這答案或許不是那麼單純。除了歷史文獻紀錄外,最能佐證隕石撞擊的證據就是隕石坑了。上圖所列之來源網站,利用美國Lunar and Planetary Institute所登錄的隕石坑資訊,做出了隕石坑分布的具象化圖表。從圖中不難看出全世界的隕石坑分布並不平均,而台灣則是連一個坑都沒有。影響圖中隕石密度的最大原因很可能是研究數據的不平均,例如比較難深入的熱帶雨林區隕石坑的紀錄,遠比整個歐陸要少得多;不過台灣沒有隕石坑的原因,卻很有可能是下面兩點:
就如同各種應用程式都會進行版本更新,並在更新中修正上一個版本的缺點,這次哨兵 II 系統的升級,也從哨兵一代系統多年累積的經驗進行修正。
首先,第一代哨兵系統只有計算萬有引力對小行星軌道的影響,並沒有考量其他外力,例如來自太陽的輻射壓等等。這些力量雖然相對微小,但積少成多、聚沙成塔,長期下來也能影響小行星運行的軌道。另一方面,由於小行星本身會自轉,因此小行星的受光面和背光面會不停改變方向,如此一來熱輻射對小行星造成的力,也會隨著轉動而變化,這個效應被稱作「亞爾科夫斯基效應」(Yarkovsky Effect)。而哨兵 II 的演算法都有將這些因素納入考量,讓小行星的軌道估計算更為精準。
然而太空探測器上面有很多精密的儀器提供科學家精準的定位,小行星卻只能透過地面觀測來估算出它的軌道,科學家其軌道掌握的精確度當然就比較差。而當小行星接近地球時,軌道的計算誤差就會被大幅放大。一個小行星飛掠地球時幾百公尺的誤差,到了下一次來訪時可能就成了幾千公里的差別了。而這幾千公里,就有可能是「撞上地球」和「安全通過」的差距。好消息是,由於在軌道計算上考量的因素更全面,演算法也更加精密,讓哨兵 II 即使在面對這樣的狀況,也能計算出更為精準的結果。
最後,哨兵 II 系統在計算小行星的撞擊風險時,判斷的方式也相較上一代系統更縝密。如同任何觀測與測量,小行星的軌道也會存在誤差,而哨兵 II 會從小行星軌道的誤差範圍內隨機取樣進行計算,以檢查小行星有沒有撞上地球的可能性。相比於第一代哨兵系統預先將有撞擊風險的軌道推算出來後才評估撞擊機率的做法,這樣的更新能降低漏網之魚出現的可能性。
Condamine, F.L., Guinot, G., Benton, M.J. et al. Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures. Nat Commun 12, 3833 (2021).
Chiarenza, A.A., Mannion, P.D., Lunt, D.J. et al. Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nat Commun 10, 1091 (2019).
Katlin Schroeder, S. Kathleen Lyons, Felisa A. Smith. The influence of juvenile dinosaurs on community structure and diversity. Science 371, 941-944
Linnert, C., Robinson, S., Lees, J. et al. Evidence for global cooling in the Late Cretaceous. Nat Commun 5, 4194 (2014).
這答案或許不是那麼單純。除了歷史文獻紀錄外,最能佐證隕石撞擊的證據就是隕石坑了。上圖所列之來源網站,利用美國Lunar and Planetary Institute所登錄的隕石坑資訊,做出了隕石坑分布的具象化圖表。從圖中不難看出全世界的隕石坑分布並不平均,而台灣則是連一個坑都沒有。影響圖中隕石密度的最大原因很可能是研究數據的不平均,例如比較難深入的熱帶雨林區隕石坑的紀錄,遠比整個歐陸要少得多;不過台灣沒有隕石坑的原因,卻很有可能是下面兩點: