Loading [MathJax]/extensions/tex2jax.js

0

6
10

文字

分享

0
6
10

如果天空少了月亮,地球會怎麼樣?——《有趣的天文學》

麥浩斯
・2022/04/25 ・1477字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

如果天空少了月亮?文學家應該會很難過,音樂家也會少了創作的題材,沒有中秋節就少了月餅,也沒有烤肉。不過夜晚少了一個大光害,天文學家絕對會很高興!

潮汐變小、一天變短

地球上的潮起潮落,主要是月球繞地球運行造成的。太陽也會影響地球的潮汐,不過對地球的潮汐力只有月球的 46%。如果沒有月球的話,造成地球潮起潮落就只剩下太陽,滿潮和乾潮的幅度就會變小。

月球讓地球產生的潮汐,使地球愈轉愈慢。數十億年前,地球剛形成時,地球自轉的速度比現在快許多;因為月球的潮汐力,讓地球自轉的速度漸漸變慢,慢到現在的一天 24 小時。如果沒有月球,地球的一天可能不到 10 小時。

月球讓地球產生的潮汐,使地球愈轉愈慢。圖/Pexels

左搖右晃的地球

月球就像是走鋼索的人握的平衡桿,讓地球自轉軸保持穩定,如果少了月球這個平衡桿,地球自轉軸左搖右晃的幅度就會變大。

目前地球自轉軸相對於公轉平面的傾斜角是 23.4 度,因為月球的存在,這個傾角的變化幅度不大,大約在 22.1 度和 24.5 度之間。傾角讓太陽直射地球的位置在北回歸線和南回歸線間移動,讓地球出現四季變化。

-----廣告,請繼續往下閱讀-----

如果沒有月球,地球的自轉軸變動的幅度就會變大,自轉軸的變動會對我們有什麼樣的影響?假設兩個極端的例子,地球的自轉軸傾角是 0 度和 90 度。

如果地球傾角是 0 度,太陽永遠直射赤道,地球上不會有北回和南回歸線,地球將不再有四季變化。

如果地球傾角是 90 度,太陽直射的區域會從北極到南極,也就是北回歸線位在北緯 90 度(也就是北極點),而南回歸線在南緯 90 度(南極點)。這種情況下,地球四季變化會非常劇烈,北半球夏天時,北極不會結冰,溫度比現在還高,南半球冰凍的區域比現在還大,這種極端氣候絕對不利現在地球上生物的生存。

未來人類可能先在月球建立基地,作為人類前進火星的跳板,在月球上測試火星裝備和訓練太空人,準備完成後再前往火星。如果少了月球的整備演練,要一步登陸火星將會困難重重。圖/麥浩斯出版

月球替地球擋子彈

月球是地球的衛星,一直以來它都保護著我們的地球。用望遠鏡看月球,會發現月球上有許多坑洞,這些坑洞幾乎都是隕石撞擊後形成的隕石坑,表示月球在早期受到許多的撞擊。如果少了月球擋下這些隕石,這些隕石可能就會撞上地球。

-----廣告,請繼續往下閱讀-----

隕石撞擊對地球的生命影響很大。6600 萬年前,一顆 10 公里左右的隕石撞擊地球,造成恐龍滅絕。恐龍滅絕後,哺乳類才能興起,人類才有機會出現在地球上。

那些沒有被月球擋下的隕石,如果撞上地球,可能會改變地球物種的演化,人類說不定就不會出現在地球! 最後,如果沒有月亮,阿姆斯壯和另外 11 名阿波羅太空人也就無法登陸月球。人類少了探索月球的寶貴經驗,要直接踏上其他行星表面(例如火星),難度會高許多,甚至變得不可能!

——本文摘自《噢!原來如此 有趣的天文學》,2022 年 3 月,麥浩斯出版
-----廣告,請繼續往下閱讀-----
文章難易度
麥浩斯
11 篇文章 ・ 8 位粉絲

0

3
1

文字

分享

0
3
1
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
231 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

6
1

文字

分享

0
6
1
這些太空垃圾會不會阻礙我們太空旅行?太空垃圾怎麼清? 
PanSci_96
・2024/05/29 ・5682字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

人類上太空的夢想會被我們親自摧毀嗎?

隨著火箭成本降低,人人都能把衛星丟上太空,現在,當你晚上抬頭看天空,你看到的星星可能不是星星,而是人造衛星。你看到一閃而過的的流星,可能只是墜入大氣的太空垃圾。

這些多到不行的太空垃圾已經成為隱憂,更可怕的是,這些以超音速飛行的太空垃圾可能摧毀其他衛星,在衛星軌道上製造更多不可預期的致命飛彈。有人擔心,人類終有一天會無法穿過這片垃圾雲,天空永遠被自己封閉。 終於,有人提出清理太空垃圾的方法了,但這些方法真的可行嗎?

現在的太空垃圾有多少?

最大的太空垃圾可能是整節火箭!

所有在繞行地球的軌道上失去功能的東西,都會成為太空垃圾,最大的包含壞掉的衛星、和大量運送衛星上太空的第二節推進火箭,例如 1960 年代太空競賽時大量發射的火箭,有許多至今還在宇宙遊蕩,每一個都像公車一樣大。而小東西,則包含太空人在太空漫步時遺忘的東西,或是太空垃圾互相碰撞後產生的碎片,最小可能只有數毫米,小的像隻蚊子。但不論太空垃圾來自哪裡,只要缺乏妥善的管理和追蹤,就可能成為其他運作中設施和儀器的致命血滴子。

-----廣告,請繼續往下閱讀-----
所有在繞行地球的軌道上失去功能的東西,都會成為太空垃圾,最大的包含壞掉的衛星、和大量運送衛星上太空的第二節推進火箭。
圖|PanSci YouTube

為什麼說太空垃圾真的很危險?

為了不被地心引力拉入大氣,墜向地球,在軌道上繞行地球的物體大多都以非常快的速度在移動,包括現在還在運作的衛星與各種設施。舉例來說國際太空站位於距離地球表面四百公里高的近地軌道(Low Earth Orbit),以大約每秒 7 ~ 8 公里的速度高速移動,是地表音速的 20 倍。也就是說,太空上的車禍可嚴重多了,來自不同方向或不同傾角的物體,可能會以超過每秒 10 公里的相對速度發生碰撞。別說公車大小的太空垃圾了,只要直徑超過 1 公分的碎片就足以對太陽能板或玻璃造成損害。更麻煩的是,大小在 10 公分以下的物體,大多還因為尺寸過小難以追蹤。

那麼,我們的頭上有多少太空垃圾呢?

根據歐洲太空總署 ESA 的資料,目前軌道上有 6800 個運作中的衛星,相對的有超過 3 萬 2千個可追蹤的太空垃圾。但如果估計所有無法追蹤的物體,大於 10 公分的物體可能有超過 3 萬 6 千個,介於 1 公分到 10 公分的則高達一百萬個。

根據歐洲太空總署 ESA 的資料,目前軌道上有 6800 個運作中的衛星,相對的有超過 3 萬 2 千個可追蹤的太空垃圾。但如果估計所有無法追蹤的物體,大於 10 公分的物體可能有超過 3 萬 6 千個,介於 1公分到 10 公分的則高達一百萬個。
圖|PanSci YouTube

在這些太空垃圾中,大多數大型太空垃圾就是來自發射衛星後,一起留在太空的第二節推進火箭,小型太空垃圾則來自火箭爆炸或各種大大小小碰撞所產生的碎片。

太空上曾發生過嚴重的太空垃圾碰撞事件?

歷史上比較嚴重的一次撞擊事件發生在 2009 年,銥衛星公司運作中的通訊衛星,重量 700 公斤的 iridium 33,和失效、重 900 公斤的蘇聯軍用衛星 kosmos 2251,在 789 公里的高空,兩台衛星以每秒 11.7 公里的相對速度直接撞上,化成了兩團在軌道上繞行的碎片團。

-----廣告,請繼續往下閱讀-----

NASA 估計,這單一次的碰撞產生了超過 2000 片可追蹤的碎片,雖然許多碎片受地球引力慢慢墜入大氣燒毀,但直到到 2023 年 2 月的統計,大約還有一半,也就是 1000 片碎片留在軌道上。過往也曾經觀察到碎片從距離國際太空站僅 100 多公尺的位置驚險掠過。

如何解決太空垃圾的問題?

太空垃圾又多又危險,真的有辦法清除嗎?

2023 年三月,NASA 發表一篇研究,整理了關於各種清理太空垃圾的方法與成本,包含從地面或太空發射雷射推動垃圾改變軌道,或是直接物理性撞擊改變軌道,還有透過捕捉垃圾,直接在太空將垃圾循環利用,作為燃料或其他用途的再利用等方法。

透過捕捉垃圾,直接在太空將垃圾循環利用,作為燃料或其他用途的再利用。
圖|PanSci YouTube

清理不同大小的物體,要用的方法跟產生的效益也不同,因此他們評估了針對兩種策略。第一種策略將會優先處理目前最大、最具威脅性的 50 個太空垃圾,例如完整的第二節火箭或是失去功能的完整衛星。第二種策略則是優先移除 1 到 10 公分的十萬個小型垃圾。NASA 分別評估處理這兩種目標帶來的效益,恩,所謂的效益,就是預估能減少多少因為太空垃圾碰撞而產生的損失。

要如何移除太空垃圾呢?

移除大型垃圾主要的方法主要是再入大氣層(re-entry),簡單來說就是讓垃圾落入大氣層燒毀。這個方法預計讓運送任務完成的火箭載具,透過剩餘的推進燃料,順手將其他大型垃圾帶下來。移除這 50 個大型垃圾預計總共會花費 10 億美金,但在移除 30 年後所帶來的效益,將會超過花費的成本,非常划算。

-----廣告,請繼續往下閱讀-----

至於小型太空垃圾,主要使用的方法將會是成本較低的雷射。藉由雷射產生的微弱動能來改變垃圾的軌道,將它們送入大氣層或推離常用的軌道。發射雷射的裝置可以設置在地面或是太空中,單純以使用效率來說,設置在太空所需要的能量較低,但是設置在地面維護和管理比較方便。然而這也衍伸了許多爭議,主要圍繞在這個清除垃圾的雷射也可以作為武器使用,例如在戰爭爆發時用雷射攻擊敵國的衛星。不過如果順利設置的話,清除十萬個小型垃圾後大約只要十年就可以達到等同於成本的效益,比移除大型垃圾能更快回收成本。

至於小型太空垃圾,主要使用的方法將會是成本較低的雷射。藉由雷射產生的微弱動能來改變垃圾的軌道,將它們送入大氣層或推離常用的軌道。
圖|PanSci YouTube

方法有了,但我們真的能讓太空再次乾淨嗎?

太空垃圾問題有解嗎?

現在的太空有多擁擠?

如果把歷史發射資料整理出來,會發現近五年人類的衛星發射數量幾乎是直線攀升,2012 年一整年全世界也只發射了 200 多顆衛星,到了 2022 年已經成長到一年 2000 多顆衛星。而且絕大部分都是來自於美國的衛星,想當然很大一部份都來自於 SpaceX 的星鏈計畫。而受益於獵鷹九號的高成功率和可回收造就的低廉成本,也能夠發射更多的中小型衛星,像是我們臺灣也發射了不少自主研發的立方衛星上太空,例如 2021 的「飛鼠」和「玉山」以及最近才剛發射的珍珠號立方衛星。

如果所有的衛星與火箭都會變成太空垃圾,我們清理垃圾的速度又不夠快,還有可能發生凱斯勒現象(Kessler syndrome),也就是碰撞產生的碎片引發連鎖反應,造成更多撞擊和更多碎片,讓不可控的太空垃圾快速增加,直到新的火箭與衛星都難以穿越,我們將無法前往太空,被自己的創造出的人造物封鎖在地球。

-----廣告,請繼續往下閱讀-----
如果所有的衛星與火箭都會變成太空垃圾,我們清理垃圾的速度又不夠快,還有可能發生凱斯勒現象(Kessler syndrome),也就是碰撞產生的碎片引發連鎖反應,造成更多撞擊和更多碎片,讓不可控的太空垃圾快速增加,直到新的火箭與衛星都難以穿越,我們將無法前往太空,被自己的創造出的人造物封鎖在地球。
圖|PanSci YouTube

治標也要治本,我們對於即將發射進太空的人造物能有套管理辦法嗎?

1967 年在聯合國通過並簽署的《關於各國探索和利用包括月球和其他天體的外太空活動所應遵守原則的條約》,簡稱為《外太空條約》。這個條約制定了各國在外太空活動所應該遵守的原則,其中和人造衛星有關的原則主要有三個:

  1. 國家責任原則:各國應對其航太活動承擔國際責任,不管這種活動是由政府部門還是由非政府部門進行的
  2. 對空間物體的管轄權和控制權原則:射入外空的空間物體登記國對其在外空的物體仍保持管轄權和控制權
  3. 外空物體登記原則:凡進行航太活動的國家同意在最大可能和實際可行的範圍內將活動的狀況、地點及結果通知聯合國秘書長

也就是說,雖然各國需要將太空活動回報給聯合國統計,但實際上在制定規範和進行管制的還是各國本身。以美國來說,分別需要和 FAA 聯邦航空總署申報火箭發射和再入大氣層的計畫,以及向 FCC 聯邦通訊委員會申報衛星的通訊規格,至於要如何避免在太空發生碰撞,是發射單位要自己負起責任,公部門只提供有追蹤的物體軌道資料。

如何避免在太空發生碰撞,是發射單位要自己負起責任,公部門只提供有追蹤的物體軌道資料。
圖|PanSci YouTube

不過對於衛星任務結束後的處置,FCC 倒是有相關的規定和罰鍰。因為如果衛星有動力系統,可以在任務結束時就控制墜入大氣層或飛離常用軌道,進到所謂的死亡軌道(Graveyard Orbit),而通常在申請發射衛星時,也需一併提供任務結束後的處置方式。

去年,衛星電視業者 Dish Network 沒有按照它在 2012 年所制定的衛星處置計畫,將衛星從離地 36000 公里的地球同步軌道再往外推 300 公里。這顆衛星在移動的半途中就燃料耗盡失去了動力,只離開原本的軌道 120 公里,FCC 因此對衛星電視業者開罰了 15 萬美元。這起首次針對太空垃圾的開罰,對於太空垃圾的管制具有重大的意義,代表著對太空垃圾危害性的重視,也代表著清理太空垃圾的商機正在逐漸成長。

-----廣告,請繼續往下閱讀-----

清除太空垃圾能有商業價值?

隨著商業化的太空活動逐漸熱絡,如何讓清理太空垃圾不只是空談也成了一個重要的問題。如果軌道上的垃圾減少,受益的會是所有使用軌道的衛星。就與現存的回收與垃圾處理方式一樣,我們可以規定所有衛星的生產者都必須繳交「太空垃圾處理費」,如果在發射的過程中產生額外的太空垃圾,則必須提高費率。相對的,如果一家公司提供清理太空垃圾的服務,則可以獲得這些「太空垃圾權」並換成對應的金額。

我們可以規定所有衛星的生產者都必須繳交「太空垃圾處理費」,如果在發射的過程中產生額外的太空垃圾,則必須提高費率。相對的,如果一家公司提供清理太空垃圾的服務,則可以獲得這些「太空垃圾權」並換成對應的金額。
圖|PanSci YouTube

另外,雖然目前對於在軌道上進行捕捉再回收的直接經濟效益並不突出,但如果未來在太空可以建立起專門的處理設施,或許可以作為一個長期的太空垃圾處理機制,沒想到吧,人類要成為跨行星文明的第一步,竟然是得先成立太空垃圾清潔隊。

不過話說回來,要讓各國政府願意砸大錢在太空垃圾回收產業可能還需要一點時間。畢竟相較於直接影響到生活的全球暖化,太空垃圾的危害並不那麼可怕,大型垃圾的撞擊也可以預測並提前避開,因此短時間內也還不會有明顯的感受,但如果你是需要觀測的天文學家,可能就覺得垃圾好礙眼了。

最後想問問大家,你覺得處理太空垃圾最好的辦法會是什麼呢?

  1. 向所有太空公司徵收處理費,培育回收業者,資本的事情資本解決。
  2. 從技術研發著手,火箭能回收,想必衛星回收技術很快也能做出來。
  3. 都別處理了,就等人類把自己鎖死在地球,宇宙垃圾就不會再增加了!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

0

1
0

文字

分享

0
1
0
印度登陸月球熱門探測點——月球南極!那裡藏著什麼?為什麼各國爭先恐後?
PanSci_96
・2023/11/11 ・4407字 ・閱讀時間約 9 分鐘

你準備好要當月球移民了嗎?

人類再次展開登月競賽,準備重返月球。

今年八月二十三日,在全世界的矚目下,印度登月艇「月船三號 Chandrayaan-3」成功著陸於月球南極附近,展開為期半個月的科學探測任務,也成為人類史上第四個成功軟著陸於月球表面的國家!這更是 21 世紀以來除了中國嫦娥系列之外唯一的成功登月任務。

這次的登陸地點選在月球南極附近。除了月船三號,未來印度與日本合作的月船四號,以及中國的嫦娥七號、嫦娥八號任務,甚至是 NASA 阿提米斯計畫的首次載人登陸,地點也選在月球南極。

-----廣告,請繼續往下閱讀-----

問題來了,月球南極到底有什麼樣的魔力,能讓世界各國如此趨之若鶩?是有挖不完的石油?數不清的黃金?還是外星人留下的秘密裝備?

月球南極有什麼?

從人類的生存、家禽動物的飼養、到植物的灌溉,都脫離不了「水」這個在地球上再常見不過的物質。不僅如此,水電解之後得到的氧氣可以用於呼吸,氫氣則可以做為火箭引擎的燃料使用。想要讓人類走出地球,成為跨行星物種,確保充足的水源供給絕對是最核心的要務之一。

然而,雖然地球上的液態水很多,但正由於我們對水的需求如此龐大,如果要把所有需要的水都從地面用火箭發射進太空,需要的成本將非常驚人。

因此直接開採並使用本來就在太空中的水資源,才是合理且經濟的做法。沒錯,各國在將人類送上登月前,先將目光鎖定在了月球南極,關鍵就是要尋找「水」。

-----廣告,請繼續往下閱讀-----

如果月球上有水,不僅能幫助人類在月球建立起永久基地。月球,更將成為人類航向廣袤星海的第一片綠洲。

可是,缺乏大氣保護、日夜溫差超過兩百度的月球表面,真的會有水存在嗎?

由於缺乏大氣層,液態水在月球上要嘛會因為蒸發而散逸,要嘛會因為低溫結成水冰,很難以液態穩定存在。而即使是固態的水冰,也會在炙烈的陽光下昇華,因此月球表面的大部分地方是幾乎沒有水的。

但大家可以想像一下,月球的公轉軌道與地球繞太陽公轉的黃道面幾乎平行,夾角只有 5.145°。也就是說,月球不論在哪個位置,陽光總是直射在月球赤道附近。如果此時月球的南極點剛好有個向下凹陷,而且足夠大、足夠深的隕石坑,那麼在隕石坑之中的陰影區,就永遠不會照射到陽光。

-----廣告,請繼續往下閱讀-----
圖/wikimedia

這些地方被稱為「永久陰影區 Permanently Shadowed Areas」。由於不會受到陽光照射,因此永久陰影區附近的水冰,能夠持續存在數十億年的時間。

但是,雖然有「保存」水冰的條件,關鍵是永久陰影區中真的有水冰存在嗎?如果有,含量又有多少呢?這時,各國的探月任務就接手上場了。

月球南極真的有水嗎?

這些探月任務可不是一時興起,因為過去「月球上沒有水」的印象可是深植人心。直到 1990 年代開始,科學家才陸陸續續從越來越多月球探測器的資料中,發現水可能存在的蛛絲馬跡。

其中一次重大的進展發生在 2009 年。當時,NASA 使用擎天神五號火箭,同時發射了「月球勘測軌道飛行器 LRO」以及「月球坑觀測和感測衛星 LCROSS」兩個探測器。前者是一顆繞月衛星,後者則是一個撞擊用探測器。

-----廣告,請繼續往下閱讀-----

在發射升空之後,NASA 首先讓 LRO 與火箭分離,並進入月球軌道。接著,還連在火箭第二節上的 LCROSS,則跟著第二節火箭一起朝著月球南極的永久陰影區之一——卡比厄斯環形山飛去。在撞擊前數小時,LCROSS 與第二節分離,並讓第二節火箭以每秒 2.5 公里的高速,直直撞入永久陰影區,激起大量的月表物質。LCROSS 則直直飛入其中,檢測其中的物質成分。並在六分鐘後,同樣撞擊於月球表面。但就在這短短的六分鐘的犧牲打中,LCROSS 收集到的資料向科學家展示了,月球南極的永久陰影區中不僅確定有水冰的存在,更有汞、鎂、鈣、銀、鈉等其他諸多有用的物質資源。

2009 年 6 月 18 日至 2009 年 10 月 9 日 LCROSS 軌跡模擬動畫。圖/wikimedia

有了 LCROSS 的資料,再加上其他月球探測器,像是克萊門汀號、月船一號、LRO 等等,提供各種遙測資料,人類終於能掌握月球表面有水存在的證據。

時間回到現在,月球表面-尤其是月球極區的永久陰影區中,有水冰的存在已經是科學家的共識。但是這些水冰具體有多少,能否支撐人類在月球極區建立太空基地呢?這就只能實際派出登陸艇前往一探究竟了。

到月球南極尋找水冰吧!

可惜的是,8 月 23 日成功在月球上著陸的月船 3 號和攜帶的月球車 Pragyan,在 9 月 2 號和 4 號就入休眠,推測可能是因為無法承受極低溫環境,至今還未能重新喚醒。

-----廣告,請繼續往下閱讀-----
Pragyan 登陸月球。圖/wikimedia

在未來兩年的月球極區無人探測任務中,NASA 的 VIPER 任務可以說是最值得期待的另一項任務。VIPER 全名為月極揮發物調查漫遊車,是 NASA 有史以來第一台「無人月球車」,同時也是 NASA「商業月球載酬服務 CLPS」系列任務的一員。CLPS 和過去的太空任務不同,是由 NASA 提供科研載酬,由商業公司提供載酬的發射、巡航、著陸等服務。本次 VIPER 任務選定的商業夥伴是美國的 Astrobotic Technology 公司,VIPER 探測車將會乘坐該公司的 GRIFFIN 登陸器降落在月球南極,透過各種儀器勘查月球極區揮發份的組成與分布。

這台重 430 公斤,體積與高爾夫球車相當的 VIPER ,身上塞有四個主要儀器。

首先是中子光譜儀,它會藉由量測月球表面中子輻射的能量分布,了解地底下氫原子的分布狀況,從而推測水冰的含量。

第二,近紅外光揮發份光譜儀,它會以近紅外光燈照射月表,並從揮發份的光譜分析它的化學組成,同時也能判斷水是以結晶、非晶質的冰,或是氫氧根離子的形式存在。

-----廣告,請繼續往下閱讀-----

第三,質譜儀,能藉由電場分離不同荷質比的物質。除了能知道月表有哪些元素以外,還能分辨氘與氫、氧-18 與氧-16 等不同同位素的含量,對分析水的來源至關重要。

第四個儀器名為 TRIDENT(The Regolith and Ice Drill for Exploring New Terrain),縮寫很酷,名字很長,但簡單來說就是一個裝有溫度計的鑽頭。可以從月面下一公尺處鑽取一段十公分長的岩芯,為前面幾個儀器提供樣品。

除了這些科研儀器以外,VIPER 上還有一對立體視覺攝影機,能夠拍攝具有距離感的照片,為探測車的導航提供參考。

VIPER 原型機。圖/wikimedia

有了 VIPER,NASA 還必須想好要把珍貴的探測車派到何處進行調查,才能盡可能發揮他的潛能。除了理所當然地要放在可能有水的地方之外,地表的起伏與材質也有要求,比如太陡峭的山壁顯然就不是個好選擇。同時探測的地點,還必須可以和地球建立通訊。

-----廣告,請繼續往下閱讀-----

更重要的是,由於 VIPER 是太陽能驅動的探測車,探測地點不可以長時間缺乏日光,否則探測車會不僅會因為缺乏電力,還會因為長時間處於酷寒環境中而壞掉。進入休眠的月船三號,就是因為設計上就沒有為度過月球寒夜做準備,因此任務的極限時間一開始就限制在兩週左右。綜合以上條件,科學家選定了月球南極 Nobile 隕石坑西方的高地作為 VIPER 任務的地點。這裡雖然不是嚴格意義上的永久陰影區,但是滿足有日照,且時間足夠短到允許地底下有水冰的存在。

為了有充分的時間進行探索,VIPER 設計時就有考慮探測器的電力與保溫,可以透過三個休眠時期度過月球的夜晚,執行至少一百天的任務。在這一百天中,VIPER 將會調查隕石坑周圍,了解到底有多少水冰和二氧化碳、二氧化硫等揮發物,為將來的登月計畫鋪路!

要前往其他星球甚至離開太陽系,比起地球,擁有較低重力的月球,一直被認為是人類出發太空的前線基地。人類想要成為跨行星物種,水則是絕對不可或缺的關鍵資源。而經過數十年的研究,科學家終於在月球發現可能蘊藏大量水冰資源的地方。我們離移民月球或其他行星,又更靠近了一步。

就讓我們一起期待這些探測器們,幫助我們揭開月球南極的神秘面紗吧。

跟大家說個小趣聞,月船三號著陸之後,印度為了慶祝任務成功而將月船三號的登陸點命名為「濕婆神之力 Shiv Shakti」。那如果今天是你的探測器成功登月了,你會想幫登陸地點取什麼名字呢?留言與大家分享吧!

最後也想問問大家,如果人類真的確保水源,並在月球南極建立起了月球永久基地,你會想移民過去嗎?

  1. 不只想,我還想接著去火星跟太陽系外呢
  2. 去旅遊的話剛剛好,我想去找露西和大衛約會的地方聖地巡禮
  3. 先等等,說不定月球背面,還有外星人在等著我們呢

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----