Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

握手的神奇力量

哇賽心理學_96
・2013/04/28 ・1140字 ・閱讀時間約 2 分鐘 ・SR值 517 ・六年級

馬總統與大陸知名作家韓寒(左)握手致意。(中央社)

編譯 / 陳昱伶
編輯 / PanSci z編

儘管「厄運之握」的傳說不斷,不過根據一則發表在《認知神經科學期刊》(Journal of Cognitive Neuroscience)的研究顯示,握手具有正面的神奇力量-能增加陌生人的第一印象。

在1991年即有研究指出,握手可提升正面的社會印象。許多商業場合進行重大財務決策時,握手的確具有提升雙方信任感的作用。然而,科學家對情感性肢體動作、與其所引發之神經活動關係卻所知甚少。因此,貝克曼學會(Beckman Institute)腦神經科學家杜克斯(Florin Dolcos)和研究團隊,利用fMRI記錄當人們看到社會互動時誘發的神經反應。

他們找來18位年齡在18歲到34歲之間的受測者,男女各佔一半人數。實驗設定為商務情境,將受測者分為三組:一組觀看親近互動動畫-兩人在握手、或無握手後微笑交談,甚至有拍肩動作、第二組觀看迴避互動動畫-兩人在握手、或無握手後雙手抱胸交談,一方甚至坐下、第三組則觀看無互動動畫(靜止的人像立牌)。實驗首先讓實驗參與者觀看動畫,然後請實驗參與者針對剛才所看影片,對動畫中人物之競爭性、對這筆生意的興趣、及誠信進行0到5的分數給分,整個過程fMRI也持續記錄著大腦社會認知區的神經反應。

-----廣告,請繼續往下閱讀-----

實驗結果顯示,三項評分項目得分為親近互動高於迴避互動、有握手高於沒握手;由資料也可看出,相較於迴避互動,握手對親近互動組的正面效益更大、更能提高社會評價。而腦造影的資料則明顯指出:大腦在觀看社會互動(親近互動及迴避互動)時,活躍顳上溝(superior temporal sulcus , STS)、杏仁核(amygdala)、阿肯伯氏核(nucleus accumbens , NAcc)……等腦區的反應,較觀看無社會互動的反應大,

其中,顳上溝主要負責察覺生物性動作知覺,在他人表情傳達情緒或意圖時活躍;杏仁核在大腦中負責的是情緒調節,它可以提升我們對偵查環境的敏感度、促進腎上腺反應、幫助我們應對變化;而阿肯伯氏核則是大腦酬賞路徑之一,在偏好刺激出現時被活化。有趣的是,這三個腦區在親近互動組較迴避互動組有較大活化,而在有先握手的親近互動也有同樣發現。另外,研究發現當實驗參與者觀看到握手動作時,大腦顳上溝就會先被激活;而杏仁核則是在親近互動與握手時都有顯著活躍反應。

綜合評分以及腦造影資料結果,我們得知握手在親近互動情境中對社會評價有增益作用,在迴避互動中則是減弱社會評價的負面強度。由握手開始的社會互動使人感到開放、安全,同時也活化相關腦區、讓大腦準備好處理接下來的資訊。因此,下次與他人互動時不妨從握手開始,除了建立信任,亦可使你的大腦準備好與人正向互動!

外電連結:Science Reveals the Power of a Handshake. ScienceDaily [Oct. 19, 2012]

-----廣告,請繼續往下閱讀-----

原始文獻:Sanda Dolcos, Keen Sung, Jennifer J. Argo, Sophie Flor-Henry, Florin Dolcos. The Power of a Handshake: Neural Correlates of Evaluative Judgments in Observed Social Interactions. Journal of Cognitive Neuroscience, 2012; : 1 DOI: 10.1162/jocn_a_00295

轉載自 心理與睡眠教學網

-----廣告,請繼續往下閱讀-----
文章難易度
哇賽心理學_96
45 篇文章 ・ 11 位粉絲
希望能讓大眾看見心理學的有趣與美,期待有更多的交流與分享,讓心理學不只存在於精神疾患診療間或學校諮商室,更能擴及到生活使之融入每一刻。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
1

文字

分享

0
2
1
聊八卦可以防止我們被朋友搭便車、詐騙?——《人類文明》
天下文化_96
・2024/06/17 ・1337字 ・閱讀時間約 2 分鐘

間接互惠的要件之一:聊八卦

間接互惠(indirect reciprocity)的概念認為,受益者並不是直接回報給同一位利他的施恩者,而是會把恩惠轉給其他人。A 幫助 B,B 再幫助 C,C 再幫助 D,依此類推。於是,恩惠就能在社群裡傳出去,遲早也能回到 A 身上。種下的因,總有一天能得到最後的果。

而且這還能談到下一個層次:如果有個 Z,在 A 幫助 B 時,親眼見證了這件事,發現 A 是個慷慨的好人,他也會因為想和 A 建立關係,所以願意幫助 A。於是,就算這兩個人無法符合直接互惠所需要的「後會有期」條件,也能因為整個群體的利他行為而受益。樂於助人,自己就更可能得到幫助,至於那些不想幫助別人、只想貪小便宜的人,則是可能遭到懲罰或受到排擠。像這樣的間接互惠,是人類一種格外複雜的合作形式,需要兩項其他動物都辦不到的條件。

第一項條件是,不管互動雙方的行為是慷慨是自私,除了需要有目擊者親眼看到,還必須能把這項寶貴的資訊,分享到整個群體共有的資料池。也就是說,社群成員得愛聊八卦才行。如果大家都能知道某個人不值得信任、總是只接受別人幫助卻都不回報,等到下次這個人又碰上麻煩,社群成員就不會再伸出援手。

英文有句諺語說「騙子發不了財」(cheats never prosper),但不能說完全正確:騙子常常在短時間內還是能得逞,特別是在那些規模比較大、大家彼此比較不認識的社群;只是遲早仍然會東窗事發,讓自己名聲掃地。所以,想讓間接互惠的機制不被那些只想貪小便宜的人搞垮,聊八卦就是一個關鍵的必備條件,而且無論是營火旁、或是茶水間,人類實在是哪裡都能聊。事實上,相較於其他靈長類動物是用理毛之類的活動來建立關係,人類是以閒嗑牙、聊八卦取代了這些活動。

-----廣告,請繼續往下閱讀-----
想讓間接互惠的機制不被那些只想貪小便宜的人搞垮,聊八卦就是一個關鍵的必備條件!圖/envato

像這樣把個別成員的行為,拿來在社群裡大談特談(就像是一個由閒聊建立起的社群網路),就會打造出一套名聲系統,可用來判斷適不適合試著和某個人合作。某人對待他人慷慨大方,就能建立良好的名聲;老愛占別人便宜,也就會惡名遠揚,讓人知道以後可得敬而遠之。行為友善的人,其他人在未來幫助他們的機率也會比較高,於是在天擇的機制裡就能占點上風。所以說到頭來,仍是演化塑造了人類的心理,讓我們在意自己的名聲,聊八卦就成了確保大家別心存僥倖的機制。

在一個會聊八卦的社會裡,生活的第一守則就是要小心自己做的事;或者更重要的是,要小心自己做的事給別人的觀感。於是,人類社會也就成了一個人人都在猜測別人想法的社會——須推斷別人的動機與態度,評估自己的行為在他人眼中的樣貌,好維護自己在外的名聲。我們所謂的「良心」就是這樣的產物之一:內在的這股聲音,警告我們可能有人在看,要我們想想別人可能的觀感,好讓自己免受社會的制裁。

——本文摘自《人類文明:生物機制如何塑造世界史》,2024 年 05 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

3
1

文字

分享

0
3
1
選舉的秘密:票多的贏,票少的輸!候選人該怎麼增加支持者?造勢、掃街有用嗎?
PanSci_96
・2024/01/10 ・4267字 ・閱讀時間約 8 分鐘

嘿,他們正在操控你的選票!

選舉不只是投票,更是一場宣傳技術大展。策略專家運用心理學,了解選民的需求和期望。造勢、辯論、掃街、情勒,萬式齊發。但這些招數真的有效嗎?一場造勢的成本,動輒百萬、千萬,如果只有死忠的會參加,不是把錢灑進水溝嗎?某些經典甚至老套的選舉策略,為何顛撲不破?請務必看到最後,因為看破所有招數背後原理的你,將左右這一場選舉!

造勢概念是怎麼來的?真的有效嗎?

造勢真的有助於選情嗎?

當然有,第一,造勢能鞏固鐵粉,拉進新支持者。造勢活動為粉絲們提供了一個聚集的場所,甚至,有些搖擺不定的選民可能也受到造勢現場的激情感染而入陣。

第二,造勢能影響媒體報導。當候選人舉辦造勢活動時,媒體通常會進行報導,甚至透過塑造「媒體框架」來帶風向,在增加曝光度的同時,塑造候選人的特定形象。關於框架塑造的詳細攻略,歡迎回去我們的這一集複習。

-----廣告,請繼續往下閱讀-----

不過,看在旁人眼中,造勢看起來不過是把大家集合在一起,講講話罷了。但代誌絕對不是你所想的那麼簡單,這一切其實都是競選團隊安排好的心理圈套?

難道造勢是一個大型洗腦現場嗎?

當你在造勢場合中望著台上的候選人,他的一言一行彷彿散發出領導人魅力。看著看著,你可能也忘了他的政見是什麼,但不知道為什麼,就覺得他一定是一位好的領導者,能帶領我們走向未來。這稱作月暈效應,指的是人們看見他人的一個正面特質,卻延伸成對整個人全面的好印象,當然相反的負面印象也適用。這就像天空中只有月亮,但月亮周圍的夜空也被照亮,產生一圈光環,因此稱為月暈效應。

每個候選人肯定都有其優點與缺點,至少有些本事才能站上政治舞台。但無法否認的,造勢場合上不論是越大越好的舞台與造勢場所,還是將主角放在壓軸登場的特殊橋段,甚至搭配高亢激昂的音樂,營造出該總統候選人是天選之人的印象,都是要利用月暈效應讓我們越來越暈,提升對眼前候選人的好印象。

圖/giphy

要不以偏蓋全有多難?

1977 年,社會心理學家理查德.尼斯貝特做了一個實驗。它將 118 名學生分成兩組,觀看同一個帶有口音的老師的上課錄影。雖然兩組學生看到的是同一個老師,但他們看到的片段,一個是充滿熱情、鼓勵學生回答問題的樣子;另一個是對學生提問顯得冷漠的樣子。

-----廣告,請繼續往下閱讀-----

在看完影片後,尼斯貝特請學生評價對這個老師的外表、舉止、口音三者的喜好程度,結果三項的評分結果,冷漠組都低於熱情組。沒想到吧,行為表現也會影響到別人對你的外表評價哦。

這就是月暈效應。最重要的是,當尼斯貝特問到,你認為你對老師的個人喜好,是否影響了你對他其他特質的客觀評估時,不論哪一組的受試者,外表、舉止、口音三個都是以勾選「無影響」居多(圖表中中間最高的都是"NO EFFECT")。顯然,大多數人都很難察覺自己正被片面印象,影響著對人的整體評價。

選舉造勢除了展現候選人的個人魅力,還能利用群眾的力量,拉進更多的支持者。

1848 年美國總統選舉期間,總統候選人扎卡里.泰勒利用樂隊花車來吸引民眾參與他的選舉集會,人們會喊著"Jump on the bandwagon",意思就是跳上遊行中樂隊馬車,吸引更多人一起加入同樂。這句英文後來也衍伸出跟風、趕流行的意思。

泰勒之後成功贏下選舉,成為美國第 12 任總統。雖然這與他在美墨戰爭的經歷有關,但這種透過群眾帶動更多人的「從眾效應」,在此之後也被稱為「樂隊花車效應」。造勢或大型活動不僅能展現自己的支持者的數量,還能吸引那些沒有明確政治立場的選民,讓他們跟隨多數人的意見。

-----廣告,請繼續往下閱讀-----

我們真的那麼容易被影響嗎?

1956 年,心理學家所羅門.阿希(Solomon Asch)進行了一個經典的從眾實驗,實驗設計本身很簡單,就只是詢問受試者右邊卡片的三條直線哪條和左邊的直線長度一樣。很明顯地,直線 C 就是正確答案。有趣的是,如果有受試者是和研究者請來的 6 位暗樁一起做實驗,並聽到他們都回答直線 A 才是和左邊的直線長度一樣,結果竟然發現超過百分之 75 的受試者都曾出現跟著錯誤回答的情況,說明人們會被無形的社會壓力影響而做出決定。

阿希從眾實驗。圖/wikimedia

今年的搞笑諾貝爾獎,也正是頒給另一個 1969 年的經典從眾實驗。實驗發現,只要路上有一人抬頭,就會有 40% 的人會跟著模仿。當眼前有 5 個人一起抬頭,高達 80% 的人都會一起抬頭。

好的,你知道透過造勢和從眾心理,可以製造更多的支持者了,接下來,要怎麼確保這些支持者會出門投票,把這些人的票都催出來呢?

把票催起來!

拜票會提升投票率嗎?

記得,一定要出門投票!就算你再怎麼支持特定候選人,要是支持者不出門投票,他就永遠選不上。雖然拜票形式五花八門,但最終目的都是希望民眾能真的走出門,把自己手中的一票投給他,也就是動員投票,Get-out-the-vote (GOTV)。但這真的有效嗎?美國政治科學家哈洛德·戈斯內爾作為先驅,在 1927 年就使用統計分析來研究拜票是否能有效增加投票率,還出版了《投票:刺激投票的實驗》這本書。在其中一項實驗,他將提醒小卡寄到民眾的信箱提醒民眾投票,並在選舉後統計了有收到與沒收到提醒小卡的投票率。最後發現,有收到小卡的投票率從 47% 提升到了 57%,顯示拜票還真的能催出更高的投票率。所以呢,我們也會不斷提醒大家訂閱泛科學,想必一定會有好效果的,你說對吧?

-----廣告,請繼續往下閱讀-----
實驗發現受到提醒的民眾有更高的投票率。圖/giphy

勤跑基層、努力掃街有助於選情嗎?

為什麼候選人總是要走進街頭,一個一個地跟人握手呢?大家可能都有這個經驗,在學校時,是不是更容易和坐在旁邊的同學們更容易變成朋友?這種拉近物理距離,也會拉近心理距離的現象稱作「鄰近原則」(Proximity principle),彼此靠近的人們更容易建立人際關係,經常見面的人的關係也往往會更牢固。另外,根據心理學的解釋級別理論,我們對於對象的心理距離,會隨時間距離、空間距離、社會距離和假定距離而改變。距離的遠近,會影響我們是用抽象還是具體的解釋方式,也就是所謂的解釋水平。由於我們物理距離上相當靠近候選人,更可能讓我們覺得政治離我們很近,需要投入實際行動如投票來參與。

掃街時握手握得越多,握得越有感情,得票率可能越高嗎?

這看似簡單的一個肢體接觸,卻能影響著我們的大腦,增強彼此的社會連結,增加有利的互動。透過功能性核磁共振照影(fMRI),發現握手增加的親近友善行為與杏仁核(Amygdala)、顳上溝(Superior temporal sulcus)以及依核 (Nucleus Accumbens)活性上升有關。 此外,也有研究顯示溫和接觸會讓俗稱愛情賀爾蒙的催產素(Oxytocin)分泌上升。 催產素是哺乳動物大腦分泌的一種激素,能增強信任感並與他人產生社會連結。也就是說,握手也是有訣竅的,不是一股腦兒握好握滿就好。這裡我們就不特別介紹,如果想要我們介紹握手攻略,留言告訴我們吧!

握手有助於增強彼此的社會連結。圖/envato

呼,講到這邊就懂了吧。雖然你不會馬上變成選舉大師,但至少知道,這些選舉策略為什麼總是萬年不變。原來拉票、催票手段背後都經過許多理論支持跟實證驗證。

當然,心理學理論畢竟是理論,不是問題的所有解答。而且呈現的多是群體現象或趨勢,個體間還是存在差異。做為具有選舉權的公民,要投給誰,能不能客觀看待政見而不受到這些戰術的影響,還是只能問問自己。

-----廣告,請繼續往下閱讀-----

最後想問問大家,這次的選舉你會想投給誰?啊不是,是想問:你覺得哪種選舉宣傳作法到目前為止,最能影響你的投票傾向呢?

  1. 集結誓師造勢大會,參加過一次,我的心就只剩下這位候選人了
  2. 陸戰掃街拜票,看到候選人真的出現在面前,親和力大增
  3. 空戰媒體行銷,包括 YT,畢竟政治人物的形象幾乎都被媒體框住了,等等,我是在選 YouTuber 還是總統啊?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。