0

0
0

文字

分享

0
0
0

容易被忽視的神經內分泌腫瘤:早發現、早治療,扭轉病情的關鍵

careonline_96
・2025/01/08 ・2774字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

圖/照護線上

「有位五十多歲的男性患者,因為數月持續腹瀉且在右頸部發現一顆淋巴結腫大而就診。」三軍總醫院血液腫瘤科主任陳佳宏醫師表示,「患者並未意識到這些症狀與腫瘤有關,但在經過全身檢查發現,左側鼠蹊部亦有淋巴結腫大,而肝臟也有三顆腫瘤,肝臟腫瘤及頸部淋巴結切片後,病理報告為神經內分泌腫瘤,G1-G2,胃鏡及大腸鏡並無發現異常,藉由切片染色,CDX-2 (+), CK7 (-),CK20 (+), SSTR-2(+) 證實其源頭是腸胃道來的,故確定診斷為腸胃道神經內分泌腫瘤,而且腫瘤已經轉移至肝臟至頸部及鼠蹊部淋巴結,屬於第四期神經內分泌腫瘤,亦是晚期神經內分泌腫瘤。」

經過團隊討論後,患者決定接受手術切除頸部淋巴結,並利用射頻燒灼術及放射性治療處理肝臟的腫瘤。後續患者持續接受長效型體抑素注射治療,幫助改善症狀並抑制腫瘤生長。患者已經接受體抑素治療約5年,目前狀況穩定,沒有發現新的腫瘤。陳佳宏醫師說,雖然在發現時已是轉移性第四期神經內分泌腫瘤,不過只要積極接受治療,患者的病情還是有機會獲得良好控制,生活品質也可以維持。

神經內分泌腫瘤(Neuroendocrine Tumor,NET)是源自各種神經系統及內分泌系統細胞的腫瘤,可能發生在身體的多個器官。陳佳宏醫師指出,由於神經內分泌瘤可能會分泌各式各樣的內分泌素,而導致不同的臨床症狀,常見症狀包括腹瀉、心悸、臉部潮紅、皮膚炎、潰瘍、氣喘等,但是也有些患者完全沒有症狀。

神經內分泌腫瘤症狀千變萬化
圖/照護線上

因為神經內分泌腫瘤造成的症狀沒有特異性,臨床上無法根據症狀診斷神經內分泌腫瘤,例如腹瀉可能只是腸胃炎、臉潮紅可能與更年期有關。陳佳宏醫師說,不過如果這些症狀持續幾個月或反覆發作,就建議進一步理學檢查。確定診斷需要仰賴病理學檢查,唯有透過組織切片檢查才能證實腫瘤的性質。

-----廣告,請繼續往下閱讀-----

在進行切片前,醫師會根據患者的臨床症狀安排抽血、影像檢查,若有發現可疑病灶,便會考慮切片檢查。

神經內分泌腫瘤早期治療,幫助達到較佳的預後

神經內分泌腫瘤的治療方式取決於腫瘤發生的位置及分期,如果能夠早期發現,手術切除是最主要且有效的治療方式。陳佳宏醫師說,然而神經內分泌瘤與其他實體腫瘤有些不同,除了考慮腫瘤的分期,還需要評估腫瘤的分級,也就是細胞分化的程度。分化程度的好壞會影響治療策略和預後。

若腫瘤細胞分化良好,稱為神經內分泌腫瘤(Neuroendocrine Tumor, NET),這類腫瘤通常惡性程度較低。如果腫瘤細胞分化不良,細胞形態更具侵襲性且不規則,稱為神經內分泌癌(Neuroendocrine Carcinoma, NEC),這類腫瘤惡性程度較高,復發風險也更高。

神經內分泌腫瘤建議早期治療
圖/照護線上

「雖然神經內分泌腫瘤通常生長速度較慢,但是如果未能及時發現,腫瘤可能發生遠端轉移,散播到其他器官,讓狀況變得更棘手。」陳佳宏醫師表示,「若能及早發現,進行手術切除是比較單純且有效的治療方式,所以,早期發現和治療是相當重要的關鍵。」

-----廣告,請繼續往下閱讀-----

早期神經內分泌腫瘤在接受手術治療後,有較高的機會達到治癒。陳佳宏醫師說,晚期神經內分泌腫瘤的復發風險會大幅增加,術後通常需要搭配其他治療,例如體抑素類似物、化學治療、放射治療、標靶治療等,希望改善患者的預後。

體抑素類似物(somatostatin analog)可以有效抑制腫瘤釋放過量的內分泌素,例如胰島素、血清素等,幫助緩解臨床症狀,改善生活品質。陳佳宏醫師說,體抑素類似物也可以抑制腫瘤生長,幫助延長腫瘤惡化時間,延長無惡化存活期,對於無法完全切除或轉移性神經內分泌腫瘤相當重要。

體抑素類似物治療
圖/照護線上

傳統體抑素類似物採肌肉注射,一個月注射一次。目前有新型長效型體抑素注射凝膠,採深層皮下注射,且注射體積很小,僅0.5 ml,能夠降低注射時的不適。陳佳宏醫師說,由於患者需要長期接受體抑素類似物治療,新型長效型體抑素注射凝膠有助提升治療遵從性。若有些就醫困難或離島偏遠地區,在經過醫護人員的指導後,新型長效型體抑素注射凝膠亦可由患者帶回家施打,讓治療更便利。

筆記重點整理

  • 神經內分泌腫瘤是源自各種神經系統及內分泌系統細胞的腫瘤,可能發生在身體的多個器官。由於神經內分泌腫瘤可能會分泌各式各樣的內分泌素,常見症狀包括腹瀉、心悸、臉部潮紅、皮膚炎、潰瘍、氣喘等,但是也有些患者完全沒有症狀。
  • 神經內分泌腫瘤的治療方式取決於腫瘤發生的位置及分期,如果能夠早期發現,手術切除是最主要且有效的治療方式。
  • 早期神經內分泌腫瘤在接受手術治療後,有較高的機會達到治癒。晚期神經內分泌腫瘤的復發風險會大幅增加,術後通常需要搭配其他治療,例如體抑素類似物、化學治療、放射治療、標靶治療等,希望可以改善預後。
  • 體抑素類似物可以有效抑制腫瘤釋放過量的內分泌素,幫助緩解臨床症狀,改善生活品質。體抑素類似物也可以抑制腫瘤生長,延長無惡化存活期,對於無法完全切除或轉移性腫瘤相當重要。
  • 傳統體抑素類似物採肌肉注射,一個月注射一次。目前有新型長效型體抑素注射凝膠,採深層皮下注射,且注射體積很小,僅0.5 ml,能夠降低注射時的不適。若有些就醫困難或離島偏遠地區,新型長效型體抑素注射凝膠亦可由患者或家屬帶回家施打,讓治療更便利。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

careonline_96
593 篇文章 ・ 279 位粉絲
台灣最大醫療入口網站

0

3
1

文字

分享

0
3
1
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
231 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
231 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
腫瘤縮小不再遙不可及,免疫+標靶雙效發威
careonline_96
・2025/06/25 ・2661字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

晚期肝癌治療對策,免疫合併抗血管新生標靶顯著縮小腫瘤、提升存活期,腫瘤專科醫師圖文解析
圖 / 照護線上

「那是一位 50 歲男士,有B型肝炎帶原。在發現肝癌後便接受手術切除,但是術後半年腫瘤便復發。」臺北榮民總醫院腫瘤內科陳三奇醫師表示,「當時向健保申請使用免疫治療合併抗血管新生標靶藥物,每三週回門診做一次治療。經過幾個月治療後,腫瘤顯著縮小,沒有明顯副作用,僅出現輕微的皮膚搔癢,讓患者能夠維持原本的工作與日常生活。」

目前,患者已接受疫治療合併抗血管新生標靶藥物的組合式療法達一年以上,病況仍穩定控制。甚至在兩次治療之間,患者還可以安排休假出國旅遊,維持良好的生活品質。

過去晚期肝癌的治療多採用單一藥物,但近年來治療策略已轉變為合併治療,利用兩種藥物共同作用,以提升治療成效,包括免疫治療合併抗血管新生標靶藥物、雙免疫合併治療。

在選擇治療方案時,主要會考量腫瘤縮小的機率與疾病控制的時間,希望能讓患者的腫瘤縮小機率更高、疾病穩定期更長。若腫瘤控制效果較佳,也有助維持患者的肝功能,減少併發症。陳三奇醫師說,目前的臨床研究顯示,「免疫治療合併抗血管新生標靶藥物」的腫瘤縮小率較高,且患者的腫瘤控制時間較長,因此在治療選擇上會優先考慮此方案。若腫瘤體積較大或有血管侵犯,目前的臨床證據也較支持採用免疫治療合併抗血管新生標靶藥物治療。

-----廣告,請繼續往下閱讀-----
免疫合併抗血管新生標靶藥物治療轉機
圖 / 照護線上

免疫治療的機轉與免疫檢查點有關,人體免疫系統中的T細胞原本具有辨識並毒殺癌細胞的能力,但是當肝癌細胞上的 PD-L1 與 T 細胞上的 PD-1 接合時,就像踩下剎車一般,讓T細胞受到抑制。免疫治療便是利用 PD-1 抑制劑或 PD-L1 抑制劑去阻斷 PD-L1 與 PD-1 的結合,T細胞就能辨識並毒殺癌細胞。

PD-L1 抑制劑搭配抗血管新生標靶藥物能夠發揮相輔相成的效果,因為抗血管新生標靶藥物不僅可以有效抑制血管新生,抑制腫瘤長大,還能改變改變腫瘤周圍的免疫環境,顯著提升反應率,增強對肝癌細胞的毒殺效果。

免疫合併抗血管新生標靶藥物提升晚期肝癌治療成效
圖 / 照護線上

免疫治療合併抗血管新生標靶藥物的組合式療法可顯著提升晚期肝癌患者的治療成效,約 30% 患者的腫瘤可顯著縮小,腫瘤惡化時間平均可延長至七個月以上,讓病情穩定期更長。相較於傳統治療,晚期肝癌患者的存活期可從約一年延長至一年半至兩年。

根據臨床研究結果,免疫治療合併抗血管新生標靶藥物的副作用相對較少,幫助維持生活品質。陳三奇醫師說,「許多患者年齡介於 50 至 60 歲,仍需工作並肩負家庭經濟責任。因為只要每三週到醫院門診接受一次治療,便可有效控制腫瘤,且副作用較溫和,能夠維持原本的生活與工作,對患者有很大的幫助。」

-----廣告,請繼續往下閱讀-----

國際治療指引 NCCN guidelines 已將免疫治療合併抗血管新生標靶藥物列為晚期肝癌之一線治療選擇,台灣健保也納入給付,只要符合給付條件,便可向健保署申請使用。

晚期肝癌療策略
圖 / 照護線上

在接受治療後,若肝臟腫瘤顯著縮小,可再次評估局部治療的可能性,例如肝動脈栓塞、射頻燒灼、手術治療等,運用多元化治療,幫助提升治療成效。手術治療是較具治癒性的治療方式,如果患者的腫瘤縮小至可開刀範圍,且符合相關條件,便會鼓勵患者接受手術切除,以提高痊癒的可能性。

近年來,中晚期肝癌的治療已大幅進步,尤其在免疫治療的發展後,合併治療已成為主要策略,幫助許多患者的腫瘤獲得良好控制,甚至部分患者能夠接受手術,達到痊癒的可能性。建議患者與醫師充分溝通,根據病況選擇適合的治療方式!

筆記重點整理

  • 過去晚期肝癌的治療多採用單一藥物,但近年來治療策略已轉變為合併治療,利用兩種藥物共同作用,以提升治療成效,包括免疫合併抗血管新生標靶、雙免疫合併治療。
  • 臨床研究顯示,「免疫合併抗血管新生標靶」的腫瘤縮小率較高,且患者的腫瘤控制時間較長,因此在治療選擇上會優先考慮此方案。若腫瘤體積較大或有血管侵犯,目前的臨床證據也較支持採用免疫合併抗血管新生標靶。
  • 免疫治療便是利用 PD-1 抑制劑或 PD-L1 抑制劑去阻斷 PD-L1 與 PD-1 的結合,T細胞就能辨識並毒殺癌細胞。抗血管新生標靶藥物不僅可以有效抑制血管新生,抑制腫瘤長大,還能改變改變腫瘤周圍的免疫環境,顯著提升反應率,增強對肝癌細胞的毒殺效果。
  • 免疫合併抗血管新生標靶治療可顯著提升晚期肝癌患者的治療成效,約 30% 患者的腫瘤可顯著縮小,腫瘤惡化時間平均可延長至七個月以上,讓病情穩定期更長。相較於傳統治療,晚期肝癌患者的存活期可從約一年延長至一年半至兩年。因為只要每三週到醫院門診接受一次治療,便能有效控制腫瘤,且副作用較溫和,能夠維持原本的生活與工作,對患者有很大的幫助。
  • 在接受治療後,若肝臟腫瘤顯著縮小,可再次評估局部治療的可能性。如果患者的腫瘤縮小至可開刀範圍,且符合相關條件,便會鼓勵患者接受手術切除,以提高痊癒的可能性。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。