0

0
0

文字

分享

0
0
0

重溫2012(四)知颱才能治颱

陳 慈忻
・2013/03/02 ・1778字 ・閱讀時間約 3 分鐘 ・SR值 524 ・七年級

颱風自古至今都是台灣的常客,即使到了人類科技最先進的2012年,我們已經有足夠的因應能力來避免颱風災害了嗎?或著更根本的,我們認識颱風嗎?台大地理環境資源學系的黃誌川助理教授的研究專長是水文地形作用,他與文化大學的研究團隊針對颱風路徑與災害分布的相關研究也獲邀刊登國際一流水文期刊。這次專題,黃誌川教授帶我們重新認識我們最熟悉的陌生人「颱風」,探討台灣面對風災應掌握的重點,並釐清大眾易產生的迷思。

颱風之島

台灣有2,300萬人,人口密度超過每平方公里600人,這也代表著我們對災害的承受度較低且需要比較高的防災規格,因為財產與人命的損失和人口密度是相關的。

我們每年平均降雨大約有2,510毫米,這些降雨除了提供水資源、提供植物生長所需之外,還有1個很重要的功能是「夷平山地」,減緩造山運動帶來的地勢增高。

台灣在造山運動帶上,每年高度成長平均有8至10公釐。但是對照實際高度算起來卻沒有以10公釐逐年增加,原因就是降雨侵蝕與風化作用將地形夷平,台灣各地被夷平的速率是每年2.0~8.6mm。這樣的高山與旺盛的侵蝕作用不但提供了高度位能,陡峭的坡度則提供了物質移動的速度,台灣坡度30%以上的面積就佔了58%,坡度30%已經是很陡了,加上雨量的條件,使得台灣的土石流作用非常快。

-----廣告,請繼續往下閱讀-----

颱風來的時候特別容易淹水,不只是雨量的因素,還包括了海平面因低氣壓壟罩、承受大氣壓力小而上升所造成海水倒灌、洪水宣洩不易的影響。像是2008年的莫拉克颱風中,高屏平原就被淹沒了四分之一,淹了1層樓高,也就是3,000毫米。如果把近十幾年的經濟與相關設施損失算出來,每年大約超過300億,而颱風數多的年份,像是2005年來了8個颱風,造成的損失就更大。

旱澇分明

台灣颱風帶來的總雨量增加是確定的,不過科學界對成因還沒有共識,有人說是因為颱風數量增加了;有人說個別颱風的強度增加了;也有另一派說法,認為是颱風移動的速率變慢了,造成颱風帶來的總雨量變多。

如果我們看全台灣在全年的降雨,其實年雨量沒有太大的變化,但不同區域有其個別特色,像是北台灣年雨量些微增加、西南部些微減少、東部持平,全台灣其實平均起來沒有增減。

如果全台灣的年雨量其實沒有增加,但是每年颱風帶來的雨量卻增加了,代表什麼呢?很簡單,非颱風季節沒有雨,颱風來的時候下大雨。

-----廣告,請繼續往下閱讀-----

從空間上,若根據資料將2001年後10年的最大日降雨畫出來,我們很驚訝的發現情況非常不平均,幾個地方需要特別注意:平溪、高屏溪河谷延伸到阿里山、石門水庫上游的雨量最多,1天可以超過600mm的情況普遍存在,在經費有限的情況下,防災應先從承受壓力最大的地方開始防災。

迷思一:氣象預報看起來颱風越來越大?

颱風路徑圖其實展示的不是颱風形狀。觀看路徑圖,剛開始只有一個點的時候位置是很確實的,但是預測時間越長遠,誤差就越大,所以圓圈就會變大。因此這張圖應該被當成颱風中心的機率範圍,而不是颱風大小的呈現。後來的圓心不是代表颱風眼,而是預測颱風最高機率出現的位置,但不少人單看圖會誤以為颱風越來越大、最後甚至壟罩整個台灣,但事實上颱風最大的直徑大約一兩百平方公里,頂多半個台灣。

迷思二:氣象預報都不準?

所有東西都測不準,但是這麼說很難讓大眾接受。在風險評估時,都會設定安全係數,如果拉高1.5倍,也就是將誤差的影響降低,在誤差範圍內都要防災,雖然會耗掉防災成本,但是有機會可以避免較大的災害損失。

曾經有1個實驗,邀請很多專家共同參與1個題目的決策,使用3天前的預測結果,決定水門要不要開:水門拉開要花8,000元,並且必須付出4,000元的成本來清理下游;若不開,且水沒有淹過水門,就不用付出任何成本,但是萬一淹過,要付的代價是20,000元,最後發現所有專家的決策居然各半,無法統一。

-----廣告,請繼續往下閱讀-----

不確定性遠不止如此,有的時候危害都市就不會危害農田,有時候危害農田會危害都市……種種條件下,科學能做的還是有限,但以風險評估的角度來看,能救到1次就回本了。

(本文原發表於行政院國家科學委員會-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!)

延伸學習:Huang, J.C., Yu, C.K., Lee, J.Y., Cheng, L.W., Lee, T.Y., Kao, S.J. (2012) Linking Typhoon Tracks and Spatial Rainfall Patterns for Improving Flood lead-time Predictions in Mountainous Watershed, Water Resources Research.
文章難易度
陳 慈忻
55 篇文章 ・ 1 位粉絲
在丹麥的博士生,專長是用機器學習探索人類生活空間,正在研究都市環境變遷與人類健康的關係。曾擔任防災科普小組編輯、社會創新電子報主編。

0

0
1

文字

分享

0
0
1
Intel® Core™ Ultra AI 處理器:下一代晶片的革命性進展
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/21 ・2364字 ・閱讀時間約 4 分鐘

本文由 Intel 委託,泛科學企劃執行。 

在當今快節奏的數位時代,對於處理器性能的需求已經不再僅僅停留在日常應用上。從遊戲到學術,從設計到內容創作,各行各業都需要更快速、更高效的運算能力,而人工智慧(AI)的蓬勃發展更是推動了這一需求的急劇增長。在這樣的背景下,Intel 推出了一款極具潛力的處理器—— Intel® Core™ Ultra,該處理器不僅滿足了對於高性能的追求,更為使用者提供了運行 AI 模型的全新體驗。

先進製程:效能飛躍提升

現在的晶片已不是單純的 CPU 或是 GPU,而是混合在一起。為了延續摩爾定律,也就是讓相同面積的晶片每過 18 個月,效能就提升一倍的目標,整個半導體產業正朝兩個不同方向努力。

其中之一是追求更先進的技術,發展出更小奈米的製程節點,做出體積更小的電晶體。常見的方法包含:引進極紫外光 ( EUV ) 曝光機,來刻出更小的電晶體。又或是從材料結構下手,發展不同構造的電晶體,例如鰭式場效電晶體 ( FinFET )、環繞式閘極 ( GAAFET ) 電晶體及互補式場效電晶體 ( CFET ),讓電晶體可以更小、更快。這種持續挑戰物理極限的方式稱為深度摩爾定律——More Moore。

-----廣告,請繼續往下閱讀-----

另一種則是將含有數億個電晶體的密集晶片重新排列。就像人口密集的都會區都逐漸轉向「垂直城市」的發展模式。對晶片來說,雖然每個電晶體的大小還是一樣大,但是重新排列以後,不僅單位面積上可以堆疊更多的半導體電路,還能縮短這些區塊間資訊傳遞的時間,提升晶片的效能。這種透過晶片設計提高效能的方法,則稱為超越摩爾定律——More than Moore。

而 Intel® Core™ Ultra 處理器便是具備兩者優點的結晶。

圖/PanSci

Tile 架構:釋放多核心潛能

在超越摩爾定律方面,Intel® Core™ Ultra 處理器以其獨特的 Tile 架構而聞名,將 CPU、GPU、以及 AI 加速器(NPU)等不同單元分開,使得這些單元可以根據需求靈活啟用、停用,從而提高了能源效率。這一設計使得處理器可以更好地應對多任務處理,從日常應用到專業任務,都能夠以更高效的方式運行。

CPU Tile 採用了 Intel 最新的 4 奈米製程和 EUV 曝光技術,將鰭式電晶體 FinFET 中的像是魚鰭般阻擋漏電流的鰭片構造減少至三片,降低延遲與功耗,使效能提升了 20%,讓使用者可以更加流暢地執行各種應用程序,提高工作效率。

-----廣告,請繼續往下閱讀-----
鰭式電晶體 FinFET。圖/Intel

Foveros 3D 封裝技術:高效數據傳輸

2017 年,Intel 開發出了新的封裝技術 EMIB 嵌入式多晶片互聯橋,這種封裝技術在各個 Tile 的裸晶之間,搭建了一座「矽橋 ( Silicon Bridge ) 」,達成晶片的橫向連接。

圖/Intel

而 Foveros 3D 封裝技術是基於 EMIB 更進一步改良的封裝技術,它能將處理器、記憶體、IO 單元上下堆疊,垂直方向利用導線串聯,橫向則使用 EMIB 連接,提供高頻寬低延遲的數據傳輸。這種創新的封裝技術不僅使得處理器的整體尺寸更小,更提高了散熱效能,使得處理器可以長期高效運行。

運行 AI 模型的專用筆電——MSI Stealth 16 AI Studio

除了傳統的 CPU 和 GPU 之外,Intel® Core™ Ultra 處理器還整合了多種專用單元,專門用於在本機端高效運行 AI 模型。這使得使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時節省了連接雲端算力的成本。

MSI 最新推出的筆電 Stealth 16 AI Studio ,搭載了最新的 Intel Core™ Ultra 9 處理器,是一款極具魅力的產品。不僅適合遊戲娛樂,其外觀設計結合了落質感外型與卓越效能,使得使用者在使用時能感受到高品質的工藝。鎂鋁合金質感的沉穩機身設計,僅重 1.99kg,厚度僅有 19.95mm,輕薄便攜,適合需要每天通勤的上班族,與在咖啡廳尋找靈感的創作者。

-----廣告,請繼續往下閱讀-----

除了外觀設計之外, Stealth 16 AI Studio 也擁有出色的散熱性能。搭載了 Cooler Boost 5 強效散熱技術,能夠有效排除廢熱,保持長時間穩定高效能表現。良好的散熱表現不僅能夠確保處理器的效能得到充分發揮,還能幫助使用者在長時間使用下的保持舒適性和穩定性。

Stealth 16 AI Studio 的 Intel Core™ Ultra 處理器,其性能更是一大亮點。除了傳統的 CPU 和 GPU 之外,Intel Core™ Ultra 處理器還整合了多種專用單元,專門針對在本機端高效運行 AI 模型的需求。內建專為加速AI應用而設計的 NPU,更提供強大的效能表現,有助於提升效率並保持長時間的續航力。讓使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時也節省了連接雲端算力的成本。

軟體方面,Intel 與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化。與 Adobe 等軟體的合作使得使用者在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。獨家微星AI 智慧引擎能針對使用情境並自動調整硬體設定,以實現最佳效能表現。再加上獨家 AI Artist,更進一步提升使用者體驗,直接輕鬆生成豐富圖像,實現了更便捷的內容創作。

此外 Intel 也與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化,讓 Intel® Core™ Ultra處理器將AI加速能力充分發揮。例如,與 Adobe 等軟體使得使用者可以在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。為各行專業人士提供了更加多元、便捷的工具,成為工作中的一大助力。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
199 篇文章 ・ 305 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
1

文字

分享

0
1
1
說好的颱風呢?!氣象預報不準?要準確預測天氣有多難?
PanSci_96
・2023/09/12 ・4646字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

小心啊,打雷囉,下雨收衣服啊!

氣象報告說好是晴天的,怎麼一踏出門就開始下雨了?

昨天都說要直撲的颱風,怎麼又彎出去了?

多麼希望天氣預報能做到百分之百正確,只要出門前問一下手機,就能確定今天是出大太陽還是午後雷陣雨,是幾點幾分在哪裡?又或是最重要的,颱風到底會不會來?

-----廣告,請繼續往下閱讀-----

但你知道,現在的氣象預報,已經動用全球最強的超級電腦們了嗎?既然如此,我們現在的氣象預報能力到底有多準?我們什麼時候能徹底掌握這顆蔚藍星球上發生的所有天氣現象?

天氣預報有多困難?

雖然我們常常嫌說氣象預報不準、颱風路徑不準、預測失靈等等。但我們現在的實力如何呢?

目前美國國家海洋暨大氣總署的數據分析,對西太平洋颱風的 24 小時預測,誤差平均值約 50 英哩,也就是一天內的路徑誤差,大約是 80 公里。其他國家的氣象局,24 小時的誤差也約在 50 到 120 公里之間。台灣呢?根據中央氣象局到 2010 年的統計,誤差大約在 100 公里內。也就是臺灣對颱風的預測,沒有落後其他先進單位。

現在只要打開手機隨便開個 APP,就能問到今天的天氣概況,甚至是小區域或是短時間區間內的天氣預報。但在過去沒有電腦的時代,要預測天氣根本可以不可能(諸葛孔明:哪泥?)。

-----廣告,請繼續往下閱讀-----

近代且稱得上科學的天氣預測可追溯回 1854 年,那個只能靠人工觀測的年代,英國氣象學家為了保護漁民出海的安危,利用電報傳遞來蒐集各地居民的觀察,並進行風暴預報。後來演變成天氣預報後,卻因為有時預報不準,預報員承受了輿論與國會批判的巨大壓力,最後甚至鬱鬱離世。

19 世紀的氣象學家為了保護漁民出海的安危,會利用電報蒐集各地居民的觀察進行風暴預報。圖/Giphy

在電腦還在用打洞卡進行運算的年代,一台電腦比一個房間還大。氣象局要預測天氣,甚至判斷颱風動向,得要依賴專家對天氣系統、氣候型態的認知。因此在模擬預測非主流的年代,我們可以看到氣象局在進行預測時,會拿著一個圓盤,依據量測到的大氣壓力、風速等氣象值,進行專家分析。

當時全球的氣象系統,則是透過全球約一千個氣象站,共同在 UTC 時間(舊稱格林威治時間)的零零時施放高空探測氣球,透過聯合國的「World Weather Watch」計畫來共享天氣資料,用以分析。關於氣象氣球,我們之前也介紹過,歡迎看看這集喔。

也就是說,以前的颱風預測就是專家依靠自身的學理與經驗,來預測颱風的動向,但是,大氣系統極其複雜,先不說大氣系統受到擾動就會有所變化,行星風系、科氏力、地形、氣壓系統這些系統間互相影響,都會造成預測上的失準,更遑論模擬整個大氣系統需要的電腦資源,是非常巨大的。

-----廣告,請繼續往下閱讀-----

那麼,有了現代電腦科技加持的我們,又距離全知還有多遠呢?是不是只要有夠強的超級電腦,我們就能無所不知呢?

有了電腦科技加持,我們的預報更準了嗎?

當然,有更強的電腦,我們就能算得更快。才不會出現花了三天計算,卻只能算出一個小時後天氣預報的窘況。但除了更強悍的超級電腦,也要更先進的預測模型與方法。現在的氣候氣象模擬,會先給一個初始值,像是溫度、壓力、初始風場等等,接著就讓這個數學模型開始跑。

接著我們會得到一個答案,這還不是我們真正要的解,而是一種逼近真實的解,我們還必須告訴模型,我容許的誤差值是多少。什麼意思呢?因為複雜模型算出來的數值不會是整數,而是拖著一堆小數點的複雜數字。我們則要選擇取用數值小數點後 8 位還是後 12 位等等,端看我們的電腦能處理到多少位,以及我們想算多快。時間久了,誤差的累積也越多,預測就有可能失準。沒錯,這就是著名的蝴蝶效應,美國數學暨氣象學家 Edward Norton Lorenz 過去的演講題目「蝴蝶在巴西揮動了翅膀,會不會在德州造成了龍捲風?」就是在講這件事。

回到颱風預報,大家有沒有發現,我們看到的颱風路徑圖,颱風的圈怎麼一定會越變越大,難道颱風就像戶愚呂一樣會從 30% 變成 100% 力量狀態嗎?

-----廣告,請繼續往下閱讀-----
輕颱鴛鴦的颱風路徑潛勢圖。圖/中央氣象局

其實那不是颱風的暴風圈大小,而是颱風的路徑預測範圍,也就是常聽到的颱風路徑潛勢圖,​是未來 1 至 3 天的颱風可能位置,颱風中心可能走的區域​顯示為潛勢圖中的紅圈,機率為 70%,所以圈圈越大,代表不確定性越大。​

1990 年後,中央氣象局開始使用高速電腦,並且使用美國國家大氣研究中心 (NCAR) 為首開發的 Weather Research and Forecasting 模型做數值運算,利用系集式方法,藉由不同的物理模式或參數改變,模擬出如同「蝴蝶效應」的結果,運算出多種颱風的可能行進路線。預測時間拉長後,誤差累積也更多,行進路徑的可能性當然也會越廣。

「真鍋模型」用物理建模模擬更真實的地球氣候!

大氣模擬不是只要有電腦就能做,其背後的物理複雜度,也是一大考驗。因此,發展與地球物理相關的研究變得非常重要。

2021 年的諾貝爾物理學獎,就是頒給發展氣候模型的真鍋淑郎。他所開發的地表模式,在這六十年間,從一個沒考慮地表植物的簡單模型,經各家發展,變成現在更為複雜、更為真實的模型。其中的參數涵蓋過去沒有的植物反應、地下水流動、氮碳化合反應等等,增強了氣候氣象模型的真實性。

-----廣告,請繼續往下閱讀-----
2021 年的諾貝爾物理學獎得主真鍋淑郎。圖/wikimedia

當然,越複雜的模型、越短的時間區間、越高的空間精細度,需要更強大的超級電腦,還有更精準的觀測數據,才能預測接下來半日至五日的氣象情況。

世界上前百大的超級電腦,都已被用來做大氣科學模擬。各大氣象中心通常也配有自己的超級電腦,才能做出每日預測。那麼,除了等待更加強大的超級電腦問世,我們還有什麼辦法可以提升預報的準度呢?

天氣預報到底要怎樣才能做得準?

有了電腦,人類可以紀錄一切得到的數據;有了衛星,人類則可以觀察整個地球,對地球科學領域的人來說,可以拿這些現實資訊來校正模擬或預測時的誤差,利用數學方法將觀測到的單點資料,乃至衛星資料,融合至一整個數值模型之中,將各種資料加以比對,進一步提升精準度,這種方法叫做「資料同化 (Data Assimilation)」。例如日本曾使用當時日本最強的超級電腦「京」,做過空間解析度 100 公尺的水平距離「局部」超高解析氣象預測,除了用上最強的電腦,也利用了衛星資料做資料同化。除了日本以外,歐洲中程氣象預測中心 (ECMWF),或是美國大氣暨海洋研究中心 (NOAA),也都早在使用這些技術。

臺灣這幾年升空的福衛系列衛星,和將要升空的獵風者等氣象衛星,也將在未來幫助氣象學家取得更精準的資料,藉由「資料同化」來協助模擬,達到更精準的預測分析。

-----廣告,請繼續往下閱讀-----

如果想要進一步提升預報準度呢?不用擔心,我們還有好幾個招式。

人海戰術!用更多的天氣模型來統計出機率的「概率性模擬」

首先,如果覺得一個模型不夠準,那就來 100 個吧!這是什麼意思?當我們只用一種物理模型來做預測時,我們總是會追求「準」,這種「準確」模型做的模擬預測,稱為「決定性模擬」,需要的是精確的參數、公式,與數值方法。就跟遇上完美的夢中情人共度完美的約會一樣,雖然值得追求,但你可能會先變成控制狂,而且失敗機率極高。

「準確」的模型就跟遇上完美情人共度完美約會一樣,雖然值得追求,但失敗機率極高。圖/Giphy

不如換個角度,改做「概率性模擬」,利用系集模擬,模擬出一大堆可能的交往對象,啊不對,是天氣模型,再根據一定數量的模擬結果,我們就可以統計出一個概率,來分析颱風路徑或是降雨機率,讓成功配對成功預測的機率更高。

製造一個虛擬地球模擬氣象?

再來,在物理層面上,目前各國正摩拳擦掌準備進行等同「數位攣生 (Digital Twin) 」的高階模擬,簡單來說,就是造出一個數位虛擬地球,來進行 1 公里水平長度網格的全球「超高」解析度模擬計算。等等,前面不是說日本可以算到 100 公尺的水平距離,為什麼 1 公里叫做超高解析度?

-----廣告,請繼續往下閱讀-----

因為 500 公尺到 1 公里的網格大小也是地表模式的物理適用最小單位,在這樣的解析度下,科學家相信,可以減少數值模型中被簡化的地方,產生更真實的模擬結果。

電腦要怎麼負荷這麼大的計算量?交給電腦科學家!

當然,這樣的計算非常挑戰,除了需要大量的電腦資源,還需要有穩定的超級電腦,以及幾個 Petabyte,也就是 10 的 15 次方個位元組的儲存設備來存放產出的資料。

不用為了天氣捐贈你的 D 槽,就交給電腦科學家接棒上場吧。從 CPU、GPU 間的通訊、使用 GPU 來做計算加速或是作為主要運算元件、到改寫符合新架構的軟體程式、以及資料壓縮與讀寫 (I/O)。同時還要加上「資料同化」時所需的衛星或是全球量測資料。明明是做氣象預報,卻需要等同發展 AI 的電腦科技做輔助,任務十分龐大。對這部分有興趣的朋友可以參考我們之前的這一集喔!

結語

這一切的挑戰,是為了追求更精確的計算結果,也是為了推估大魔王:氣候變遷所造成的影響必須獲得的實力。想要計算幾年,甚至百年後的氣候狀態,氣象與氣候學家就非得克服上面所提到的問題才行。

一百年來,氣候氣象預測已從專家推估,變成了利用龐大電腦系統,耗費百萬瓦的能量來進行運算。所有更強大、更精準的氣象運算,都是為了減少人類的經濟與生命損失。

對於伴隨氣候變遷到來的極端天氣,人類對於這些變化的認知還是有所不足。2021 年的德國洪水,帶走了數十條人命,但是身為歐洲氣象中心的 ECMWF,當時也只能用叢集式系統算出 1% 的豪大雨概率,甚至這個模擬出的豪大雨也並沒有達到實際量測值。

我們期待我們對氣候了解和應對的速度,能追上氣候變遷的腳步,也由衷希望,有更多人才投入地球科學領域,幫助大家更了解我們所處的這顆藍色星球。

也想問問大家,你覺得目前的氣象預報表現得如何?你覺得它夠準嗎?

  1. 夭壽準,我出門都會看預報,說下雨就是會下雨。
  2. 有待加強,預報當參考,自己的經驗才是最準的。
  3. 等科學家開發出天候棒吧,那才是我要的準。更多想法,分享給我們吧

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1223 篇文章 ・ 2276 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

2

4
3

文字

分享

2
4
3
精準預測氣象的「掩星技術」,讓你知道颱風放不放假!
科技大觀園_96
・2021/11/16 ・2380字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

新颱風生成後,大家最關心的就是颱風的路徑、帶來的風雨大不大,以及——到底放不放颱風假?要能預測和評估颱風的走向影響,可靠的氣象觀測資料是不可或缺的。這就不得不提,在我們頭頂上認真執行觀測任務的人造衛星,以及它們身懷測知氣象變化的絕技!

每次颱風來襲,大家都關心會不會放颱風假。圖/pixabay

貢獻全球氣象資料,福爾摩沙衛星功不可沒

過去福爾摩沙衛星三號(福三)執勤十年,為全世界多個氣象中心與研究單位提供無以計數的資料,可謂台灣在國際氣象上的外交大使,於減少天氣預報誤差的貢獻度上,更曾被評為全球前五。福三榮退後,接棒的福爾摩沙衛星七號(福七)也在今年二月完成任務軌道的全部部署。福三和福七都不只有一枚衛星,而是由各 6 枚衛星組成的衛星星系(constellation)。每一枚衛星就像在不同位置巡守、收集氣象情報並互相通報的將士,使得觀測範圍可以覆蓋地球各個區域,提供即時而完整的三維觀測數據。

福衛七號結構示意圖。圖/國家太空中心

但福七與行經南北極的「繞極衛星」福三不同的是,它在南北緯 50 度間軌道繞行,主攻台灣、赤道與中低緯度颱風盛行區的觀測。因此福七可以提供密集度更高、更多的溫度、壓力、水氣等氣象資料。國家太空中心推估,它可提升氣象預報準度 10% ——以颱風為例,可以讓 72 小時的路徑誤差改善 10%,協助我們更精準地評估氣象變化與預防災害。

每日可提供 4000 點大氣垂直剖線資料、大幅提升全球氣象預報準確度的福七,究竟是怎麽辦到的?答案就是掩星技術 (Radio Occultation) 。

掩星技術,讓衛星成為太空中最精準的溫度計!

在天文學上,「掩星」指的是一個天體,在另一個天體與觀測者之間通過,產生的遮蔽現象。但英文中的「Occultation」,也可以指前景中的物體,阻擋遮蔽背景中任何物體的情形。而所謂的「掩星技術」,就是利用電磁波訊號在經過大氣層時,會因穿透不同溫度、壓力或濕度的空氣層,被「遮蔽」而產生轉向、變慢、減弱等的特性,來反演出地球上空之溫度、氣壓和濕度。

-----廣告,請繼續往下閱讀-----

衛星與衛星之間,本來因為地球的阻隔看不到彼此,但可以接受來自彼此的電磁波訊號。福七的主要酬載儀器——全球衛星導航系統無線電訊號接收儀」(TGRS),可以接受美國全球定位系統(GPS) 和俄羅斯全球導航衛星系統(GLONASS)全球定位衛星通過大氣與電離層的折射訊號。接著,通過計算電波訊號的偏折程度,就可以反演出大氣與電離層中的溫度、水氣、壓力、電子密度等數據。

掩星技術在 1995 年才開始投入應用,而從 2006 年的福三,到如今福七計劃中積累的研究經驗,使台灣成為這項新穎技術領域的佼佼者。掩星技術所得到的資料具備高準確度和解析度,也擁有不需要大量接收訊號的衛星,就可以得到大範圍數據、降低成本的優勢,不僅可以用作氣象預報,更能幫助我們監控和增進對氣候變遷的瞭解。

衛星加上同位素的助攻,可以使天氣預報更精準

另一方面,除了改善觀測一般氣象資料如溫度、濕度、大氣壓力等參數的準確度,在氣象觀測中新增測定不一樣的參數——如大氣水分子的同位素,也可以讓我們的天氣預報更精準!

過去礙於資料的取得有限,同位素分析在氣象觀測與預報中常被忽略。但近年來人造衛星技術的發展,為氣象科學推開新的一扇窗。來自歐洲太空總署、搭載光譜分析儀的衛星 IASI ( Infrared Atmospheric Sounding Interferometer ),讓東京大學的研究團隊,可以利用其所搜集到的大氣水氣資訊,在氣象預報的模型中,第一次嘗試納入同位素資訊的考量來做分析。

-----廣告,請繼續往下閱讀-----

我們都知道,擁有相同質子數、不同中子數的氫與氧元素之同位素,會讓個別水分子的重量變得更重或輕一些。水分子同位素對氣相和液相轉換相當敏感,與一般的水分子 H2O 相比,較重的水分子如 H2HO 或H218O 會更傾向於凝結成水珠,或更難蒸發。因此蒸發與降雨過程等大氣運動,便會影響不同同位素水氣分子的分佈。追蹤它們的行跡,能增進我們對氣象系統的瞭解。

研究團隊以 2013 年在日本發生的低壓事件作為參照,發現納入同位素的數據之後,氣象模型能更好地模擬這次事件的整體氣壓情形。而在全球的尺度,尤其是中緯度及北半球地區,融合同位素資訊後,氣象預報如氣溫及濕度預測的準確度,也都有所提高。雖然這只是初步的探究,但科學家期許,未來進一步完善氣象觀測衛星對同位素資料的收集,能使人類更往精準氣象預測的目標邁進。

人造衛星就像是科學家的千里眼,能觀測千里之外的風雲變化。發展衛星技術,不僅能讓我們更精準預測氣象,在全球化的現代,也能在國際上發揮「Taiwan Can Help」及互助的精神;各國對航太技術的投入與數據資源共享,更是科研工作與人類社會的一大福音。

福爾摩沙衛星拍攝的美麗福爾摩沙島。圖/國家太空中心

參考文獻

所有討論 2
科技大觀園_96
82 篇文章 ・ 1125 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。