Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

不!我們尚未從隕石中發現任何生命痕跡

活躍星系核_96
・2013/03/21 ・3506字 ・閱讀時間約 7 分鐘 ・SR值 547 ・八年級

作者:Phil Plait|譯者:Jack Huang

喔老天,又來了。

早在一月,我就寫了篇有關Chandra Wickramasinghe宣稱在隕石中發現藻類的化石(一種微小的植物生命痕跡),並以嚴謹的立場表示此一說法謬誤連連,然而顯然我的立場不夠強硬,主流媒介上流傳著這麼一則消息:Wickramasinghe研究團隊在隕石上發現了生命的痕跡,而且這份研究報告居然還公開出版

我看了那篇報導,內容跟他們上一次發表的幾無不同,某些部分甚至更不可靠。他們用很多專業數據來包裝看似提升了可性度,但若稍為深入了解,你就會發現他們其實並沒有做出必要且精準的實驗來證明他們的宣稱屬實。所有資訊皆明白顯示他們的研究小組偏離了一些基本的原則。

概括來說,他們所檢測的樣本是否真為隕石還有待商榷,而這些資料是否來自2012年12月斯里蘭卡的撞擊事件同樣也未可知,而更重要的,他們並未排除隕石樣本可能遭受的汙染,也就是說,隕石上的藻類殘跡,可能是天外飛石降落地表時沾染上的,而藻類在地球上到處都是。

-----廣告,請繼續往下閱讀-----

還沒完呢,如果你想用非典型的研究方法來建立一個放諸四海皆準的典範,至少得經得起考驗,但Wickramasinghe的團隊並未諮詢其他專家(包含那些對隕石或藻類領域相當有研究的人員),他們也並未從其他實驗單位取得進一步的驗證以支持己方觀點,他們直接的把研究成果訴諸媒體:「你想知道細節嗎?聽我的就對了」,呃,這實在不像是正統科學研究者的做法。

一團大火球

在Wickramasinghe的報告裡,首先指出他們的石頭樣本來自飛越斯里蘭卡波羅那露瓦省(Polonnaruwa)的火球─是一顆非常耀眼的流星,事件發生在去年12月29號。許多人目擊這顆著火的天外飛石,而且不少人還宣稱被灼傷、聞到有毒氣味等。

我對這些例如有人被燒傷的說法抱持強烈懷疑,因為大多數的隕石在落到地表時早已冷卻。這些石頭在廣袤的太空中(無庸置疑是很寒冷的環境)旅行了很長的時間,僅僅在穿越大氣層的時候被短暫加熱(至多幾秒鐘吧)。至於報導中的毒氣一說,照理講應該有更多的汙染情形在當地出現。以前陣子祕魯的撞擊事件為例,事發地的地下水就被檢測出砷汙染的狀況。

此外,儘管人們搜羅了不少該地區的石塊,但並不表示他們都是該次的隕石的碎片之一。舉例來說,早在2004年同樣的地方也發現過隕石,所以即便這次的石頭樣本真的是隕石碎片,但也不一定是去年的撞擊時留下的。Wickramasinghe團隊在這顆天外飛石上發現生命殘跡,歸因於去年的隕石墜落事件,但種種的關聯性十分脆弱,他們充其量只是提出假設,並沒有任何進一步的例證。

-----廣告,請繼續往下閱讀-----

隕石的迷思

當然還不只如此,他們至今根本還沒確實證明用來作研究樣本的石頭是來自隕石,即便在報告中多次聲明,但科學是講求證據的,他們並未提出足以說服人的論點。雖然Wickramasinghe團隊的確用了很多方法去檢測這些石頭樣本,但偏偏沒有任何一個可以支持這些石頭是隕石的一部分。

他們用的檢測方法之一是分析氧的同位素,基本上穩定的氧元素有很多不同種的同位素,在這些氧原子核裡,可能含有8、9或是10顆的中子。整體而言,這些同位素的放射性會因為在太陽系中旅行過不同的位置而有所不一樣,假如你蒐集地球上岩石並測定它們的放射性,再跟,假設火星上的石頭來比較,你將會發現它們極其不同。這個方法將可以讓你釐清這顆石頭到底是不是來自於地球本身,或者是從天外飛來。

Wickramasinghe團隊的確使用了這個分析方式,而也發現到他們所採集樣本的放射性與地球上的石頭不同。因此他們斷定:從氧同位素分析的資料來看,我們的樣本無庸置疑是來自隕石。

等等,他們所言屬實?當然不!

-----廣告,請繼續往下閱讀-----

為了釐清真相,我和任職於美國太空總署馬歇爾太空飛行中心(Marshall Space Flight Center),專長研究隕石的行星科學家Barbara Cohen進行過一次談話,她告訴我從報告中的資料來看,比較像是一種「推論」而非「定論」,最好的作法應該是用不同的檢測方式交叉比較,因為實驗可能會有誤差會者出錯,單就一種檢驗方式就做出斷定是有風險的。

舉例來說,碳酸鹽,這種含有豐富氧元素的分子,非常容易形成在撞擊地表的隕石上。而碳酸鹽也會對氧同位素的放射性造成影響,甚至讓一般的地表岩石看起來像是從外太空來的。Cohen博士告訴我有許多方法可以減少此一狀況的影響,像是把標的樣本置於乙酸或鹽酸的溶液中清洗,這樣一來碳酸鹽就會被溶解殆盡。對隕石研究者來說,這是一個針對疑似外來隕石進行化學成分分析之前的標準程序。

但在Wickramasinghe的報告中,他們詳細的撰述了如何準備以及如何研究這些石頭樣本,卻隻字未提排除碳酸鹽污染的重要程序。

或是他們忘了,但就算他們有提到,不同於標準的氧同位素放射結果仍不足夠證明樣本來自地球之外。他們光以同位素檢測來斷定樣本為隕石是不恰當的,如此淺顯的道理。

-----廣告,請繼續往下閱讀-----

在判別隕石真偽時,還有其他許多簡單而必要過程應該列入考慮,但在他們的報告中完全看不到。舉例來說,應該要測定樣本中礦物的成分組合,此舉用意在標定外來岩石在地理特性上的年代,這對隕石研究者來說再基本不過,然而在報告中卻不曾看到類似的撰述。

最後,他們表示這些隕石樣本中含有85-95百分比的非定性二氧化矽(非結晶體),然而如同Cohen跟我說的,目前所知沒有任何隕石會含有如此高比例的二氧化矽。暫且把他們宣稱有關碳酸鹽的證據放在一邊,光是二氧化矽含量這個理由就足以證明他們的樣本根本不是隕石。Cohen表示「你必須要做點什麼來證明你所找到的東西是隕石,但他們什麼都沒做」。

再一次讓我指出他們並未去尋求其他實驗機構的驗證來支持他們的論點,別說是結論了,就連實驗過程的數據都經不起考驗。敲下一小塊石頭碎片並送去其他實驗室化驗並非難事,他們自己都做的來了,那為何不讓其他人也重複驗證一下呢?

對於藻類痕跡的查證他們也沒有做到這點。奇怪的是他們說矽藻是在隕石中發現的,卻不願把隕石和矽藻樣本給其他專家檢驗檢驗。要是我的話將會很樂意讓其他人瞧瞧並驗證我的研究,就算我所宣稱的是非常通俗且一般的成果,何況Wickramasinghe團隊所發表的是如此震驚世人的發現呢。

-----廣告,請繼續往下閱讀-----

去污

我提到他們的分析看起來根本沒有經過排除污染的程序,不只是碳酸鹽的汙染,更包可能含了生物因素的汙染。若你宣稱在隕石上找到了矽藻,那對於可能因污染造成的不確定性,你最好也要有難以撼動的理由來證明所言屬實。目前為止他們什麼也沒講,事實上,在他們報告最開始的幾段中有提到,某些隕石樣本是從稻田中發現的!好,先不用太精準的去檢視,用眾所週知的常識可以知道稻田通常處於濕潤的地區,許多小生物生活在其水域之中,所以這些所謂在隕石上發現的矽藻,你很難說不是從環境中獲得的。

再者,Wickramasinghe團隊宣稱說藻類是從隕石樣本的深層中發現的,所以不可能是因為外在的汙染所導致。但這也說不通,我跟一些在岩石中尋找生命的生物學家們談及此事,他們紛紛表示外在的汙染是一個很大的問題。這些有生命的小東西總是有辦法鑽近再微小的細縫中。Wickramasinghe團隊所蒐集的樣本中充滿微小的氣泡與空間,我敢說對於那些小生命很容穿梭其間。

*****************

所以他們發現了一些石頭,然後宣稱那些石頭是隕石(沒有足夠的證據),並進一步說那些隕石是最近的一次事件中發現的(一樣證據不夠充分)。接著他們在隕石樣本上發現了矽藻(並未排除可能遭受的汙染),這不只是顆來自外太空的石頭,而是像地球一樣具有生命的痕跡。

-----廣告,請繼續往下閱讀-----

不過其實是否該要這麼說,他們只是發現了一顆地球上的石頭本來就有藻類在裡面,而你在任何潮溼的地方都可以撿到這樣的樣本。

提醒你,在前一份報告的結尾,他們宣稱在隕石深處發現了存活的矽藻。活著的生物,誠如我們所知,地球上本來就充滿著難以計數的小生物。

他們的聲稱,說到底,不過就是用一種給人印象深刻的證據來支持他們的論點。而我的想法則是,這些普通的石頭在地球上潮溼的環境裡唾手可得,這些石頭已存在很長一段時間,理當會有藻類寄生其間。

*****************

-----廣告,請繼續往下閱讀-----

所以一切很明顯了,他們所呈現的證據指稱這些樣本是來自隕石,根本毫無根據,從報告中根本也無從得證。

再一次,我覺得有義務指出,Wickramasinghe所謂的世紀大發現其實證據並不充分,而且他們還將這個發現刊登於二流的期刊上-《宇宙學雜誌》(Journal of Cosmology)?對於這個宣稱的種種質疑我已在前一篇文章中詳盡表述。誠如我的一慣立場,這可不是在做人身攻擊,反而更像是種針對過去成果的思辨,如果有人有過多次不實陳述的紀錄,你真的需要對他們最新的研究發表保持懷疑,雖然說不一定他們所言為非,但保有額外的警惕總是好的。

越是震驚世人的發現越須要有強而有力的證據來支持,這裡我們或許有了其中一個證據,但卻再無其他來佐證,這樣是不夠的。

資料來源:UPDATE: No, Life Has Still Not Been Found in a Meteorite. Slate [March 11, 2013]

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

6
1

文字

分享

0
6
1
和外星人的第五類接觸!《三體》中的微中子通訊是真的?
PanSci_96
・2024/04/08 ・6799字 ・閱讀時間約 14 分鐘

不要回答!不要回答!不要回答!

Netflix 版「三體」終於上線了,你覺得與外星人接觸是安全的,還是冒險的?

其實啊,人類早就多次嘗試與外星文明接觸,三體中的「那個」技術,甚至也已經驗證成功了?到底誰能先與外星人取得聯繫?是中國還是美國?

接下來的討論可能會暴雷原版小說的設定,但應該不會暴雷 Netflix 版的劇情。

-----廣告,請繼續往下閱讀-----

如果你也有一點想跟外星人接觸,那就來看看人類到底已經跟外星人搭訕到什麼程度了吧!

我們與外星文明接觸過了嗎?

對於是否要與外星文明接觸,每個人都有不同想法。三體小說作者劉慈欣在小說中提出一種觀點,那就是人類太弱小,最好避免與外星文明接觸,以免招致不必要的風險。

但是回到現實世界,如果我們真的身處在三體的世界的話,那人類可真的是不停作死啊。早在 1974 年,科學家就利用阿雷西博天文台,向武仙座的 M13 球狀星團發射了一條著名的訊息,也就是「阿雷西博訊息」。這個目標距離地球不算遠,星星又多,被認為是潛在的外星文明所在。阿雷西博訊息中,則包含人類的 DNA 結構、太陽與九大行星、人類的姿態等資訊。每次想到總覺得是新開的炸雞排在發傳單攬客。

航海家金唱片。圖/wikimedia

除了無實體的電波訊息,人類還向太空中發送了實體的「信件」。1977 年,航海家探測器載著「航海家金唱片」進入太空。唱片中收錄了包含台語在內,55 種語言的問候語、大自然與鳥獸的聲音、115 張圖像、還用 14 顆銀河系內已知的脈衝星來標示出太陽系的位置。是一封向宇宙表達人類文明與友好意圖的信件。恩,如果接收到這個訊息的外星人不是很友善的話,那麼……。

-----廣告,請繼續往下閱讀-----

好吧,就算現在說應該要謹慎考慮接觸外星文明的風險,或許已經來不及了。對方是善還是惡,怎麼定義善或惡,會不會突然對我們發動攻擊,我們也只能聽天由命了。

反過來說,過了這麼久,我們收到外星文明的來信了嗎?

要確定有沒有外星文明,接收訊號當然跟發送訊號同等重要甚至更重要。1960 年,天文學家法蘭克.德雷克,就曾通過奧茲瑪計畫,使用直徑 26 公尺的電波望遠鏡,觀察可能有外星文明的天苑四和天倉五兩個恆星系統,標誌著「尋找外星智慧計畫」(the Search for Extraterrestrial Intelligence, SETI)的誕生。可惜,累積了超過 150 小時的訊息,都沒有搜尋到可辨識的訊號。

比較近的則是 1995 年的鳳凰計畫,要研究來自太陽附近一千個恆星所發出的一千兩百到三千百萬赫的無線電波。由於有經費支持,SETI 每年可以花五百萬美元,掃描一千多個恆星,但是目前還沒有任何發現。

中間有一個小插曲是,1967 年 10 月,英國劍橋大學的研究生喬絲琳.貝爾發現無線電望遠鏡收到了一個非常規律的脈衝訊號,訊號周期約為 1.34 秒,每次脈衝持續時間 0.04 秒。因為有可能是來自外星文明的訊號,因此訊號被開玩笑地取為 Little Green Man 1(LGM-1 號)。但後來他們又發現了多個類似的脈衝信號,最後證實這些脈衝是來自高速自轉的中子星,而非某個文明正在傳遞訊息。

-----廣告,請繼續往下閱讀-----
貴州天眼望遠鏡。圖/FAST

在中國也有探索外星生命的計畫,大家最關注的貴州天眼望遠鏡,直徑達五百公尺,是地球上最大的單一口徑電波望遠鏡。天眼望遠鏡在探索外星生命這件事,並不只是傳聞而已。2016 年 9 月天眼正式啟用後,也宣布加入 SETI 計畫。現在貴州天眼的六大任務之一,就包含探測星際通訊,希望能捕捉到來自其他星際文明的訊號。

而背負著地球最大單一口徑望遠鏡的名號,自然也引起不少關注。從 2016 年啟用到現在,就陸續出現不少檢測到可疑訊號的新聞。然而,這些訊號還需要經過檢驗,確定不是其他來自地面或地球附近的干擾源,或是我們過去難以發現的輻射源。可以確定的是,目前官方還未正式聲明找到外星文明訊號。

會不會是我們的通訊方法都選擇錯誤了?

即使電磁波用光速傳遞訊息,太陽系的直徑約 2 光年、銀河系直徑約 10 萬光年。或許我們的訊息還需要花很多時間才回得來,更別提那些被拋入太空的實體信件。航海家 1 號曾是世界上移動速度最快的人造物,現在仍以大約時速 6 萬公里的速度遠離地球,大約只有光速的一萬八千分之一倍。就算朝著最近的恆星——比鄰星飛去,最少也需要大約 7 萬 6 千年的時間才會到。

如果用電磁波傳遞訊息,又容易因為穿越星塵、行星、恆星等天體而被阻擋或吸收。不論是人類還是外星文明,都必須找到一個既快速,又不容易衰退的訊號,最好就是能以光速穿越任何障礙物的方式。

-----廣告,請繼續往下閱讀-----

在三體小說中,就給出了一個關鍵方法:微中子通訊。

微中子通訊是什麼?

微中子(Neutrino),中國通常翻譯為中微子,是一種基本粒子。也就是說它是物質的最基本組成單位,無法被進一步分割。這種粒子引起了廣泛關注,因為它與其他物質的交互作用極弱,並且以極高的速度運動。微中子能夠輕易穿過大部分物質,通過時幾乎不受阻礙,因此難以檢測。

在宇宙中,微中子的數量僅次於光子,是宇宙中第二多的粒子。有多多呢?地球上面向太陽的方向,每平方公分的面積,大約是你的手指指尖,每秒鐘都會被大約 650 億個來自太陽的微中子穿過,就是這麼多。但是因為微中子與物質的反應真的是太弱了,例如在純水中,它們平均需要向前走 250 光年,才會與水產生一次交互作用,以至於我們幾乎不會發現它們的存在。

藉由微中子撞擊氣泡室中氫原子裡的質子,進行微中子觀測,照片右方三條軌跡的匯集之處便是帶電粒子撞擊發生處。圖/wikimedia

但是對物理學家來說,更特別的是微中子展示出三種不同的「味」(flavor),也就是三種樣貌,電子微中子,渺子微中子和濤微中子,分別對應到不同的物理特性。 在粒子物理學裏,有個「標準模型」來描述強力、弱力及電磁力這三種基本力,以及所有基本粒子。在這個標準模型中,微中子是不具備質量的。 然而,當科學家發現微中子竟然有三種味,而且能透過微中子振盪,在三種「味」之間相互轉換,證明了微中子必須具有質量,推翻了標準模型中預測微中子是無質量的假設,表示標準模型還不完備。

-----廣告,請繼續往下閱讀-----

微中子在物理界是個非常有研究價值的對象,值得我們花上一整集來好好介紹,這邊就先點到為止。如果你對微中子或其他基本粒子很感興趣,歡迎在留言催促我們。

我們現在只要知道,微中子不僅推翻了標準模型。宇宙中含量第二多的粒子竟然有質量這件事情,更可能更新我們對宇宙的理解,以及增加對暗物質的了解。

但回到我們的問題,如果微中子幾乎不與其他粒子交互作用,我們要怎麼接收來自外星文明的微中子通訊呢?

要如何接收微中子?

Netflix 版《三體》預告片中,這個一閃而過,充滿金色圓球,帶有點宗教與科幻風格的大水缸,就是其中的關鍵。

-----廣告,請繼續往下閱讀-----

這個小說中沒有特別提到,但相信觀眾中也有人一眼就看出來。這就是位在日本岐阜縣飛驒市,地表 1,000 公尺之下,由廢棄礦坑改建而成的大型微中子探測器「神岡探測器」。

由廢棄砷礦坑改建而成,深達千米的神岡探測器。圖/Super-Kamiokande Construction

探測器的主要結構是一個高 41.4 米、直徑 39.3 米的巨大圓柱形的容器。容器的內壁上安裝有 11200 個光電倍增管,用於捕捉微小的訊號。水缸中則需灌滿 5 萬噸的超純水。捕捉微中子的方式是等待微中子穿過整座探測器時,微中子和水中的氫原子和氧原子發生交互作用,產生淡藍色的光芒。這與我們在核電系列中提到,核燃料池中會發出淡藍色光芒的原理一樣,是當粒子在水中超越介質光速時,產生類似音爆的「契忍可夫輻射」。

填水的神岡探測器。圖/Super-Kamiokande

也就是說,科學家準備一個超大的水缸來與微中子產生反應,並且用超過一萬個光電倍增管,來捕捉微小的契忍可夫輻射訊號。

但這樣的設計十分值得,前面提到的微中子可以在三種「味」中互相轉換,就是在這個水槽中被證實的。

-----廣告,請繼續往下閱讀-----

這座「神岡探測器」在建成後 40 幾年來,讓日本孕育出了 5 位的諾貝爾物理獎得主。

三體影集選在這邊拍攝,真的要說,選得好啊。

話說回來,有了微中子的捕捉方法之後,現實中還真的有人研究起了微中子通訊!

微中子通訊是怎麼做到的?

來自羅徹斯特大學與北卡羅來納州立大學的團隊,在 2012 年發表了一篇文章,說明它們已成功使用微中子,以接近光速的速度將訊息穿過 1 公里的距離,其中有 240 公尺是堅硬的岩石。訊息的內容是「Neutrino」,也就是微中子。

這套設備準備起來也不簡單,用來發射微中子的,是一部強大的粒子加速器 NuMI。質子在加速繞行一個周長 3.3 公里的軌道之後,與一個碳標靶相撞,發出高強度的微中子射束。

用磁場將微中子聚集成束的 NuMI。圖/Fermilab

用來接收微中子的則是邊長約 1.7 公尺,長 5 公尺的六角柱探測器 MINERvA,一樣身處於地底 100 公尺的洞穴中。

當然,這兩套設備的重點都是拿來研究微中子特性,而不是為了通訊設計的。團隊只是趁著主要任務之間的空檔,花了兩小時驗證通訊的可能性。

但微中子那麼難測量,要怎麼拿來通訊呢?團隊換了一個思維,目標只要能傳出0跟1就好,而這裡的0就是沒有發射微中子,而1則是發出微中子,而且是一大堆微中子。多到即使每百億個微中子只有一個會被 MINERvA 偵測到,只要靠著數量暴力,探測器就一定能接收到微中子。最後的實驗結果,平均一秒可以傳 0.1 個位元的訊息,錯誤率 1%。

MINERvA 實驗中的中微子偵測器示意圖。圖/wikimedia

看起來效率並不實用,卻是一個好的開始。

因為微中子「幾乎能穿透所有物體」的特性,即便我們還沒有其他外星文明可以通訊,或許還是有其他作用。例如潛水艇的通訊、或是與礦坑深處的通訊。進一步說,他幾乎可以在地球上的任一兩點建立點對點的直線通訊,完全不用擔心中間的阻礙。而對於現在最夯的太空競賽來說,月球背面的通訊問題,微中子也可以完美解決。

那麼,在微中子的研究上,各國的進度如何了呢?

除了前面提到的超級神岡,世界上還有幾個有趣的微中子探測器,例如位於加拿大的薩德伯里微中子觀測站(SNO),它有特殊的球體設計並且改為填充重水,專門用來觀測來自太陽的微中子。

薩德伯里中微子探測器。圖/wikimedia

而位於南極的冰立方微中子觀測站,則是將探測器直接埋在南極 1450 到 2450 公尺的冰層底下,將上方的冰層直接作為捕捉微中子的水。非常聰明的設計,這也讓冰立方成為地球上最大的微中子探測器。

除了已經在使用的這幾個探測器之外,美、中、日也即將打造更先進、更強大的探測器。

預計在美國打造的國際計畫——地下深處微中子實驗(Deep Underground Neutrino Experiment),預計成為世界上最大的低溫粒子偵測器。接收器位於南達科他州的地底一公里深處,用作研究的微中子訊號源則來自 1300 公里外的費米實驗室,百萬瓦等級的質子加速器,將產生有史以來最強的微中子束。這台地下深處微中子實驗(Deep Underground Neutrino Experiment)的縮寫非常有趣,就是 DUNE,沙丘。

中國呢,則預計在廣東的江門市,用 2 萬支 51 公分光電倍增管和 2 萬 5000 支 7.6 公分光電倍增管,在地底 700 公尺深處,打造巨大球形的微中子探測器-江門中微子實驗室,內部可以填充兩萬噸的純水。最新的消息是預計 2024 年就能啟用。

最後,經典的超級神岡探測器也不會就此原地踏步,日本預計打造更大的超巨型神岡探測器。容積將提升 5.2 倍、光電管從 11200 個變成 4 萬個,進一步研究微中子與反微中子之間的震盪。

超巨型神岡探測器設計圖。圖/Hyper-Kamiokande

結論

這些微中子探測器的研究目標必然是微中子本身的特性。但既然微中子通訊是有可能的,在任務之餘研究一下這個可能性,也不是說不行吧。

雖然我們現在還沒連繫上我們的好鄰居,但很難說明天就有哪個外星文明終於接收到我們對外宣傳的訊息,發出微中子通訊問候,甚至按圖索驥跑來地球。

至於那時我們應該怎麼辦呢?我們的網站上有幾篇文章,包括介紹黑暗森林法則,以及從《異星入境》看我們要如何與語言不通的外星文明溝通。有興趣的朋友,可以點擊資訊欄的連結觀看。在外星人降臨之前,也不妨參考我們的科學小物哦。

最後問問大家,你覺得我們應該主動聯繫外星文明嗎?

  1. 當然要,我相信探索一定是好的,我覺得引力波通訊更有機會!
  2. 先不要,我已經可以想像被外星文明奴役的未來了!
  3. 為了維繫美中之間的平衡,由台灣來率先接觸外星人,當仁不讓啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

6
10

文字

分享

0
6
10
如果天空少了月亮,地球會怎麼樣?——《有趣的天文學》
麥浩斯
・2022/04/25 ・1477字 ・閱讀時間約 3 分鐘

如果天空少了月亮?文學家應該會很難過,音樂家也會少了創作的題材,沒有中秋節就少了月餅,也沒有烤肉。不過夜晚少了一個大光害,天文學家絕對會很高興!

潮汐變小、一天變短

地球上的潮起潮落,主要是月球繞地球運行造成的。太陽也會影響地球的潮汐,不過對地球的潮汐力只有月球的 46%。如果沒有月球的話,造成地球潮起潮落就只剩下太陽,滿潮和乾潮的幅度就會變小。

月球讓地球產生的潮汐,使地球愈轉愈慢。數十億年前,地球剛形成時,地球自轉的速度比現在快許多;因為月球的潮汐力,讓地球自轉的速度漸漸變慢,慢到現在的一天 24 小時。如果沒有月球,地球的一天可能不到 10 小時。

月球讓地球產生的潮汐,使地球愈轉愈慢。圖/Pexels

左搖右晃的地球

月球就像是走鋼索的人握的平衡桿,讓地球自轉軸保持穩定,如果少了月球這個平衡桿,地球自轉軸左搖右晃的幅度就會變大。

目前地球自轉軸相對於公轉平面的傾斜角是 23.4 度,因為月球的存在,這個傾角的變化幅度不大,大約在 22.1 度和 24.5 度之間。傾角讓太陽直射地球的位置在北回歸線和南回歸線間移動,讓地球出現四季變化。

-----廣告,請繼續往下閱讀-----

如果沒有月球,地球的自轉軸變動的幅度就會變大,自轉軸的變動會對我們有什麼樣的影響?假設兩個極端的例子,地球的自轉軸傾角是 0 度和 90 度。

如果地球傾角是 0 度,太陽永遠直射赤道,地球上不會有北回和南回歸線,地球將不再有四季變化。

如果地球傾角是 90 度,太陽直射的區域會從北極到南極,也就是北回歸線位在北緯 90 度(也就是北極點),而南回歸線在南緯 90 度(南極點)。這種情況下,地球四季變化會非常劇烈,北半球夏天時,北極不會結冰,溫度比現在還高,南半球冰凍的區域比現在還大,這種極端氣候絕對不利現在地球上生物的生存。

未來人類可能先在月球建立基地,作為人類前進火星的跳板,在月球上測試火星裝備和訓練太空人,準備完成後再前往火星。如果少了月球的整備演練,要一步登陸火星將會困難重重。圖/麥浩斯出版

月球替地球擋子彈

月球是地球的衛星,一直以來它都保護著我們的地球。用望遠鏡看月球,會發現月球上有許多坑洞,這些坑洞幾乎都是隕石撞擊後形成的隕石坑,表示月球在早期受到許多的撞擊。如果少了月球擋下這些隕石,這些隕石可能就會撞上地球。

-----廣告,請繼續往下閱讀-----

隕石撞擊對地球的生命影響很大。6600 萬年前,一顆 10 公里左右的隕石撞擊地球,造成恐龍滅絕。恐龍滅絕後,哺乳類才能興起,人類才有機會出現在地球上。

那些沒有被月球擋下的隕石,如果撞上地球,可能會改變地球物種的演化,人類說不定就不會出現在地球! 最後,如果沒有月亮,阿姆斯壯和另外 11 名阿波羅太空人也就無法登陸月球。人類少了探索月球的寶貴經驗,要直接踏上其他行星表面(例如火星),難度會高許多,甚至變得不可能!

——本文摘自《噢!原來如此 有趣的天文學》,2022 年 3 月,麥浩斯出版
-----廣告,請繼續往下閱讀-----