網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

1

0
0

文字

分享

1
0
0

永動機有可能嗎?——《悖論:破解科學史上最複雜的9大謎團》

PanSci_96
・2013/04/18 ・2622字 ・閱讀時間約 5 分鐘 ・SR值 544 ・八年級

自古以來,許多具有商業頭腦的人不斷嘗試發明永動機,一種能夠持續運轉並對外作功的機器。簡單來說,即便只是讓它維持運轉,它產生的能量比消耗掉的還多。但這是不可能實現的。

我得先澄清一下,當我們宣稱某件事在科學上不可能實現時,一定得非常小心。畢竟熱力學第二定律的統計本質已經告訴我們,在一杯熱水中自發形成冰塊並非全然不可能。不過這種可能性微乎其微,你可能得等超過整個宇宙年齡的時間才會觀察到這個現象發生,因此我們可以排除它的可能性。當我們說某件事不可能發生時,通常意指「根據我們現階段對自然界運作方式的了解,以及公認的現行物理理論,它不可能發生」。我們當然有可能是錯的,而正是這一絲些微的希望,驅策發明家們不斷設計出天馬行空的永動裝置。

tilt_motor_perpetual_motion_concept
Photo soure:wikimedia

這類機械裝置主要分為兩大類。第一種永動機違反的是熱力學第一定律,它們不須輸入能量就可以作功。熱力學第一定律是關於能量守恆的表述,指出在一個孤立的封閉系統裡,新的能量無法被創造出來。任何宣稱能夠無端產生能量的機器都屬於此類。

第二種永動機雖然沒有違反第一定律,卻因為採用某種使熵減少的方式將熱能轉換成機械能,而違反熱力學第二定律。微妙之處在於,上述現象並未伴隨他處熵的增加來平衡系統所減少的熵。如先前所述,第二定律的其中一種解釋是,熱能只會由高溫處流向低溫處。在這個過程中熵增加了,卻可以從中汲取出有用的功,去降低別處的熵,前提是別處減少的熵沒有超過系統熱量轉移所增加的熵。一部可以從熱物體汲取能量,卻不會同時讓熱能流向低溫處的機器,就是試圖達成永動目標的裝置,例如馬克士威的精靈。

當然有許多裝置遵守這兩條熱力學定律,它們從一些不易察覺的外來能源獲取能量,例如大氣壓力、濕度或海潮等。這些並不是永動機,它們並未違反任何物理定律。讀者只需要釐清保持其運作的能源即可。

某些裝置乍看之下不需要外接能源即可一直運轉下去,例如轉動的輪盤或擺動的單擺等裝置。實情並非如此。它們只是效率極高,初始能量不至於流失,而初始能量當然是裝置開始運轉不可或缺的。事實上,它們的運轉終將減慢下來,因為沒有任何機器可以達到百分之百的效率,而且不論潤滑多麼周到,總是有某種形式的阻尼效應存在,例如空氣阻力或機件之間的摩擦力等。

因此,永動機原則上只在沒有能量流失到周遭環境的情況下才可能存在。任何企圖將能量汲取出來的嘗試,當然都會導致這類裝置停止運轉。

圖4.5 兩種簡易的永動機

(a) 「失衡」的輪盤裝置。這個永動機的構想可回溯至第八世紀的印度。曾有許多精巧的設計被提出,它們全都基於相同的原理,而且也都因為同一個原因而失敗。在上圖展示的版本中,右邊的球(介於三點鐘到六點鐘方向之間)會滾到外側,由於它們距離轉動中心較遠,能產生比靠近圓心的球更大的力矩,推動輪盤轉動。原本預期右邊的球產生的力矩能勝過左邊的球,一旦輪盤緩緩開始轉動,淨力矩就能推動輪盤一直順時針轉動下去。實際狀況卻是,與右側產生較大力矩推動輪盤的球相比,總是會有更多的球在左測抵抗輪盤轉動,因此它無可避免地愈轉愈慢,最後停止。

(b) 磁力馬達。構想是將中央的磁鐵遮蔽起來,使其不受外側圍成一圈的磁鐵影響,僅在南極與北極各留一個洞感應外圈磁鐵的磁力。中央磁鐵上端的南極受到外圈磁鐵內側的北極吸引,下端的北極則被排斥。這兩股力會推動中央的磁鐵順時鐘不斷轉動下去。問題出在對於磁場如何運作的誤解:事實上,外圈磁鐵圍起來的內部並沒有磁場;對稱性使得磁場互相抵消,因此中央的磁鐵完全感受不到轉動的力。

馬克士威的精靈與量子力學

關於馬克士威的精靈,爭辯並未隨著齊拉德發表研究成果而中止。現今的物理學家一路追蹤這個精靈到量子的國度,這個國度裡有許多只在原子尺度下運作的古怪規則。在量子力學裡,一旦提到單一分子位置與速度的量測,必然會碰到我們能獲得多少資訊這個基本課題。它被稱為海森堡測不準原理(Heisenberg’s UncertaintyPrinciple),描述我們永遠無法同時精確得知一個粒子(或空氣分子)的位置及運動速度;量測總會得到有點模糊(fuzzy)的結果。

許多物理學家指出,正是因為這種「模糊性」(fuzziness),最終得以保全熱力學第二定律。

對於那些仍懷抱永動機之夢者,量子世界似乎成為最後的希望堡壘。許多年來,不斷有人建議,或許可以利用一種被稱為「真空能」(vacuum energy)或「零點能」(zero point energy)的能量來達成目的。基於物理世界的模糊性,沒有任何東西是完全靜止的,所有分子、原子或次原子粒子總會至少帶有某個最低限度的能量,即便在冷卻到絕對零度的情況下。這就是所謂的「零點能」。甚至連虛無的真空也有相同的現象;根據量子物理學,整個宇宙都充滿了這種「真空能」。許多人相信我們可以藉由某種方法獲取這些能量並加以利用。然而,在這個過程中我們會碰到和左右隔室的空氣分子一模一樣的問題。真空能是均勻分布的,因此任何企圖汲取它用來作功的方法,都會消耗比所得更多的能量。均勻分布的真空能無法被任意汲取,正如非得藉助外部助力否則無法在溫度相等的兩側隔室之間建立溫度差一樣。

這種外來的助力可以用資訊的形態出現,就像馬克士威的精靈腦海裡的知識一樣,但是資訊的獲得仍然需要能量,能量的消耗將導致別處的熵增加。

我們永遠無法擊敗熱力學第二定律,這件事一定要記得。

啊,我差點就忘了另一件事:本章開頭曾提到,熱力學總共有四條定律,但我還沒告訴讀者剩下兩條定律是什麼。不用再摒息以待了:熱力學第三定律說的是「當一個完美晶體的溫度降到絕對零度時,其熵亦降為零」。至於第四條定律唯一有趣的地方是,儘管在前三條定律已建立很久之後才被加進來,但由於它被公認比其他三條定律更基本,因而被稱為第零定律,而非第四定律。在這三條定律成立之前,它得先成立才行。第零定律指出,如果兩個物體各自同時與第三個物體達成熱平衡(thermodynamic equilibrium,也就是溫度相等的科學說法),那麼兩者之間必然也處於熱平衡─這沒什麼好大驚小怪的。這個定律被賦予「零」的代碼,只是因為另外三條更重要的定律已經眾所皆知,如果將全體代碼數字提高,將造成許多混亂與誤解。這並不是我們所樂見的,對吧?

節錄至 PanSci 2013 四月選書《悖論:破解科學史上最複雜的9大謎團》(由三采文化出版)

文章難易度
所有討論 1
PanSci_96
960 篇文章 ・ 311 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。


0

9
3

文字

分享

0
9
3

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
1 篇文章 ・ 2 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》