幾乎觀測不到,原因是波長更短的光(更高的能量)都被星際物質(Interstellar medium; ISM)和星系際物質(Intergalactic medium; IGM)的中性氫的萊曼線系給吸收了。

而萊曼線系中波長最短的譜線(常稱為萊曼極限)約在 91.2 奈米,最長的萊曼 α 譜線則約在 121.6 奈米。只要透過兩個波長足夠接近的波段去尋找「在長波長有觀測到、但在短波段沒觀測到的天體」(稱為 drop-out),就可以粗略的估計星系的紅移。

舉例來說,如果我們要找紅移值為 9 的萊曼斷裂星系,只需要稍微長於和短於 1216 奈米的兩個波段,看看有沒有星系出現在長波段的影像中,但在短波段的影像中卻沒有出現,就有可能是在紅移值為 9 的萊曼斷裂星系。如果要找越遠的萊曼斷裂星系,只需要換波長較長的波段即可。

近日打破紀錄的最遠星系,也是透過 H-band drop-out(在波長 H 波段沒有觀測到,而較長的波段有)所找出的。

光譜drop-out的例子。圖/Harikane et al (2022)

上圖為近日打破紀錄的最遠星系 HD1 的 H-band drop-out,可以看到長波段:4.5、3.6 微米以及 Ks 波段都有偵測到,但在 H 波段(以及更短波長)的影像就消失不見了。藍色的光譜 z 值為 13.3 的萊曼斷裂模型,灰色的光譜則為可能的低紅移汙染,z=3.9 的巴耳末斷裂模型。

當然,這只能幫助科學家初步的篩選,而且此種方法會受到一些其他非早期星系的汙染。

舉例來說,上文提到氫原子除了萊曼系以外,還有回到第一激發態的巴耳末系。若只是單純地透過 drop-out,因為巴耳末系本身的譜線就比萊曼系來得紅,所以也有可能找到的是紅移值較小的巴耳末斷裂;此外,非常紅且充滿塵埃的星系也會在光譜上出現類似「驟降」的特徵。

當然,更多波段以及光譜的觀測,都有助於釐清這些可能的汙染。而除了上述的方法以外,萊曼 α 發射體(Lyman-alpha emitters; LAEs)、伽瑪射線暴的宿主星系、重力透鏡效應等,也是尋找遙遠星系的重要方法哦!

那麼,找出這些早期星系有什麼科學意義?

現代宇宙學理論認為,宇宙在早期曾經經歷過兩次相變。第一次是宇宙從炙熱的游離態降溫回到中性的氣態,被稱為宇宙的復合時期(Epoch of Recombination),也是大家熟悉的宇宙微波背景的起源;第二次(也是最後一次)的相變,宇宙中的中性氫變成了游離化的氫離子,這個相變的過程被稱為再電離時期(Epoch of Reionization; EoR)。

而目前認為,第二次這個電離的原因,是第一代恆星和第一代星系所發出的強紫外線光,把周圍的中性氫游離成氫離子。藉由尋找越來越多的早期星系,我們就能透過這些早期星系來描繪宇宙再電離時期的歷史,而這又能夠進一步驗證現代宇宙學理論是否正確。不僅如此,研究這些早期星系,可以讓我們對於星系演化的歷史更往前推,或是研究早期星系的超大質量黑洞,是如何長到這麼大等等的議題。

未來展望

在 2021 年底順利升空的詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope; JWST),其中一個主要的科學目標就是研究早期宇宙。如這篇文章一開始提到的「新的最遠的星系(HD-1)」,又如前一陣子發現的「最遠恆星 Earendel」,以及同一團隊的另一個紅移約 11 的星系,都在第一輪 JWST 的觀測計畫之中。

期待幾個月後 JWST 公布的第一批科學照片,能大幅革新我們對早期宇宙的認識。

參考資料(論文們)

延伸閱讀(科普文章)


數感宇宙探索課程,現正募資中!

Tiger Hsiao_96
9 篇文章 ・ 7 位粉絲
現為清大天文所碩二學生,即將赴美於約翰霍普金斯大學攻讀天文博士。