Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

以 GPS 測知氣象資料,未來颱風假提早預報?來認識福衛七號獨特的「掩星觀測技術」

Suzuki
・2019/06/24 ・3502字 ・閱讀時間約 7 分鐘 ・SR值 530 ・七年級

-----廣告,請繼續往下閱讀-----

6 月 25 日六顆福爾摩沙衛星七號將搭乘 SpaceX 獵鷹重型火箭,前往太空接替老兵福衛三號,成為「太空中精準溫度計2.0」,提供即時、可靠的氣象觀測資料。

國家太空中心推估福七可提升氣象預報準度 10%,這個 10% 聽起來好像還好,實際上卻能為災害防範爭取許多時間。以颱風預報來說,提升 10% 等於是將原本三天後颱風預報,往前推 7.2 小時的精準度,也就是在颱風尚未接近陸地前,就能比原先更早預測它接近的影響狀況。假若氣象預報準確度提高,颱風假或許能提早確定呢~(敲碗!)

福七在太空中心整測廠房內,完成振動、熱真空測試、電磁相容等許多測試後,準備前往美國。圖/太空中心提供

全世界對福七會如此有信心,主要是因為福三對數值氣象預報的貢獻。2012 年著名氣象機構歐洲中期預報中心就指出,福三在減少天氣預報誤差的貢獻度是全球前五,台灣許多研究也指出,福三改善了豪雨預報與颱風路徑預報的準度。

使用福衛三號資料的尼伯特颱風預報路徑(REF綠色和BND粉色線),和實際路徑(BEST黑色線)的誤差明顯較小。(圖片提供/太空中心

GPS不只可以導航,福衛七號還靠它收集氣象資料

「掩星觀測技術」扮演超級重要角色,而 GPS 全球衛星定位系統在這之中可是幫了大忙。

沒錯!就是你開 google 地圖會協助導航的 GPS。我們常接觸的是美國 GPS 系統,目前有 31 顆衛星在兩萬公里高空軌道上繞行地球,當地面訊號站能同時接觸到四顆以上衛星訊號時,便能以三角測量原理協助定位。

而福七正是靠著 GPS 來達成掩星觀測,得到氣象資料的喔!福三計畫主持人、福七計畫副主持人方振洲博士表示,常見的氣象觀測,都是垂直觀測大氣狀況。探空氣球是搭載儀器升空測量,地球同步氣象衛星則靠著感應地表、陸地與海洋所反射的電磁波能量,計算處理後得到衛星雲圖。

-----廣告,請繼續往下閱讀-----

但是福七的掩星觀測技術不同,它並不是直接量測大氣層資料,而是靠著它的主要酬載儀器「全球衛星導航系統無線電訊號接收儀」(TGRS),橫向接收 GPS 衛星穿入和穿出大氣層所產生的電磁波訊號。電磁波在穿越不同濕度、溫度、壓力的大氣環境時,會產生偏折,藉由觀測訊號轉向、減弱或變慢,便能反推大氣層中濕度、壓力與溫度對訊號的影響,得到氣象數值預報所需的資料。

福三利用 GPS 無線電波掩星量測原理,利用福三所接收的 GPS 訊號折射角度變化,推演相對應的大氣溫度、氣壓和水氣以及電離層電子密度的垂直分佈。圖/太空中心提供

福七最後所接收到的,是經過無數偏折後的訊號,因此若要回推影響某一點的溫度,則必須像剝洋蔥般,由電離層一層層剖析到大氣層,運用大氣密度隨高度上升變小、電磁波訊號折射角變小的原理,根據每一層溫度和折射角變化,慢慢推算出那點的資料。

全世界的定位系統有四種,包括:美國 GPS、俄羅斯 GLONASS、歐洲 Galileo 和中國北斗。福七 TGRS 能同時接收美國 GPS 和俄羅斯 GLONASS 兩系統共 55 顆定位衛星的訊號,比福三僅能接收單一系統的資料量多,每天可提供 4000 筆掩星觀測資料。再加上福七是在南北緯 50 度間軌道繞行,以台灣、赤道與低緯度颱風盛行區的觀測為主,不像福三以高緯度軌道全球繞行。因此福七觀測資料密集度更高、資料量更大,必能提升氣象預報的準確度。

除了TGRS外,其他兩個酬載在做什麼呢?

兩片圓圓太陽板的福三小巧可愛僅 62 公斤,相較之下,福七掛著像魚尾般的太陽能板,則像隻巨無霸鯨魚有 300 公斤。福七比起福三多了備份系統,身上酬載儀器也更先進。

-----廣告,請繼續往下閱讀-----

福七除了搭載掩星觀測的 TGRS外,還背了 IVM(離子速度儀)與 RFB(無線電射頻信標儀),兩者都是校正 GPS 訊號與輔佐掩星觀測的重要儀器!

因為 GPS 衛星位在兩萬多公尺的高空,它的訊號會穿過大氣層、電離層傳給福七,而電離層會干擾訊號傳送,因此需要透過 IVM 量測電離層離子速度與密度,根據相關數值校正通過電離層的 GPS 訊號。

RFB 是藉由福七發射三種無線電頻段(UHF/L /S + P)至地面站,來量測電離層閃爍,並判定電離層電子密度差異,以便校正 GPS 訊號穿過電離層的誤差。

掌握電離層結構,除了提高 GPS 訊號的精準度、提升掩星觀測的品質,電離層變化也影響太空氣象與電信通訊,近來也有不少研究也在討論電離層變化與地震發生的相關性。福七將繼福三後,成為全球電離層觀測資料的貢獻者

太空中最精準「溫度計」

為什麼福七被稱為太空中最精準「溫度計」,而不是氣象預報員呢?

太空中心整合測試組組長陳維鈞表示,衛星不能做氣象預報,只能提供觀測資料給氣象局做預測。福七能測得氣象預報所需的重要資料,包括:溫度、濕度與壓力,而它所測得的溫度是不需要以標準溫度去校正的,因此擁有「最精準溫度計」的稱號。

-----廣告,請繼續往下閱讀-----

由於福七無法測得風向資料,所以太空中心打造自主研發衛星「獵風者」,最快 2020 年底、2021 年初升空。「獵風者的測量方式更玄!」它是接收海洋所反射的 GPS 訊號,靠著量測海浪速度和高度,來推算海上的風向與風速。屆時獵風者號可攜手福七,提供全球更多氣象預報所需的資料。

獵風者號構型圖。圖/太空中心提供獵風者號構型圖。圖/太空中心提供

因緣際會,成為「掩星技術」的專家

「福三在的那幾年,真的是台灣氣象預報最準的時候!」方振洲談到福三就於有榮焉,福三可說是全球第一批成功以「無線電掩星技術」來觀測氣象的衛星星系,服役十多年後將要榮退,由福七接手任務。

方振洲說道,無線電掩星觀測很早就有了,像是 NASA 的行星任務,就是用無線電訊號變化,回推行星氣體的資料,美國大學大氣研究聯盟(UCAR)便想將這個技術運用在氣象觀測上。那時無線電掩星技術並不是主流的氣象觀測方式,也沒什麼人相信它會成功,當 UCAR 去找 NASA 時,NASA 說「這是爛計畫!」後來 UCAR 找了台灣當合作夥伴,台灣就開始跟美國優秀科學家合作,打造福衛三號。

「沒想到,福三升空八個月觀測資料就被歐洲中期預報中心納入預報系統,後來美國也納入。」福三證實無線電掩星氣象觀測是可行的。

從 2006 年福三到 2019 年福七計畫,台灣已累積近 15 年的研究能量與衛星操控經驗,陳維鈞表示,這是今日台灣能處在世界領先地位的原因。十多年前,台灣需要倚賴國外系統來操控福三;但到了福七時,台灣已使用自行研發的衛星操控中心,甚至將技術輸出到泰國,協助他們建操控中心。

太空中心衛星操控中心。圖/太空中心提供

福三與福七都是台美合作計畫,美國主要提供酬載儀器,台灣強項則在軟硬體系統整合與衛星操控。福三到福七不僅是觀測精準度提升,即時處理資料能力的速度加快,台灣太空計畫團隊也跟著精進。

-----廣告,請繼續往下閱讀-----

未來十年:一年一衛星!

福七是繼福一、福二、福三與福五後第五顆台灣研發的衛星,台灣自 1992 年開始投入太空計畫,至今也不過 26 年多的光景,在遙測衛星與氣象掩星衛星都有卓越成就。下一步台灣將以帶動國內太空產業鏈為目標,朝「一年一衛星」邁進。

不過,你或許會納悶光學遙測衛星福二 2004 年發射至 2016 年除役,執勤 12 年才由福五接替,福三 2006 年升空至今仍等待福七交班,台灣衛星普遍工作到最後一刻,才有另一批衛星接替,因此科技部部長陳良基說「未來十年,每年發射一顆衛星」會不會太好高騖遠呢?

國家研究院院長王永和坦言「國家太空中心只有 200 人,要做到這樣的計畫很辛苦!」過往許多衛星關鍵零組件,台灣都要自行開發,雖然提升了太空發展的難度,但也給予挑戰的機會。太空中心原則上已規劃十顆衛星,有八枚類似福五的光學遙測衛星,兩枚合成孔徑雷達衛星。合成孔徑雷達衛星能夠做環境和災害預測,在取像上不受天候影響。

國家太空中心副主任余憲政表示,明年初預計有顆 1.5 U(15cm x 15cm x 15cm)小型實驗立方衛星升空,執行船隻和飛機的定位,而立方衛星也是太空中心想發展的項目之一,因此未來每年可能不只有一顆,可能一年有兩顆以上喔!

-----廣告,請繼續往下閱讀-----

2019 年太空三期計畫實施,搭配一年一衛星的願景,將帶動國內太空產業。以福五為例,福五是台灣完全自主研發的衛星開端,從投入經費比例來看,它的自主元件比例為 70-75%,而預計在 2021 發射的獵風者衛星更「台」,自主元件比例高達 87%。密集衛星計畫提高太空元件自製率,有助於本土電機與電子業跨足太空領域,並創造更多國際合作機會,讓世界看到台灣的實力。

  • 註解:福衛三號星系中多數的衛星目前已無法傳送資訊予地面站了。

想了解更多有關福爾摩沙衛星的各種小知識嗎?請見下篇:關於福衛七號的幾個問與答

-----廣告,請繼續往下閱讀-----
文章難易度
Suzuki
18 篇文章 ・ 0 位粉絲
超純社會組學生,對未知的一切感到好奇,意外掉入科技與科學領域,希望在猛點頭汲取知識的同時,也能將箇中妙趣分享給大家。

0

2
0

文字

分享

0
2
0
從門得列夫到 118 種元素:元素週期表是怎麼出現的?
F 編_96
・2025/01/04 ・2302字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

「氫鋰鈉鉀銣銫砝、铍鎂鈣鍶鋇镭…」相信很多人離開高中很多年,都還朗朗上口。

列著 118 種已知化學元素的「元素週期表」(Periodic Table),雖然唸起來像咒文,但有了它之後便能夠快速查詢原子序(proton number)、價電子(valence electrons)數量,以及元素可能的化學性質,成為各領域科學家與工程師設計實驗、預測物質反應必不可少的工具。

有趣的是,元素週期表並非一蹴可及。縱觀歷史,化學家們歷經數世紀的摸索、爭論與資料整理,才在 19 世紀後半葉逐漸確立。

我們現在看到的元素週期表,是在 19 世紀後半才逐漸確定。 圖/unsplash

週期表之父:門得列夫的突破

19 世紀中葉,已知的化學元素約有 63 種,許多化學家嘗試找出元素間的共同點,卻苦無系統性整理。當時能區分「金屬」與「非金屬」,或利用價電子概念將一些元素歸類,但要涵蓋大多數元素仍顯不足。俄國化學家門得列夫在撰寫《化學原理》教科書時,因接觸各元素的資料而產生新思路。他索性把已知元素各種性質寫在紙卡上,再一一比對它們的原子量(類似當今的原子量或原子序概念)與化學性質。

-----廣告,請繼續往下閱讀-----

確切的靈光乍現時刻,如今已無從完全重現,但我們知道門得列夫最後觀察到:「如果按照原子量(或後來的原子序)由小到大排列,某些化學性質就會呈週期性重複。」進一步來看,元素的價電子數量通常也會對應到表格的「欄位」或「族群」。於是,在 1869 年,他將研究結果發表,提出了第一版週期表的雛形,更大膽預言了尚未被發現的元素「eka-aluminium」(後來證實即鎵 gallium)及其他四種元素的性質。

讀懂週期表:原子序、符號與原子量

今日的週期表之所以能快速讓人獲得豐富資訊,關鍵在於三個核心欄位:

  1. 原子序(Atomic Number)
    代表該元素核內所含質子數。如果一原子核有 6 顆質子,就必定是碳(C),無論其他中子或電子數如何。此序號由上而下、由左而右遞增,貫穿整張表格。
  2. 元素符號(Atomic Symbol)
    多為一至兩字母縮寫,如碳(C)、氫(H)、氧(O)。但也有如鎢(W,因「Wolfram」得名)或金(Au,取自拉丁文「Aurum」)等較不直覺的符號。
  3. 原子量(Atomic Mass)
    表示該元素在自然界中各同位素的加權平均值,故通常是帶小數的數字。對合成元素則標示最常見或最穩定同位素的質量,但由於這些元素壽命極短,數值往往會被不斷修正。

舉例來說,硒(Se)在週期表中顯示原子序 34,屬於第 4 週期、第 6A 族,表示它有四層電子軌域,其中最外層(價電子層)有 6 顆電子。有了這些資訊,科學家可快速判斷硒的化學傾向、可形成何種化合物,乃至於在生物或工業應用中可能扮演的角色。

週期表的內部結構:週期、族與軌域

門得列夫最初按照原子量遞增排列元素,現代則依靠原子序(即質子數)來分類。橫向稱為「週期」(Period),從第 1 週期到第 7 週期;縱向稱為「族」(Group),目前總共有 18 組。週期數量在於顯示該元素電子軌域有幾層;而同一族則代表外層價電子數相同,故有相似化學性質。

-----廣告,請繼續往下閱讀-----

例如,第 18 族常被稱作「貴氣體」或「惰性氣體」,如氦(He)、氖(Ne)、氬(Ar)等皆不易與其他元素起反應。另一個顯著群體是位於第一族的鹼金屬(Alkali Metals),如鋰(Li)、鈉(Na)等,因外層只有 1 顆電子,極容易失去該電子而形成帶 +1 價的陽離子,故與水猛烈反應。

此外,在表格中央有一塊「過渡元素」(Transition Metals)區域,包括鐵(Fe)、銅(Cu)、鎳(Ni)、金(Au)、銀(Ag)等。它們具有部分填充的 d 軌域,使得該區域的元素呈現多樣性質,例如具有金屬光澤、可塑性或導電性等,被廣泛應用於工業及工程領域。

同一族的外層價電子數相同,因此大多有著相似化學性質。圖/unsplash

再進化:從 63 種到 118 種

當門得列夫在 1869 年發表週期表時,已知元素只有 63 種,表格中甚至留有空白以預留「未來或存在尚未發現的元素」。他果然預測到了鎵(Ga)以及日後證實的日耳曼ium(Ge)等新元素性質,贏得舉世矚目。隨後,有越來越多元素透過科學發展,尤其是光譜分析與放射性研究而被發現,例如鐳(Ra)和氡(Rn)等。

到 20 世紀後期,隨著粒子加速器的誕生,人類可以合成更重的超鈾元素(Atomic Number > 92)。這些人工合成元素往往極度不穩定,壽命僅能以毫秒或微秒計,但仍證實存在、並填補週期表後段空白。如今,週期表已收錄到第 118 號元素「鿆(Og,Oganesson)」,但科學家預測或許還能繼續向上延伸;只要能合成更重、更穩定的原子核,我們就能拓展週期表的新邊境。

-----廣告,請繼續往下閱讀-----

一般認為,隨原子序遞增,原子核內部的質子數目激增,原子愈趨不穩,往往在極短時間內衰變成較輕元素。然而,一些理論物理學家提出「島狀穩定性」(Island of Stability)的概念:也許在某特定質子與中子數量組合下,能出現意外長壽的「穩定」重元素。

是否真能在表格上方再增添「第八週期」甚至更高週期的列,仍有待更多實驗來驗證。但無法否認的是,週期表一直是科學家檢驗自然規律的試驗場,也見證了人類探索未知的無盡熱情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
0

文字

分享

0
1
0
人類的「長跑」很厲害?靠「跑」在荒野中脫穎而出
F 編_96
・2024/12/26 ・3048字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

在美國加州死亡谷(Death Valley)「魔鬼鍋爐」般的炙熱溫度下,每年夏天都舉行一場被稱為「世上最極端越野賽」的經典賽事:Badwater 135。選手需在攝氏 49 度、下方為北美洲海拔最低的地帶上,跑步或走完 217 公里的山路,一路衝向位於美國本土最高峰(聖女峰)附近的終點。這聽來猶如天方夜譚,但每年仍有近百人勇敢挑戰。許多四足動物在此高溫下可能早已中暑倒地,為何人類卻能憑藉一雙腳在此環境中堅持下去?

事實上,速度上我們遠不及同等體型的動物,例如豹或馬,然而要比拼耐力,人類卻常能大放異彩。我們能在大草原中與野生動物「天荒地老」地消耗,即使我們在短程衝刺中會被輕易超越,仍可以憑藉馬拉松般的堅韌一路追趕,最終讓速度更快的對手因高溫與疲勞而甘拜下風。究竟人類為何會進化出這般特殊的耐久力?。

在跑步上,人類以耐力著稱,可透過拉長距離讓速度更快的動物因高溫與疲勞而屈服。圖/envato

人類長程奔跑的演化起源

人類的體質在遠古時期並非天生就能輕鬆長跑。據一種假說推測,大約 700 萬年前,類人猿的祖先於非洲開始「離開樹梢」,轉而在地面上覓食、移動。早期的兩足行走雖然看似笨拙,卻逐漸在持續的氣候變遷與草原化過程中展現優勢:

  1. 更廣闊視野:直立行走時,頭部位置提高,有利於觀察周遭環境,提早發現危險或獵物。
  2. 省力遷徙:兩足步態下,移動同樣距離所需能量相對降低,足以在開闊平原上長距離跋涉。

隨著數百萬年的進化,人科動物(hominids)在骨骼、肌肉與生理機制上更趨於適應長時間行走和奔跑。他們在廣袤的非洲大地上,並非以速度壓倒對手,而是依靠「耐力與持久追蹤」取得優勢。考古學家曾提出「持久狩獵」(Persistence Hunting) 的假設:古人類可能利用高溫時段在大草原上追趕羚羊或其他動物,待獵物體溫過熱而力竭之際,人類再上前制伏。一方面依靠長距離奔跑耐力,另一方面倚仗強大的散熱能力。

-----廣告,請繼續往下閱讀-----

足部與下肢結構:為奔跑而生的細節

哈佛大學的人類演化生物學家丹尼爾‧李伯曼(Daniel Lieberman)指出,人類的奔跑能力「從腳趾到頭頂」都有演化專門化的痕跡,稍加留意便能發現許多奧祕。

  1. 短腳趾與足弓結構
    • 人類的腳趾較短,是為了減少長距離奔跑時的折損機率。若腳趾過長,每次著地都更容易造成骨折或扭傷。
    • 足弓(包括足底肌腱與韌帶)則具備彈簧般的功能,可在踩踏地面時儲存彈性能量,接著釋放推力,減少肌肉能量消耗。
  2. 強力肌腱與韌帶
    • 跟腱(Achilles tendon)和髂脛束(IT band)都能吸收並釋放大量彈力,在跑步時有效節省體力。
    • 透過肌腱的彈性能量回饋,跑者在每一步落地與蹬地之間,都能減少額外的肌肉耗損。
  3. 臀部肌群的角色
    • 人類相較於猿類擁有更發達的臀大肌(gluteus maximus),能夠穩定軀幹,使身體不致向前傾斜或晃動得過於劇烈。
    • 這種「穩定性」非常關鍵,它能支撐直立姿勢,維持跑步時的協調和平衡。
人類發達的臀大肌穩定軀幹,得以支撐直立姿勢,提升跑步時協調與平衡的能力。圖/envato

軀幹與上肢:不容忽視的穩定器

奔跑並不只是腿部的事。上半身及頭部在跑動中也扮演著不可或缺的穩定與協調角色。

  1. 擺臂對頭部穩定的影響
    • 當我們在跑步時,雙臂自然擺動,有助於平衡腿部擺動帶來的轉動力矩;換言之,手臂的擺動能對沖下肢動量,讓我們在快速移動時仍保持穩定,頭部不至於過度搖晃。
    • 猿類上肢肌肉發達,卻沒有像人類一樣的大範圍肩關節「解耦」特性(能讓肩膀與骨盆分開晃動、頭部保持前方視線),這使得牠們在直立奔跑時更顯笨拙。
  2. 脊椎靈活度與呼吸節奏
    • 人類的脊椎與骨盆並非僵直連接,跑步時,骨盆能與肩部做出相對扭轉運動,使軀幹整體更靈活。
    • 這種結構也幫助人類在奔跑過程中匹配呼吸節奏:腳步落地的頻率能自然與肺部換氣形成同步節拍。

冷卻系統:靠「排汗」征服烈日

人類藉遍布全身的汗腺大量排汗散熱,透過蒸發有效降低體溫。人類藉遍布全身的汗腺大量排汗散熱,透過蒸發有效降低體溫。圖/envato

在非洲大草原上奔跑,面臨的最大挑戰之一便是高溫。人類為何可承受長時間高溫壓力,甚至能在午後與動物「耐力大戰」?

  1. 排汗與體溫調節
    • 大多數動物主要依賴氣喘(如狗的哈氣)或有限的汗腺冷卻。人類則擁有遍布全身、數量龐大的汗腺;這使我們可藉由大量流汗帶走熱量,再透過汗液蒸發達到降溫效果。
    • 雖然我們也會因此流失水分與電解質,但只要能適度補充,便能持續散熱。而某些大型哺乳動物,在持續奔跑一段時間後,往往因過熱而只能停下休息。
  2. 無毛皮膚與蒸發效率
    • 相較於其他哺乳類,人體毛髮主要集中在頭部與部分身體區域,大片皮膚裸露,有助於排汗時的蒸發散熱。
    • 這種「裸皮」極可能是長距離奔跑與日間活動的選擇性演化結果,確保人類能在炎熱的白天進行移動或狩獵,而不因過熱而必須在陰涼處長時間停留。

呼吸方式:維持長距離的關鍵

另外值得注意的是人類高效率的呼吸節奏。四足動物在奔跑時,呼吸通常與四肢步態高度耦合,比如馬或犬類在衝刺中必須配合四肢的震動節奏吸氣和吐氣,較難隨意變換節拍。而人類因直立姿態,使得呼吸與跑步步伐能保持更大程度的自主調控。

-----廣告,請繼續往下閱讀-----
  • 獨立呼吸調節
    • 能依跑者自主需求來決定吸氣與吐氣的頻率,不一定要剛好配合腿部的落地次數。
    • 這讓人類在長時間奔跑或耐力賽中,能以相對節能的方式調節氧氣和二氧化碳的交換量。
  • 嘴巴與鼻子的雙重進氣
    • 為支撐長時間有氧運動,跑者多半會同時用鼻子與嘴巴呼吸,以便快速補充氧氣並排出二氧化碳。
    • 相較之下,某些動物在喘氣散熱時犧牲了進氣效率,一旦體溫飆升,便難以同時維持高強度奔跑。

即使進入現代社會,大多數人不必再於烈日下持久追蹤獵物,我們仍可在馬拉松、越野超馬等各式比賽中看見古老遺傳「跑步基因」所迸發出的潛力。從波士頓馬拉松、超級鐵人三項,到極端氣候下的 Badwater 135,人類透過持續的鍛鍊與後勤補給,一次又一次突破極限。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
1

文字

分享

0
1
1
運動員的大腦跟一般人不一樣?從腦科學看體力之外的奪冠秘笈
F 編_96
・2024/12/17 ・2098字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

是不是常聽人家講「運動天賦」?這種天賦到底是什麼?運動員哪裡跟我們不一樣?這個問題現在科學家或許可以給你一個答案。近年透過腦科學研究發現,運動員的大腦與普通人的大腦存在顯著差異,這些差異塑造了他們在比賽中的敏捷反應、精確動作及卓越判斷能力。

所以現在運動選手不只比體力,還要比腦力了嗎?這些差異具體差在哪裡?

快速反應:視覺處理能力

在團隊運動如足球或籃球中,快速處理視覺資訊並作出決策對勝負至關重要。一項 2013 年發表於《Scientific Reports》的研究發現,職業運動員比起業餘運動員或一般人更擅長處理動態視覺場景,例如追蹤快速移動的物體。這種能力能夠幫助運動員在瞬間解讀賽場上的複雜資訊,並迅速做出反應。

擁有快速的視覺處理能力,對團體運動來說至關重要。圖/envato

視覺處理能力的測試還可用於判斷運動員是否適合回歸賽場,例如在傷後復健階段,確保運動員在完全恢復判斷能力之前不會貿然上場。

-----廣告,請繼續往下閱讀-----

肌肉記憶:動作的自動化編程

對於體操選手或跳水運動員而言,肌肉記憶是完成複雜動作的關鍵。2023 年《Journal of Neuroscience》的一項研究表示,大腦如何通過訓練快速「壓縮」和「解壓縮」動作資訊,最終將動作序列整合成一個流暢的過程。這種訓練過程使運動員能夠無需刻意思考,便能完美執行複雜動作。

肌肉記憶的形成依賴於大腦皮層神經元的網絡活動,這種神經編程能力也同樣適用於訓練有素的音樂家或舞蹈家。

預測能力:球場上的決策利器

運動員擁有卓越的預測能力,例如棒球擊球手能根據投手的動作,快速判斷球的速度與方向。2022 年發表於《Cerebral Cortex》的研究發現,當擊球手預測投手的投球軌跡時,大腦左腹側顳葉皮質的神經元活動會根據預測結果而改變。

這種高效的預測能力源來於運動員在比賽中,學會透過關聯視覺線索與物體運動軌跡的技能。研究還發現,潛水選手等專業運動員的大腦中與動態運動解讀相關的區域,如上顳溝(STS),比普通人更厚,這也反映了運動訓練對大腦結構的塑造。

-----廣告,請繼續往下閱讀-----

平衡與空間感:身體控制的高峰

對體操選手來說,擁有非凡的平衡感與空間感知能力,兩者缺一不可,而這在科學上被稱為「本體感覺」(proprioception)。位於小腦的神經網絡讓運動員能迅速調整身體姿態,即使在空中失誤也能及時修正動作。

對體操選手來說,平衡感與空間感知能力非常重要。圖/envato

然而,當這套「安全網」失靈時,可能導致嚴重後果。如 2020 年東京奧運中,體操選手西蒙·拜爾斯(Simone Biles)因「扭轉失靈」而一度無法控制動作,凸顯了平衡能力在高風險運動中的重要性。

注意力與認知靈活性:多任務處理的關鍵

團隊運動要求運動員能快速在不同思維模式間切換,例如足球選手需在控球時預測對手動作並調整策略。2022 年《國際運動與運動心理學期刊》的一項研究顯示,運動員,特別是參與高強度間歇訓練的選手,擁有更強的認知靈活性和注意力分配能力。

研究也指出,這些能力的提升可能與長期訓練相關,但確切機制仍需進一步研究。

-----廣告,請繼續往下閱讀-----

抗衰老的秘密:運動對老年大腦的保護

這些運動訓練對大腦的影響,可不是只有相關區域的提升。運動對大腦健康的影響,可能會持續一生。一個典型例子是加拿大田徑選手奧爾加·科特爾科(Olga Kotelko),她在 95 歲時仍保持驚人的腦部健康,其白質結構完好程度甚至接近比她年輕三十多歲的普通人。科學家認為,持續的運動訓練可能是她保持記憶力與認知敏銳的原因之一。

運動不只是對身體的鍛鍊,對維持大腦健康也有影響。圖/envato

下一代的訓練策略:腦力與體力並重

隨著運動科學的不斷進步,科學家也開始呼籲教練更注重對年輕運動員的腦部訓練,例如提升記憶力與決策能力。西悉尼大學的運動科學家凱莉·斯蒂爾(Kylie Steel)指出,運動員的身體或許會訓練至極限,但在認知能力上仍擁有巨大的潛力提升。例如,足球訓練中可以鼓勵球員使用非慣用腳進行射門,以提升大腦靈活性,幫助他們在成年後更加出色地應對比賽挑戰。

近年研究讓我們重新認識了體育訓練對人體的深遠影響,運動改變的不僅是肌肉,還包括大腦。從視覺處理到肌肉記憶,再到抗衰老的腦部結構,透過運動與科學的結合,將為未來的運動員開啟全新可能性,也提醒我們,持續鍛煉不僅益於身體,也有助於大腦的健康。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃