0

1
0

文字

分享

0
1
0

請支持 「網路中立」 立法阻止政府偷窺騷擾

洪朝貴
・2013/06/24 ・3793字 ・閱讀時間約 7 分鐘 ・SR值 545 ・八年級

第一次世界大戰期間, 俘虜與敵對國的郵件都被拆開來檢查。

原本自由的網際網路乃由不受政治力干預的許多 路由器 (router) 和閘道器 (gateway) 所組成,就好像一個自由通信的社會由許多公營及民營的郵局/快遞/貨運公司所組成一樣。企圖要求網際網路業者 (例如各家 ISP) 過濾任何類型的內容(侵權、 洩密、 色情、 謠言、…)就像要求公營民營的郵局/快遞/貨運公司過濾特定類型的內容一樣,如果沒有拆信檢查內容, 任何技術都不可能達到原先聲稱的目的。這些冠冕堂皇的理由與必然的缺口合起來, 將成為政府進一步把黑手伸入 ISP 的藉口,就像政府派員進駐郵局強制拆信檢查內容一樣,公民私密通訊的自由必然會消失。 黑箱作業的情況下,下一步很可能就是超出原始立法範圍的言論管制 –例如爆料政府惡行的揭弊文件很可能會遭到封鎖。退一萬步說, 公民至少應該捍衛 「以加密保障私密通訊基本人權」 的權利;但這同時也將讓原始立法意欲過濾的內容可以一併闖關成功。如果你不認同政府檢查郵件, 就應該起來抗議政府管制網路。(照片來自 Great War Forum

請想像: 如果政府為了保護智慧財產權,規定公營民營郵務業者有權利甚至有義務配合著作權人攔阻內含侵權光碟或隨身碟的郵件,那會發生什麼事? 又或者是為了保護國家機密、 防堵色情氾濫、阻止謠言散播、 … 等等冠冕堂皇的理由?總之, 郵務業者被 (智財局/國安局/內政部/法務部/教育部/外交部/… 等等某業務主管機關)要求過濾某類郵件、 禁止某類郵件傳遞, 那麼會發生什麼事?

答案很簡單: 這是不可能的任務。郵務業者可以從信件的外形、 顏色、 重量、 …等等特徵, 試著 去判斷每一封信是否屬於違禁信件;但是除了拆信檢查之外, 永遠不可能確認有沒有誤判。

讓我們進一步幫 「支持管制」 的一方把問題簡化到很可笑的地步:假設一般說來, 需要管制的信件都裝在紅色的信封裡面。那麼郵務業者可以: (1) 拒收一切紅色信封的郵件, 或是(2) 只拆紅色信封郵件進行審查。 顯然, (1) 會誤擋合法信件,而 (2) 則涉及侵犯隱私。

-----廣告,請繼續往下閱讀-----

當然, 你可以想像:違法意志堅強人士可以把紅色信封外面再包上一層綠色或藍色信封,這樣就安全過關了。

然後, 你可以想像:接下來政府將規定 (不會再另外通知你, 因為你已經同意 電信法修正草案第九條 了: 「電信事業於技術可行時,得停止使用網路、移除內容或為其他適當措施」), 不論採用哪種顏色的信封,所有信件都必須拆開來檢查, 以免不法份子採用 「偽裝信封」 的手法流通(傷害著作權人/國家安全/兒童身心健康/社會安定/… 的) 違法信件。政府或利益團體並且大量派出人員長駐在郵務機構負責拆信審查。在黑箱作業、 沒有監督制衡力量可以阻止濫權的情況下,你認為掌權者會不會透過這些特派員「順手」審查並攔截那些「不在原始立法管制範圍之內」 的信件 — 例如不利執政者的揭弊爆料內容,或是公民原本有權知曉但執政者卻執意黑箱作業的公共資訊(像是 海峽兩岸服務貿易協議 之類的密約)?

這也是本文的比喻特別要指出的重點。在支持與反對政府各項網路管制政策的辯論當中,兩個常被忽略的事實是: 過濾特定內容的立法, 最先侵犯的不是法律鎖定類型言論的 「自由」,而是 (基於技術上的必須) 所有其他不相關路人的 隱私。 其次將侵犯的,則是 (政治上的高度可能) 法律鎖定類型以外言論的自由。 支持管制者經常說的: 「散佈盜版內容/國安資訊/色情內容/謠言/…怎可算是言論自由?」不論答案是肯定或否定的, 其實都是問錯了問題。反對管制者應把問題拉回上述兩項。(也請見下面 「深度封包檢測」。)

一般公民驚覺自己隱私不保, 於是開始用各種隱晦的語彙通信。接著政府也加強長駐審查人員的訓練,要求他們熟悉各種常見的俚俗語、 暗語、 注音文、 火星文、摩斯電碼、 速記符號、 … 而且還要能夠看懂各國語言。

-----廣告,請繼續往下閱讀-----

但是 「加密」, 是解決這一切問題的終極殺手。最終, 只要採用公開的、 經過專家挑戰測試的加密演算法,信件的內容就算被拆開, 長駐審查人員也無法解讀內容。

至此, 在這個管制機制底下, 那些該被封鎖但有加密的資訊還是可以安全過關;另一方面, 未加密的合法通訊內容, 其隱私權卻反而被侵犯。更糟糕的是上述黑箱作業可能被拿來攔截其他內容的高度可能性。這個機制無法達到原始聲稱的目標,但卻可以讓政府與利益團體振振有辭地把黑手伸進郵務機構,改採外界看不見、他們自己任意決定的標準(因為沒有人會知道他們已背離了原先訂法案時所聲稱的標準)來過濾那些未加密的信件。

如果你同意: 政府不應以任何藉口要求郵務機構拆信檢查內容(並藉機把黑手伸入郵務機構)那麼你也會同意政府不應以任何藉口要求管制網路(並藉機把黑手伸入 ISP)。一個健康的郵務環境, 不應該參與判斷郵件內容的合法性。同樣地, 一個健康的網際網路, 不應該參與判斷網路傳輸內容的合法性。法律應該要處理的, 是進入郵務系統/網際網路之前、離開郵務系統/網際網路之後的收發訊息個人的犯罪行為。

沒錯, 用郵務系統來比喻網際網路, 確實是過於簡化。 在如此簡化的條件之下,尚且可以看出 「資訊渴望自由」 (information wants to be free)、尚且可以看出意欲封鎖資訊真的是 「抽刀斷水水更流」;如果把真實的資訊與網路技術拿出來討論(例如 隱寫術) 攻防技術當然會變得更複雜,讓政府有更多藉口更深入控制 ISP 的路由器與閘道器,還有 在資訊加解密攻防戰當中無意義地浪費許多運算資源、消耗更多電能最終,加密永遠會讓意欲傳遞資訊的一方獲得勝利;但政府則已經用很糟糕的藉口成功地偷渡擴權、侵犯了許多不懂加密技術無辜公民的隱私與言論自由。以下是上述郵務比喻與真實網路技術術語的對照清單:

-----廣告,請繼續往下閱讀-----
  1. 網路上有很多不同的通訊協訂 (protocols),例如 http (看網頁時使用)、 telnet (上批踢踢時使用)、ftp (傳大檔案時使用)、 smtp (寄 e-mail 時使用)、bittorrent (眾多 p2p 協定當中的一種)、 ssh (linux 的雲端桌面採用)、 … 等等。每種協訂可以想成是一種特定顏色的信封。
  2. “教育部明文規定校園禁用 P2P”(公文在哪裡?)這就像是規定校園禁用紅色信封寄信一樣, 既無效又侵犯合法 p2p 使用者的權利,同時是在散佈錯誤的資訊, 與教育的本質背道而馳。
  3. 翻牆技術有很多種, 其中一類型 tunneling運作原理就是上述的 「偽裝信封」。例如搜尋 「http over ssh」 會找到文章解釋如何用 ssh 信封包裝http 連線。 如果 ssh 收信端的電腦處於不受管制的自由網路,你的瀏覽器 (實際上真正傳送的是 http 的內容) 就已經 透過 ssh 隧道 (或信封) 翻牆出去了
  4. 「拆信檢查」 所描述的 (侵犯用戶隱私) 行為,在網路世界被稱為 深度封包檢測 deep packetinspection。 在今天的世界, 程式碼就是法律; 但我們的社會不懂得要求政府公開原始碼以昭公信,所以政府派駐在 ISP 的這些審查人員審查軟體, 有極大的黑箱作業空間,這也是為什麼上面提到: 「不在原始立法範圍之內」 的言論,很輕易地就可以被納入管制。 哦, 對了, 然後再扣上 「國家機密」的帽子, 就算有良心的程式設計師發現執政者濫用此技術, 也不敢公諸於世。
  5. 諸如 3DES、 Blowfish、 CAST-128、 RC4等等都是經過專家認證有效的加密演算法,就算被拆信檢查也不怕。 題外話資安: 公文系統被入侵 (12) 之後, 希望政府單位能夠真正學到教訓: 「大家都看不見 世界就很安全」是錯誤資安觀念;改採世界廣泛使用的標準加密演算法來建置新的公文系統才是正解。哦, 對了, 採用 ssh 時, 你可以選擇要用上述任何一個加密演算法。
  6. 中國的藍盾 就是政府強迫派駐在 ISP 的長駐審查人員審查軟體。比起美國幼稚的 DNS 與 IP 封鎖, 它要有效得多。 (但還是不敵翻牆。)這也是為什麼我認為背後操縱 我國近日智財、 國安、 電信三大法律修法侵權的黑手,不是北京政府而是美國利益團體及國安局或司法部之類的機構。
  7. 「一個健康的郵務環境, 不應該參與判斷郵件內容的合法性」這個主張, 換到網路世界, 被稱為 「網路中立性 networkneutrality」 (但它還包含更多細節)。

聯合國在四月完成一份報告, 言論自由特別報告員 Frank La Rue指出: 言論自由和隱私是一體的兩面; 政府基於國安等等理由的網路監控,經常在侵犯其中一項的同時, 也侵犯到另一項。 (摘要報導: 1234原始報告) 另一方面, 網路中立性的立法 確實會面臨一些技術困難, 但歐洲許多國家正在國會內討論;而智利則是全球第一個通過網路中立性立法的國家。從近日政府頻頻對網路伸出魔爪的企圖 (詳見 「挑戰總開關」 所列諸多評論文章) 看來,如果國人希望保有網路 隱私 — 最先遭受威脅的是隱私 –與言論自由, 那麼是有必要出面支持 推動網路中立性立法 的臉書活動了。

想要控制電腦 (禁止拷貝某些東西) 的努力, 到最後都必須演化成官方版的rootkits (植入你電腦的惡意程式); 而想要控制網路 (禁止拷貝某些東西)的努力, 到最後都必須演化成 (極權國家) 監控與過濾網路的機制。 –Cory Doctorow 的演講: 電腦使用權大戰即將上演

(本文轉載自 資訊人權貴ㄓ疑)

文章難易度
洪朝貴
47 篇文章 ・ 1 位粉絲

0

4
4

文字

分享

0
4
4
除了蚯蚓、地震魚和民間達人,那些常見的臺灣地震預測謠言
鳥苷三磷酸 (PanSci Promo)_96
・2024/02/29 ・2747字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

災害性大地震在臺灣留下無數淚水和難以抹滅的傷痕,921 大地震甚至直接奪走了 2,400 人的生命。既有這等末日級的災難記憶,又位處於板塊交界處的地震帶,「大地震!」三個字,總是能挑動臺灣人最脆弱又敏感的神經。

因此,當我們發現臺灣被各式各樣的地震傳說壟罩,像是地震魚、地震雲、蚯蚓警兆、下雨地震說,甚至民間地震預測達人,似乎也是合情合理的現象?

今日,我們就要來破解這些常見的地震預測謠言。

-----廣告,請繼續往下閱讀-----

漁民捕獲罕見的深海皇帶魚,恐有大地震?

說到在坊間訛傳的地震謠言,許多人第一個想到的,可能是盛行於日本、臺灣的「地震魚」傳說。

在亞熱帶海域中,漁民將「皇帶魚」暱稱為地震魚,由於皇帶魚身型較為扁平,生活於深海中,魚形特殊且捕獲量稀少,因此流傳著,是因為海底的地形改變,才驚擾了棲息在深海的皇帶魚,並因此游上淺水讓人們得以看見。

皇帶魚。圖/wikimedia

因此,民間盛傳,若漁民捕撈到這種極為稀罕的深海魚類,就是大型地震即將發生的警兆。

然而,日本科學家認真蒐集了目擊深海魚類的相關新聞和學術報告,他們想知道,這種看似異常的動物行為,究竟有沒有機會拿來當作災前的預警,抑或只是無稽之談?

-----廣告,請繼續往下閱讀-----

可惜的是,科學家認為,地震魚與地震並沒有明顯的關聯。當日本媒體報導捕撈深海魚的 10 天內,均沒有發生規模大於 6 的地震,規模 7 的地震前後,甚至完全沒有深海魚出現的紀錄!

所以,在科學家眼中,地震魚僅僅是一種流傳於民間的「迷信」(superstition)。

透過動物來推斷地震消息的風俗並不新穎,美國地質調查局(USGS)指出,早在西元前 373 年的古希臘,就有透過動物異常行為來猜測地震的紀錄!

人們普遍認為,比起遲鈍的人類,敏感的動物可以偵測到更多來自大自然的訊號,因此在大地震來臨前,會「舉家遷徙」逃離原本的棲息地。

-----廣告,請繼續往下閱讀-----

當臺灣 1999 年發生集集大地震前後,由於部分地區出現了大量蚯蚓,因此,臺灣也盛傳著「蚯蚓」是地震警訊的說法。

20101023 聯合報 B2 版 南投竹山竄出蚯蚓群爬滿路上。

新聞年年報的「蚯蚓」上街,真的是地震警訊嗎?

​當街道上出現一大群蚯蚓時,密密麻麻的畫面,不只讓人嚇一跳,也往往讓人感到困惑:為何牠們接連地湧向地表?難道,這真的是動物們在向我們預警天災嗎?動物們看似不尋常的行為,總是能引發人們的好奇與不安情緒。

如此怵目驚心的畫面,也經常成為新聞界的熱門素材,每年幾乎都會看到類似的標題:「蚯蚓大軍又出沒 網友憂:要地震了嗎」,甚至直接將蚯蚓與剛發生的地震連結起來,發布成快訊「昨突竄大量蚯蚓!台東今早地牛翻身…最大震度4級」,讓人留下蚯蚓預言成功的錯覺。

然而,這些蚯蚓大軍,真的與即將來臨的天災有直接關聯嗎?

-----廣告,請繼續往下閱讀-----

蚯蚓與地震有關的傳聞,被學者認為起源於 1999 年的 921 大地震後,在此前,臺灣少有流傳地震與蚯蚓之間的相關報導。

雖然曾有日本學者研究模擬出,與地震相關的電流有機會刺激蚯蚓離開洞穴,但在現實環境中,有太多因素都會影響蚯蚓的行為了,而造成蚯蚓大軍浮現地表的原因,往往都是氣象因素,像是溫度、濕度、日照時間、氣壓等等,都可能促使蚯蚓爬出地表。

大家不妨觀察看看,白日蚯蚓大軍的新聞,比較常出現在天氣剛轉涼的秋季。

因此,下次若再看到蚯蚓大軍湧現地表的現象,請先別慌張呀!

-----廣告,請繼續往下閱讀-----

事實上,除了地震魚和蚯蚓外,鳥類、老鼠、黃鼠狼、蛇、蜈蚣、昆蟲、貓咪到我們最熟悉的小狗,都曾經被流傳為地震預測的動物專家。

但可惜的是,會影響動物行為的因素實在是太多了,科學家仍然沒有找到動物異常行為和地震之間的關聯或機制。

遍地開花的地震預測粉專和社團

這座每天發生超過 100 次地震的小島上,擁有破萬成員的地震討論臉書社團、隨處可見的地震預測粉專或 IG 帳號,似乎並不奇怪。

國內有許多「憂國憂民」的神通大師,這些號稱能夠預測地震的奇妙人士,有些人會用身體感應,有人熱愛分析雲層畫面,有的人甚至號稱自行建製科學儀器,購買到比氣象署更精密的機械,偵測到更準確的地震。

-----廣告,請繼續往下閱讀-----

然而,若認真想一想就會發現,臺灣地震頻率極高,約 2 天多就會發生 1 次規模 4.0 至 5.0 的地震, 2 星期多就可能出現一次規模 5.0 至 6.0 的地震,若是有心想要捏造地震預言,真的不難。 

在學界,一個真正的地震預測必須包含地震三要素:明確的時間、 地點和規模,預測結果也必須來自學界認可的觀測資料。然而這些坊間貼文的預測資訊不僅空泛,也並未交代統計數據或訊號來源。

作為閱聽者,看到如此毫無科學根據的預測言論,請先冷靜下來,不要留言也不要分享,不妨先上網搜尋相關資料和事實查核。切勿輕信,更不要隨意散播,以免造成社會大眾的不安。

此外,大家也千萬不要隨意發表地震預測、觀測的資訊,若號稱有科學根據或使用相關資料,不僅違反氣象法,也有違反社會秩序之相關法令之虞唷!

-----廣告,請繼續往下閱讀-----

​地震預測行不行?還差得遠呢!

由於地底的環境太過複雜未知,即使科學家們已經致力於研究地震前兆和地震之間的關聯,目前地球科學界,仍然無法發展出成熟的地震預測技術。

與其奢望能提前 3 天知道地震的預告,不如日常就做好各種地震災害的防範,購買符合防震規範的家宅、固定好家具,做好防震防災演練。在國家級警報響起來時,熟練地執行避震保命三步驟「趴下、掩護、穩住」,才是身為臺灣人最關鍵的保命之策。

延伸閱讀

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

1
1

文字

分享

1
1
1
讓 AI 取代真人執法可行嗎?將判斷全交給 AI 可能隱藏什麼危險?——專訪中研院歐美研究所陳弘儒助研究員
研之有物│中央研究院_96
・2024/03/18 ・6292字 ・閱讀時間約 13 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|劉韋佐
  • 責任編輯|田偲妤
  • 美術設計|蔡宛潔

人工智慧將改變以人為主的法治領域?

由人工智慧擔任警察,再也不是科幻電影的情節,交通管制常見的科技執法就是應用 AI 辨識闖紅燈、未依規定轉彎、車輛不停讓行人等違規行為。 AI 的客觀、高效率正在挑戰以人為審判主體的法治領域,這樣的轉變會對我們產生什麼影響呢?中央研究院「研之有物」專訪院內歐美研究所陳弘儒助研究員,他將帶我們思考:當 AI 取代人類執法時,將如何改變人們對守法的認知?

交通尖峰時段,後方出現一台救護車,你願意闖紅燈讓道嗎?
圖|iStock

想像有一天你正在尖峰時段開車,車子停在十字路口等紅燈時,後方出現一輛急駛而來的救護車,你為了讓道必須開過停止線。這時你是否願意冒著違規被開罰的風險?還是承擔風險以換取他人盡速就醫?

在上述情境中,針對「要不要闖紅燈」我們經歷了一段價值判斷過程。如果剛好十字路口有真人警察,他的判斷可能是:這是情急之下不得不的行為,並非蓄意違規。

然而,如果負責執法的是「法律人工智慧系統」(Artificially legal intelligent,簡稱 ALI)情況可能截然不同。

-----廣告,請繼續往下閱讀-----

ALI 這個詞源自 Mireille Hildebrandt 的研究,在概念上可區分為兩類:採取傳統程式碼的 IFTTT(if this then that)、運用機器學習的資料驅動。前者是注重法律推理或論證的計算機模型,將法律規範轉為程式碼,藉由程式編寫來執行法律任務。後者則透過大量資料的學習,來預測行為範式,用於再犯率、判決結果預測上有較好的成果。

一般情況下,應用在交通管制的 ALI 會辨識車輛是否超速、闖紅燈等違規行為,不過交通情境千變萬化,ALI 能否做出包含「道德價值的判斷」將是一大挑戰!

中研院歐美研究所陳弘儒助研究員察覺,人工智慧(AI)正在左右人們對守法的價值判斷及背後的因果結構,進而反思當我們將原本由人來判斷的事項,全權交由 AI 來執行時,可能產生哪些潛移默化的影響?

讓我們與陳弘儒展開一場從法哲學出發的對話,探索 AI 與法治價值之間的緊張關係。

-----廣告,請繼續往下閱讀-----
中研院歐美研究所陳弘儒助研究員,從法哲學出發,探索 AI 與法治價值之間的緊張關係。
圖|之有物

問

怎麼會對「人工智慧」(AI)與「法律人工智慧系統」(ALI)產生研究興趣?

會對 AI 感興趣是因為我很早就對電腦有興趣,我原本大學想唸資訊工程,因為高中有些科目沒辦法唸,於是去唸文組,大學進入法律系就讀,研究所考入「基礎法學組」研讀法哲學。

後來我到美國讀書,當時 AlphaGo 的新聞造成很大的轟動,啟發我思考 AI 的應用應該有些法律課題值得探討,於是開始爬梳 AI 與法律的發展脈絡。

AI 這個詞大概在 1950 年代被提出,而 AI 與法律相關的討論則在 1970、80 年代就有學者開始思考:我們能否將法律推理過程電腦程式化,讓電腦做出跟法律人一樣的判斷?

事實上,AI 沒有在做推理,它做的是機率的演算,但法律是一種規範性的判斷,所有判斷必須奠基在法律條文的認識與解釋上,給予受審對象合理的判決理由。

這讓我好奇:如果未來廣泛應用 AI 執法,法律或受法律規範的民眾會怎麼轉變?

-----廣告,請繼續往下閱讀-----

至於真正開始研究「法律人工智慧系統」(ALI)是受到我父親的啟發。有一陣子我經常開車南北往返,有一天我跟父親聊到用區間測速執法的議題。交通部曾在萬里隧道使用區間測速,計算你在隧道裡的平均速率,如果超速就開罰。

父親就問我:「政府有什麼理由用區間測速罰我?如果要開罰就必須解釋是哪一個時間點超速。」依照一般的數學邏輯,你一定有在某個時間點超速,所以平均起來的速率才會超過速限,可是法律判斷涉及規範性,我們必須思考背後的正當性課題,不能只用邏輯解釋,這啟發我逐漸把問題勾勒出來,試圖分析執法背後的規範性意涵。

問

如果將執行法律任務的權限賦予 AI,可能暗藏什麼風險?

我們先來談人類和 AI 在做判斷時的差別。人類無時無刻都在做判斷,判斷的過程通常會先做「區分」,例如在你面前有 A 和 B 兩個選項,在做判斷前必須先把 A 和 B 區分開來,讓選項有「可區別性」。

在資料龐大的情況下,AI 的優勢在於能協助人類快速做好區分,可是做判斷還需經歷一段 AI 難以觸及的複雜過程。人類在成長過程中會發展出一套顧及社會與文化認知的世界觀,做判斷時通常會將要區分的選項放進這個世界觀中,最終做出符合社會或自身考量的抉擇。

-----廣告,請繼續往下閱讀-----

當我們將判斷程序交由 AI 執行,就會涉及「判斷權限移轉」的問題,這經常在日常生活中發生,你只要發現原本自己可以執行的事情,有另外一個對象做的比你好或差不多好,你就會漸漸把判斷的工作交給它,久而久之,你大概會覺得這是很好的做法,因為可以節省大量時間。

自駕車導航系統就是判斷權限移轉的例子,由於導航通常可以找出最佳行車路線,駕駛人幾乎會跟著走,但仍有可能誤入路況不佳或無法通行的地方。
圖|Vladimir Srajber, Pexels

我擔心這種判斷權限移轉會快速且廣泛的發生,因為 AI 的工作效率極高,可以大幅節省人力成本,但是哪一些權限可以放給 AI?哪一些權限人類一定要守住?我們經常沒有充足的討論,等到發生問題再亡羊補牢可能為時已晚。

以讓道給救護車而闖紅燈的情境為例,如果讓 AI 來做交管,可以節省警察人力,又可以快速精準地開罰,卻迫使民眾需額外花時間,證明闖紅燈有正當理由。如果是真人警察來判斷,警察通常會認為你的行為有正當理由而不開罰。這對於受法律規範的民眾來說,會產生兩種全然不同的規範作用。

AI 產生的規範作用會讓民眾擔心事後銷單的麻煩程序,如果無法順利解決,可能會訴諸民意代表或上爆料公社,並漸漸改變民眾對守法的態度。而真人警察產生的規範作用,將使民眾自主展現對法律的高度重視,雖然當下的行為牴觸法律,卻是行為人經過多方權衡後做的判斷,相信法律會支持自己出於同理心的行為。

-----廣告,請繼續往下閱讀-----

問

使用 AI 執法除了看上它的高效率,也是因為和真人相比 AI 不會受私情影響,比較可以做出公正的判斷。如果從法治觀念來看,為何決策權不能全權交由 AI 執行?

我認為法治的核心價值在臺灣並沒有很好的發展,我們常想的是怎麼用處罰促成民眾守法,長久下來可能會得到反效果。當人們養成凡事規避處罰的習慣,一旦哪天不再受法律約束,可能會失去守法的動機。

事實上,法治最根深柢固的價值為:

法律作為一種人類行為規範的展現,促使民眾守法的方式有很多種,關鍵在於尊重人的道德自主性,並向民眾陳述判決理由。

給理由非常重要,可以讓民眾不斷透過理由來跟自己和法律體系溝通。如此也可以形成一種互惠關係,使民眾相信,國家公權力能用適當的理由來制定法律,而制定出的法律是以尊重公民自主性為主。當民眾理解法律對我所處的社會有利,會比較願意自動產生守法的動機。

AI 執法看似比人類「公正無私」,但它的執法方式以處罰為主、缺乏理由陳述,也沒有對具體情境的「敏感性」。人跟人之間的互動經常需要敏感性,這樣才能理解他人到底在想什麼。這種敏感性是要鍛鍊的,真人警察可在執法過程中,透過拿捏不同情境的處理方式來累積經驗。

-----廣告,請繼續往下閱讀-----

例如在交通尖峰時段應該以維持交通順暢為原則,這時警察是否具備判斷的敏感性就很重要,例如看到輕微的違規不一定要大動作開罰,可以吹個警笛給駕駛警示一下就好。

我越來越覺得人類這種互動上的敏感性很重要,我們會在跟他人相處的過程中思考:跟我溝通的對象是什麼樣的人?我在他心中是什麼模樣?然後慢慢微調表現方式,這是人類和 AI 最根本的不同。

行動者受各種法律變項影響的因果圖。上圖是由真人警察執法,對於處罰之可能性有影響力,可依不同情境判斷是否開罰。下圖是由全自動法律人工智慧執法,由 AI 直接將處罰之可能性加諸在行動者身上,缺乏真人警察二次確認,很可能影響行動者對守法與否的衡量。
圖|之有物(資料來源|陳弘儒)

問

相較於法律人工智慧,ChatGPT 等生成式 AI 強大的語言功能似乎更接近理想中的 AI,其發展可能對我們產生哪些影響?

我認為會有更複雜的影響。ChatGPT 是基於大型語言模型的聊天機器人,使用大量自然語言文本進行深度學習,在文本生成、問答對話等任務上都有很好的表現。因此,在與 ChatGPT 互動的過程中,我們容易產生一種錯覺,覺得螢幕後好像有一名很有耐心的真人在跟你對話。

事實上,對於生成式 AI 來說,人類只是刺激它運作的外在環境,人機之間的互動並沒有想像中的對等。

仔細回想一下整個互動過程,每當外在環境(人類)給 ChatGPT 下指令,系統才會開始運作並生成內容,如果我們不滿意,可以再調整指令,系統又會生成更多成果,這跟平常的人際互動方式不太一樣。

-----廣告,請繼續往下閱讀-----
ChatGPT 能讓使用者分辨不出訊息來自 AI 或真人,但事實上 AI 只是接受外在環境(人類)刺激,依指令生成最佳內容,並以獲得正向回饋、提升準確率為目標。
圖|iStock

資工人員可能會用這個理由說明,生成式 AI 只是一種工具,透過學習大量資料的模式和結構,從而生成與原始資料有相似特徵的新資料。

上述想法可能會降低人們對「資料」(Data)的敏感性。由於在做 AI 訓練、測試與調整的過程中,都必須餵給 AI 大量資料,如果不知道資料的生產過程和內部結構,後續可能會產生爭議。

另一個關於資料的疑慮是,生成式 AI 的研發與使用涉及很多權力不對等問題。例如現在主流的人工智慧系統都是由私人公司推出,並往商業或使用者付費的方向發展,代表許多資料都掌握在這些私人公司手中。

資料有一種特性,它可以萃取出「資訊」(Information),誰有管道可以從一大群資料中分析出有價值的資訊,誰就有權力影響資源分配。換句話說,多數人透過輸入資料換取生成式 AI 的服務,可是從資料萃取出的資訊可能在我們不知情的狀況下對我們造成影響。

問

面對勢不可擋的生成式 AI 浪潮,人文社會學者可以做些什麼?

國外對於 AI 的運用開始提出很多法律規範,雖然國外關於價值課題的討論比臺灣多,但並不代表那些討論都很細緻深入,因為目前人類跟 AI 的相遇還沒有很久,大家還在探索哪些議題應該被提出,或賦予這些議題重新認識的架構。

這當中有一個重要課題值得思考:

我們需不需要訓練 AI 學會人類的價值判斷?

我認為訓練 AI 理解人類的價值判斷很可能是未來趨勢,因為 AI 的發展會朝人機互動模式邁進,唯有讓 AI 逐漸理解人類的價值為何,以及人類價值在 AI 運作中的局限,我們才有辦法呈現 AI 所涉及的價值課題。

當前的討論多數還停留在把 AI 當成一項技術,我認為這種觀點將來會出問題,強大的技術如果沒有明確的價值目標,是一件非常危險的事情。實際上,AI 的發展必定有很多價值課題涉入其中,或者在設計上有一些價值導向會隱而不顯,這將影響 AI 的運作與輸出成果。

思考怎麼讓 AI 理解人類價值判斷的同時,也等於在問我們人類:對我們來說哪一些價值是重要的?而這些重要價值的基本內容與歧異為何?

我目前的研究有幾個方向,一個是研究法律推理的計算機模型(Computational models of legal reasoning);另一個是從規範性的層面去探討,怎麼把價值理論、政治道德(Political morality)、政治哲學等想法跟科技界交流。未來也會透過新的視野省視公民不服從議題。

這將有助科技界得知,有很多價值課題需要事先想清楚,影響將擴及工程師怎麼設計人工智慧系統?設計過程面臨哪些局限?哪些局限不應該碰,或怎麼把某些局限展現出來?我覺得這些認識都非常重要!

鐵面無私的 ALI ?人類與人工智慧執法最大的分野是什麼?

陳弘儒的研究室有許多公仔,包括多尊金斯伯格(Ginsburg)公仔,她是美國首位猶太裔女性大法官,畢生為女權進步與性別平權奮鬥。
圖|之有物

陳弘儒是臺灣少數以法哲學理論研究法律人工智慧系統(ALI)的學者,他結合各種現實情境,與我們談論 ALI、生成式 AI 與當代法治價值的緊張關係。

由於 ALI 擅長的資料分類與演算,與人類判斷過程中涉及的世界觀與敏感性思辨,有著根本上的差異;以處罰為主、缺乏理由陳述的判斷方式,也容易影響民眾對公權力的信任。因此陳弘儒認為,目前 ALI 應該以「輔助人類執法」為發展目標,讓人類保有最終的判斷權限

至於現正快速發展的生成式 AI ,根據陳弘儒的觀察,目前仍有待各方專家探索其中的價值課題,包括資料提供與使用的權力不對等、哪些人類價值在訓練 AI 的過程中值得關注等。

在過去多是由人文社會學者提出警告,現在連 AI 領域的權威專家也簽署公開信並呼籲:AI 具有與人類競爭的智慧,這可能給社會和人類帶來巨大風險,應該以相應的關注和資源進行規劃和管理

在訪談過程中,有一件令人印象深刻的小插曲,陳弘儒希望我們不要稱呼他「老師」,因為他從小就畏懼老師、警察等有權威身分的人,希望以更平等的方式進行對話。

假如今天以 AI 進行採訪,整個談話過程或許能不受倫理輩分影響,但這也讓我們意識到,在 AI 的世界裡,許多人際互動特有的敏感性、同理反思都可能不復存在。

陳弘儒的研究讓我們體會,AI 在法治領域的應用不僅是法律問題,背後更包含深刻的哲學、道德與權力課題,也讓我們更了解法治的核心價值:

法律要做的不只是規範人們的行為,而是透過理由陳述與溝通展現對每個人道德自主性的尊重。

所有討論 1
研之有物│中央研究院_96
295 篇文章 ・ 3391 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

3
1

文字

分享

0
3
1
群眾監控科技:以 2023 雪梨世界驕傲節為例
胡中行_96
・2023/03/16 ・3422字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

COVID-19 疫情趨緩後,各國都敞開大門,迎接國際觀光客。今年雪梨同志狂歡節(Sydney Gay and Lesbian Mardi Gras)的主辦單位,與 InterPride 合作,將活動升級為 2023 雪梨世界驕傲節(Sydney World Pride)。[1]其中最受矚目的年度大遊行,也於 2 月 25 日晚間,重磅回歸 Oxford 和 Flinders 兩街。[2, 3]

今年遊行中,率先登場的女同志團體「Dykes on Bikes」。圖/胡中行攝(CC BY-SA 4.0)
今年遊行的第二個隊伍,是男同志團體「Boys on Bikes」。圖/胡中行攝(CC BY-SA 4.0)

警察的角色

澳洲雪梨一年到頭,觀光活動難以計數。從知名的跨年煙火、國慶典禮、體育賽事、聖誕市集、繽紛雪梨燈光音樂節(Vivid Sydney)到同志狂歡節等,[4]負責維安的警察早已身經百戰,什麼場面都見過了。如果當天鬧事被逮的人數不多,他們有時還會在事後,透過新聞稿嘉勉群眾幾句。[5]雖然新南威爾斯州警察,在1978年拘捕同志運動抗爭者;但誰也沒想到他們後來化敵為友,自 1998 年起,竟每屆都組隊參加遊行。[6, 7]

2023 年面對前所未有的人潮挑戰,他們派出 900 多名員警,並與主辦單位、雪梨市政府、科技保全公司,以及州政府的觀光、交通、消防和急救等部門攜手合作。[2, 7]

曾參與 1978 年抗爭的同志乘車遊行,受到群眾熱烈歡迎。圖/胡中行攝(CC BY-SA 4.0)
新南威爾斯州警察今年的遊行花車。(不含背景右上的彩虹旗。)圖/胡中行攝(CC BY-SA 4.0)

RAMP分析

根據英國曼徹斯特都會大學(Manchester Metropolitan University)G. Keith Still 教授 30 多年的經驗,規劃大型活動時,要從 RAMP 分析(RAMP Analysis)的 4 個面向,評估群眾安全。[8]

-----廣告,請繼續往下閱讀-----
  1. 路線(routes):進入與離開的方向。[8]雪梨同志遊行的隊伍,一般不超出 Oxford 和 Flinders 這兩條街。[2]遊客則必定是從四面八方,逐漸湧入。
  2. 區域(areas):人群聚集的範圍。[8]當天的交通管制,擴及市中心與市郊的幾條主要幹道。[9]
  3. 動向(movement):進場及散場的時間。[8]官網號稱遊行從晚上 6 開始,預計 11 點結束。[10]實際上,觀眾提早幾個小時佔位,正式開幕的時間為晚上 7 點左右,而結束後不少人仍於附近逗留。各街道的交通管制不同,最早從下午 2 點開始,最晚至隔天凌晨 4 點結束。[9]
  4. 群眾(people):對參與群眾的了解。[8]官方預計有 1 萬 2 千 500 人和 200 多輛花車參與遊行。[10]此外,疫情解封以及世界驕傲節的國際觀光效應,勢必帶來人數龐大,而且類型多元的遊客。

此活動行之有年,遊行的路線、群眾聚集的區域,以及周邊交通管制的規劃等,多少都有參考依據。唯一可能比較難以預測的,是今年會增加的遊客。

遊行開始前,Oxford 和 Flinders 街口的人海。圖/胡中行攝(CC BY-SA 4.0)
散場時,尚未撤離的維安、急救、轉播和封街用車輛。圖/胡中行攝(CC BY-SA 4.0)

群眾與手機

為了精準掌握群眾的情形,這次遊行首度依循跨年和燈光音樂節的模式,請動態群眾測量(Dynamic Crowd Measurement)公司在遊行地點周邊,架設了臨時性的監視攝影機與手機偵測器材。[2]

  1. 監視攝影機:配合相應的軟體,從蒐集到的個體表情,例如:開心、中性、難過、生氣等,分析群眾情緒的平均值。同時,測量他們步行移動的速度[2]
  2. 手機訊號:現在幾乎人手一機,由手機通訊用的電磁波,便可推估現場人數。接受《雪梨晨鋒報》(Sydney Morning Herald)訪問的專家認為,不仰賴基地臺的技術,可以避免人數過多時,電信網絡的數據失準。動態群眾測量公司在附近店面,安裝臨時性的偵測器材。[2]
澳洲原住民團體帶了一條蛇來助興。圖/胡中行攝(CC BY-SA 4.0)
技職學校(TAFE)隊伍的大型人偶。圖/胡中行攝(CC BY-SA 4.0)

監控軟體的功能

監視攝影機蒐集到的數據,會被上傳雲端,並呈現於動態群眾測量公司設計的軟體。[11]遊行當天,由主辦單位的工作人員監控,再將必要的資訊報告給警方,以疏導聚眾。[2]下面是該公司官網,所介紹的軟體特色功能:[12]

  1. 地理空間熱區圖(geospatial heatmap):地圖以不同顏色,顯示人群的密集程度,並附帶群眾情緒和人流速度等資訊。[12]
  2. 警報程度指標(alert level indicator):將各區域的危險程度,分級且視覺化,方便監控者一目了然。[12]
  3. 區域監視(zone monitor):群眾密度、情緒和移動速率的警示程度,各區域可以分開設定。[12]
  4. 數據回放(data playback):除了即時監控,已經上傳雲端的數據,也能重新調出來檢視。[12]
  5. 通知管理(notifications manager):客製化群眾密度、情緒平均值,或移動速率等警示,以接收特定的更新資訊通知。[12]
  6. 視覺驗證(visual validator):將即時影像或地理空間熱區圖,與數據並列比較。[12]
動態群眾測量公司的軟體介紹影片,範例地圖是臨近雪梨歌劇院的環形碼頭。影/參考資料11

隱私疑慮

美國喬治城大學法律中心(Georgetown University Law Center)的 Paul Ohm 教授曾說,手機的位置,不該被視為匿名數據。試想一個人幾乎每天在住家與公司之間往返,從手機蒐集到的地理資訊,還真能推測出其身份。[13]所以,參與雪梨同志遊行的群眾,是否有個人隱私外洩的疑慮?主辦單位的發言人表示,他們單純偵測範圍內的手機數量,不包含任何個人化特徵。另外,監視攝影機不具人臉辨識功能,影像也不留紀錄,只儲存數據,因此大家不用擔心。[2]

-----廣告,請繼續往下閱讀-----
雪梨舞蹈團的遊行花車。圖/胡中行攝(CC BY-SA 4.0)
工人團體的遊行花車。圖/胡中行攝(CC BY-SA 4.0)

通宵達旦

遊行吸引 30 萬人聚集,[14]連總理 Anthony Albanese 也親臨現場,成為第一位參加此活動的澳洲現任元首。[3]整晚狂歡不夠,據報相關的官方派對,還續攤到翌日早晨 8 點。[14]遊行當天有 4 人遭到逮捕;而衝突過程中,1 名員警似乎斷了鼻子,另個眼睛瘀青。[7, 15]除此之外,賴在地上阻擋花車的國會議員 Lidia Thorpe,被和平勸離,並登上各大媒體。[16]新南威爾斯州警察在新聞稿中,表示滿意群眾表現,請大家在 2023 雪梨世界驕傲節剩餘的活動裡,繼續關照彼此的安全。[7]

總理 Anthony Albanese 是第一位參加同志遊行的澳洲現任元首。圖/Anthony Albanese on Twitter

  

參考資料

  1. InterPride. ‘Proud to be here – Who we are’. Sydney World Pride 2023. (Accessed on 27 FEB 2023)
  2. Grubb B. (24 FEB 2023) ‘How your phone and mood will be tracked at Mardi Gras’. Sydney Morning Herald.
  3. Anthony Albanese makes history as first sitting PM to march in Sydney’s Mardi Gras parade’. (26 FEB 2023) SBS News.
  4. Destination NSW. ‘Sydney, Australia’. Sydney.com. (Accessed on 26 FEB 2023)
  5. Police pleased with behaviour of revellers during 2022 New Year’s Eve celebrations’. (01 JAN 2023) NSW Police Force.
  6. The Age & Sydney Morning Herald. (24 FEB 2023) ‘Sydney Mardi Gras – from ’78 to World Pride’. YouTube.
  7. 45th Mardi Gras celebrated in high spirits and perfect weather’. (26 FEB 2023) NSW Police Force.
  8. Still GK. (2019) ‘Crowd Science and Crowd Counting’. Impact, 2019(1): 19-23.
  9. InterPride. ‘Sydney Worldpride 2023 Road Closures’. Sydney World Pride 2023.  (Accessed on 01 MAR 2023)
  10. InterPride. ‘Mardi Gras Parade’. Sydney World Pride 2023. (Accessed on 26 FEB 2023)
  11. Shortstories Media. (28 JUL 2022) ‘DCM/Dynamic Crowd Measurement Explainer Video’. YouTube.
  12. DCM Features’. Dynamic Crowd Measurement. (Accessed on 28 FEB 2023)
  13. Thompson SA, Warzel C. (19 DEC 2019) ‘Twelve Million Phones, One Dataset, Zero Privacy’. The New York Times.
  14. Hyland J, Pearson-Jones B. (26 FEB 2023) ‘The morning after! Mardi Gras revellers finally start heading home as the last official party ends at 8am – and there’ll be some sore heads today’. Daily Mail Australia.
  15. Sarkari K, Sciberras A. (26 FEB 2023) ‘Police praise behaviour of Mardi Gras attendees as Anthony Albanese makes history’. 9News.
  16. Hildebrandt C. (27 FEB 2023) ‘Federal senator Lidia Thorpe halts Sydney’s Mardi Gras parade with police protest’. ABC News.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。