1

0
1

文字

分享

1
0
1

誰需要瓢蟲保鏢?

葉綠舒
・2011/06/22 ・605字 ・閱讀時間約 1 分鐘 ・SR值 389 ・三年級

-----廣告,請繼續往下閱讀-----

圖片來自ScienceNow

如果你覺得上面的圖是瓢蟲在抱蛋或抱蛹~那麼你弄錯了。在瓢蟲身體下面的其實是瓢蟲繭蜂(Dinocampus coccinellae)的蛹。

瓢蟲繭蜂會下蛋在瓢蟲身上(牠們尤其熱愛七星瓢蟲),然後瓢蟲繭蜂會開始在瓢蟲裡面成長,但是不會殺死瓢蟲。直到他們要化蛹的時候,他們才會由瓢蟲的腹部鑽出來,並在瓢蟲(仍然活著)的六足之間吐絲結蛹。

為什麼不乾脆把瓢蟲給殺了,而要這麼麻煩的維持瓢蟲活命?為了不馬上殺死瓢蟲,瓢蟲繭蜂的幼蟲會先把瓢蟲身上比較不重要的器官(生殖器官、卵)吃掉,如果馬上就把瓢蟲給殺了不是很好嗎?

法國以及加拿大的研究團隊也對這個現象很好奇,於是他們展開了一系列的研究。他們的研究結果發現,當他們把瓢蟲、瓢蟲繭蜂、以及瓢蟲繭蜂的天敵脈翅目的昆蟲(lacewings,應該是草蛉?)放在一起時,如果瓢蟲繭蜂的蛹上面的瓢蟲仍然存活,這時候瓢蟲繭蜂的蛹只有35%會被脈翅目昆蟲吃掉。但如果瓢蟲繭蜂的蛹上面的瓢蟲已經死亡,則蛹有85%會被脈翅目昆蟲吃掉。如果蛹上面沒有瓢蟲呢?那幾乎是100%會被吃掉。

-----廣告,請繼續往下閱讀-----

所以,為何瓢蟲繭蜂不馬上把瓢蟲給殺了,而要大費周章地維持瓢蟲的性命,直到化蛹前才會切斷瓢蟲的足神經,讓瓢蟲完全癱瘓呢?原來牠們需要瓢蟲來當牠們的保鏢,畢竟當脈翅目的昆蟲接近瓢蟲時,瓢蟲為了保護自己也會出手抵抗,於是也幫了繭蜂一個大忙。

資料來源:ScienceShot: Ladybugs as Bodyguards – ScienceNOW

本文原發表於Miscellaneous999[2011-06-22]

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

9
0

文字

分享

0
9
0
【2021 年搞笑諾貝爾:和平獎】光溜溜的下巴怕鐵拳?快把你的鬍子留好留滿!
Yiting_96
・2021/09/23 ・1790字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

要打架可以,但不要打臉啊啊啊!!!

試著在腦袋裡想像一下,打架的時候你第一個目標會先打哪裡呢?

過往研究顯示,男人與男人之間一言不合就開打的情況相當稀鬆平常,因此臉部掛彩什麼的都只是小事。而流行病學數據也告訴我們,男性因為打架導致臉部受傷的比例,比女性高出 68~92%(不是說好不打臉的嗎?)。

既然臉這麼重要,下頜骨(mandible)又是一個很容易在打架時骨折的區域,有沒有什麼方式可以妥善保護它?——或許你可以考慮像海格一樣留個濃~濃~的鬍子!

你有想過為什麼要留這麼濃密的鬍子嗎 (´・ω・`)? 圖/Pexels

怕痛嗎?要不要考慮留個鬍鬚?

自古以來,有鬍子的男性都被認為比較陽剛、有男人味,就像雄獅那頭帥氣的鬃毛一樣。以前,你可能只會覺得「這些人留鬍子是想耍帥吧?」,但在看完今年(2021)搞笑諾貝爾和平獎的得獎研究之後,你會知道這些鬍子可沒這麼簡單 ಠ_ಠ

-----廣告,請繼續往下閱讀-----

今年搞笑諾貝爾和平獎,由美國猶他大學(University of Utah)的研究者 Beseris、Naleway、Carrier 獲得,他們發現擁有濃密的鬍子除了讓你看起來男性氣質 +10%,還能讓你在實戰中防禦力 +30%!

想模擬濃密的鬍鬚?試試羊毛吧!

為了知道人類鬍子的防禦指數到底有多少,研究團隊首先以短纖維環氧樹脂化合物(short fiber epoxy composite)作為材料,建構出人類的骨頭模擬物。而後再用羊皮、羊毛模擬出人的皮膚、鬍子,並將這些模擬物分為三組:毛茸茸的毛、修剪過的毛、無毛,用以代表著有濃密鬍鬚、修剪過鬍鬚、拔除鬍鬚(furred, sheared, plucked)這三種狀態的人類男性。

在製作好毛茸茸這些模擬物後,我們還缺少一個最重要的東西:拳頭。而落錘重量衝擊試驗機(drop weight impact tester,型號為 Instron Dynatup 8250)就是研究團隊們用來代替拳頭的進行落錘衝擊實驗的完美物品。

我們的人工拳頭落錘重量衝擊試驗機與毛茸茸的樣品。圖上中文為作者加註。圖/參考資料 1

毛茸茸的毛,防禦力 +30% 的關鍵

在使用了落錘重量衝擊試驗機後,研究團隊發現相較於「修剪過的毛」或「無毛」這兩種樣本而言,「毛茸茸的毛」確實可以吸收更多重量衝擊,提供下方的骨骼模擬物較好的保護力。

-----廣告,請繼續往下閱讀-----

我們可以從圖 A 較為平緩的黑色曲線看出,當落錘掉下來時,「毛茸茸的毛」具有緩衝效果,衝擊力達到高峰耗費的時間長,吸收重量衝擊的效果較好,灰線也顯示這坨濃密的毛能吸收的能量比「修剪過的毛」、「無毛」兩組來得多。而圖 B、C 則告訴我們,若使用「修剪過的毛」、「無毛」樣本進行實驗,落錘釋放的力會在短時間內達到高峰,毛髮吸收的能量也沒有「毛茸茸的毛」來得多。

落錘重量衝擊試驗的數據圖表,三張圖分別代表毛茸茸的毛(A)、修剪過的毛(B)、無毛(C)這三組樣本;黑線為落錘掉下來的衝擊力,灰線則表示毛髮吸收的能量。圖/參考資料 1

鬍子防禦力有限,珍惜下頜骨才是上策

上述數據告訴我們,「毛茸茸的毛」能比另外兩組多吸收將近 30% 的能量,但這是否代表著我們留了濃密鬍子後,就能成為一個不怕痛的耐打高手嗎?事實可能並不盡然。

研究團隊表示,濃密的鬍鬚雖然能減少臉部皮膚、肌肉的傷害,也能保護臉部骨骼脆弱的區域免於骨折危機,但魔鬼藏在細節中——你的鬍鬚並不是羊毛啊!在本次研究中使用的羊皮、羊毛其實相當毛茸茸又厚實,即使能作為一個好的模擬物,但在缺乏人類臉部毛髮粗細、密度、厚度數據的情況下,並沒有辦法 100% 保證它能代表我們。

此外,不同人種的臉部毛髮也略有差異。擁有中東與北歐血統的人們,能夠長出厚實、濃密的鬍鬚;然而東亞、美洲印地安人的臉部毛髮卻相對稀少。後續仍需要進行更多的研究,確定這些毛髮究竟是如何影響衝擊力道,或許也可以透過建立毛髮纖維模型並以程式模擬的方式達成研究目的。總而言之,在更多研究數據出來之前還是先別輕舉妄動,小心防禦力沒加成,反而讓自己破相啦!

-----廣告,請繼續往下閱讀-----
  1. E A Beseris et al., Impact Protection Potential of Mammalian Hair: Testing the Pugilism Hypothesis for the Evolution of Human Facial Hair,Integrative Organismal Biology, Volume 2, Issue 1, 2020.
  2. The 2021 Ig Nobel Prize Winners
-----廣告,請繼續往下閱讀-----
Yiting_96
4 篇文章 ・ 1 位粉絲
在鳳梨田裡唸生科的人類,畢業後意外走上了科普路,目前還在緩慢前行中。喜歡有趣怪知識、諧音爛笑話,還有床。

0

1
0

文字

分享

0
1
0
介殼蟲的依存物語——《都市昆蟲記》
天下文化_96
・2016/05/16 ・2159字 ・閱讀時間約 4 分鐘 ・SR值 500 ・六年級

-----廣告,請繼續往下閱讀-----

有種植盆栽的家庭,對介殼蟲這類生物可能會相當熟悉。每一年、每隔一陣子,我家中便會出現一群群白色的臀紋粉介殼蟲,聚集在一塊,吸食著植物葉片、莖的汁液。牠們的身體扁平橢圓,表面因布滿了蠟質粉狀分泌物而呈白色,看似柔軟而脆弱。

B4-3
臀紋粉介殼蟲那外觀如棉絮般的蠟質卵囊。圖/天下文化提供

見到的這些介殼蟲族群幾乎都是雌蟲。由於許多介殼蟲可直接行孤雌生殖,也就是不經交尾就能產下後代,因此雄蟲算是相當罕見。雖然行動緩慢,然而雌蟲一生的產卵量可是高達上百粒,繁殖力相當的驚人。臀紋粉介殼蟲在產卵時會分泌大量白色如棉絮般的蠟質卵囊,將卵產於其中,新生若蟲孵化後便鑽出卵囊,開始在植物表面活動。許多的成蟲和若蟲往往喜歡聚集在莖葉、枝條的交界或分支處。

B4-1
臀紋粉介殼蟲。圖/天下文化提供

-----廣告,請繼續往下閱讀-----

介殼蟲的出現,也陸續吸引其他的昆蟲前來,展現了一場微型生態系裡的互動。

嚐甜頭的螞蟻

首先是被介殼蟲所吸引的熱帶大頭家蟻,開始頻繁的在介殼蟲周圍爬行。熱帶大頭家蟻是熱帶與亞熱帶地區常見的螞蟻,這種螞蟻外表偏深紅色,常築巢於土壤或石縫中,偶爾也會在人類房舍中出現。熱帶大頭家蟻的族群有一項明顯的特色,就是牠們具有工蟻和兵蟻兩種階級。圍繞在介殼蟲身邊的多半是熱帶大頭家蟻的工蟻,此外還有一種體型較大的兵蟻,但在植物上似乎較少見到。

B4-5
圍繞在介殼蟲身邊的多半是熱帶大頭家蟻的工蟻。圖/天下文化提供。

部分半翅目的昆蟲如介殼蟲、蚜蟲、粉蝨等能夠分泌蜜露。螞蟻常在介殼蟲周圍出沒,其實就是為了吸食介殼蟲提供的蜜露。為了這樣的目的,熱帶大頭家蟻會照顧這群介殼蟲,並協助驅趕試圖接近的瓢蟲或寄生蜂等介殼蟲天敵。會產蜜露的昆蟲,特別是蚜蟲,常被比喻成「螞蟻的乳牛」,就像人類飼養牛的情形;乳牛供應鮮乳,人類則負責照料乳牛。

-----廣告,請繼續往下閱讀-----

介殼蟲和螞蟻的關係,也與蚜蟲類似。所謂的「蜜露」其實是介殼蟲的排泄物,只是當中仍含有許多未被消化的營養物質,包括醣類、蛋白質、礦物質、維生素等,成為螞蟻嗜食的營養品。而蜜露中佔大部分比例的物質為醣類,因此會帶有甜味。不同種類的介殼蟲或蚜蟲,排出的蜜露成份組成也會略有不同。

然而這些蜜露在較不通風的環境常會引起俗稱煤煙病的病徵,這類情形通常是植物表面長出了一層絨毛狀的物質,就好像抹了一層煤,其是這是因為蜜露孳生了大量真菌類。儘管真菌不會直接危害植物,但是卻會妨礙植物的呼吸以及光合作用,間接的造成植物體生長不良,害處不小。

吃葷的瓢蟲

臀紋粉介殼蟲所吸引來的,可不只是牠們的盟友,還包括了危及身家性命的天敵。在介殼蟲棲息處的附近,植物的葉子上總會出現虎視眈眈的孟氏隱唇瓢蟲。

B4-8
孟氏隱唇瓢蟲正在捕食臀紋粉介殼蟲。圖/天下文化提供。

-----廣告,請繼續往下閱讀-----

這種肉食性的瓢蟲,過去是為了生物防治的目的而引進台灣,現在已經變得極為常見。這些瓢蟲嗜食介殼蟲以及介殼蟲的卵,常會出現在公園、校園這類環境,就連一般四、五層樓高公寓中的盆栽都看得到牠們,只要見到牠們出現,幾乎都是伴隨著介殼蟲的發生。孟氏隱唇瓢蟲生性非常的敏感,只要一點點動靜,牠們馬上從枝葉上滾落,讓人無法找著。牠們外表並不醒目,比起一些我們所熟知的瓢蟲,除了體型小,也沒有引人注目的花紋。我們可以從孟氏隱唇瓢蟲的足來判斷牠們的性別,雄蟲的第一對足為橘紅色,雌蟲第一對足則為黑色。

當然如果狹路相逢,熱帶大頭家蟻會攻擊這些試圖捕殺介殼蟲的瓢蟲。但似乎成效不彰,可能是瓢蟲的食量太大了,行動力又強,通常幾隻瓢蟲來訪後,過沒幾週,介殼蟲大軍便幾乎消失無蹤,大概都讓瓢蟲給吃光了。之後再過幾個月,介殼蟲總會再自動冒出來,並且又重覆的引來螞蟻與瓢蟲。

介殼蟲是個龐大的家族,牠們種類繁多、形態各異。有部分種類的介殼蟲因為會固著在植物表面,也就是把身體固定在選定的位置,大半輩子不移動,外表包覆著一層蠟質的「介殼」,所以這群生物因此得名介殼蟲。雖然許多介殼蟲是不少樹木或花卉上的害蟲,其實也有某些種類的介殼蟲具有商業價值。例如有一種取食仙人掌的介殼蟲「胭脂蟲」,原產於中南美洲,採收後萃取之,可以從蟲身獲得紅色顏料「洋紅」的原料。女性愛用化妝品中,某些鮮豔色料的成分可能就是來自該種介殼蟲。


25b2916b5c49db617f52fa5ea48efee7-26-350x487

 

大多數生活於都會環境的人們,可能除了蝴蝶、甲蟲等明星昆蟲物種之外,往往對許多生活於周遭的常見昆蟲視而不見。《自然老師沒教的事6:都市昆蟲記》是第一本以台灣都會環境為出發點的昆蟲專書,專門介紹都會居住環境中的常見或特殊昆蟲,這些出現在都市裡、居所旁,我們身邊隨處可見的昆蟲鄰居,就是本書最重要的主角。

-----廣告,請繼續往下閱讀-----

本書獲得 2016 年第 40 屆金鼎獎兒童及少年圖書獎。

-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 623 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。