0

2
0

文字

分享

0
2
0

中央研究院化學研究所陳玉如博士,榮獲「2023 年第16屆台灣傑出女科學家獎

PanSci_96
・2023/03/06 ・5586字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

全台第一、更是唯一專為表揚女科學家卓越貢獻的「台灣傑出女科學家獎」已邁入第 16 年。2007 年台灣萊雅聯合吳健雄學術基金會共同發起設置「台灣傑出女科學家獎」,以樹立典範,啟發並推動更多女性投入科學領域,促使科學界多元參與及發展,此獎項多年來的方向與成果更接軌國際聯合國永續發展目標(SDGs)之性別平等目標。

有台灣「女性諾貝爾獎」之美名的台灣傑出女科學家獎,截至 2023 年,本獎項共表揚傑出獎及新秀獎共計 49 位優秀台灣女性科學家。參照全球傑出女科學家獎模式的主辦單位,台灣萊雅總裁師逸樺表示,希望透過表彰台灣傑出女科學家,社會大眾看見多位女性科學家不但在科學界擔任團隊領導者,對科學研究領域有傑出成就,更在推動友善人才制度進步和培育科研領域人才發展均深具貢獻。

2023 年第 16 屆「台灣傑出女科學家獎」由中央研究院化學研究所特聘研究員陳玉如博士獲得最高榮譽「傑出獎」[1]之殊榮。為支持優秀年輕女科學家而設立的「新秀獎」,則頒發給中央研究院天文及天文物理研究所研究員林俐暉博士臺灣大學電機工程學系電子工程學研究所副教授胡璧合博士。鼓勵具科學潛力之年輕博士班學生的「孟粹珠獎學金」,則由中央大學物理研究所博士班謝妮恩同學(目前任職於日本北海道大學低溫科學研究所博士後研究員)獲得。

第十六屆「台灣傑出女科學家獎」得主與主辦單位合影(由左至右):台灣萊雅陳家祥永續長、新秀獎得主林俐暉博士、傑出獎得主陳玉如博士、新秀獎得主胡璧合博士、孟粹珠獎學金得主謝妮恩博士、吳健雄學術基金會林明瑞執行長

「傑出獎」得主 中央研究院化學研究所陳玉如特聘研究員

  • 由美國與全球 13 個國家合作的「癌症登月計畫」,台灣隊由她領軍

在中研院化學所任職,專長儀器設計、質譜分析的陳玉如博士,因深受蛋白質體學的奧秘所吸引,跨領域由生物分子的分析,轉換跑道長期投入蛋白質體的探索,她的研究成果不僅創造領先國際之分析技術,在台灣建立世界級的蛋白質體研究技術,也提供生醫研究全新的研究路徑及轉譯經驗,進而獲得重大疾病關鍵突破。

陳玉如團隊開發了以質譜儀全面性定量細胞膜蛋白體的方法,可幫助科學家了解膜蛋白質如何造成疾病的機制,更進一步建立第一個癌症病人個人化的分析,開發疾病檢測或是藥物標靶蛋白質。以癌症為例,現在使用的癌症標識分子(biomarker)大多數是膜蛋白質。

-----廣告,請繼續往下閱讀-----

陳玉如博士首創全世界第一個「奈米探針質譜檢測技術」,發現癌症中血清蛋白多重結構變異作為新型癌症標誌物的實用性,成為首例以單一蛋白質多重異構物結合演算法作為新型癌症檢測技術,應用於早期癌症檢測,該技術於 2022 年獲得國家新創獎。

「我不抽菸,為什麼也會得肺癌?」這是許多亞洲國家肺癌患者共同的疑問。肺癌是全球癌症死亡的主因,即使藥物治療近年有長足的進展,存活率仍低,長期為我國癌症死亡的頭號殺手。肺癌傳統上被認為與吸菸畫上等號,但在東亞地區,不吸菸者患病的比率卻遠高於吸菸者。

為釐清不吸菸肺癌患者可能的致病機轉,2017 年,陳玉如博士主持推動與美國臨床蛋白基因體學腫瘤分析聯盟(CPTAC)合作的「台灣癌症登月計畫」,讓我國成為該計畫首度國際合作國家之一。

陳玉如認為,癌症研究的跨國分享非常重要,因為即使是同一種癌症,也會因為地域、人種及生活型態而有所差異,因此預防、檢測、治癌和預後方式可能不同。

陳博士發揮善於溝通、整合資源的人格特質,整合學術、政府資源及與醫院臨床合作,建立東亞第一個肺癌之蛋白基因體大數據,解析亞洲不吸菸肺癌患者的致病機制,開發新穎癌症精準醫療策略。該計畫利用深度蛋白質基因體技術和多體學數據整合分析,解析台灣不吸菸病人與西方不同的基因突變特徵、尋找內生性與外在環境致病機轉,並發現癌症早期出現的類晚期蛋白質分子特徵,為全世界第一個完整剖析東亞肺癌的研究。研究論文已發表於頂尖期刊《細胞》(Cell),並榮登當期封面,享譽國際。

-----廣告,請繼續往下閱讀-----

陳玉如博士曾任中研院化學所所長,也是有史以來第一位女所長;於 2019 年獲選全世界最大的國際性蛋白質體學術組織(HUPO)理事長,為該組織 20 年來最年輕,更是亞洲第一位女性理事長,為台灣爭取第 15 屆世界蛋白體組織會議及亞太蛋白體組織會議;2020 年受邀為分析化學領域排名第一國際期刊 Analytical Chemistry 的副主編至今,是台灣有史以來唯一獲此榮譽職位者。她也見證了各國代表在台灣宣示啟動癌症登月計畫之歷史時刻,協助台灣成為質譜學及蛋白質體學社群交流重鎮。

陳玉如博士的學術歷程及成就凸顯了唯有基礎數理研究的突破,方能以創新的分子視野揭露人類複雜疾病的成因與進展,開啟生醫學界及產業發展新穎癌症檢測的新策略。

  • 不設限、敢冒險,學習與溝通打通一關又一關

年少時喜愛作家三毛的陳玉如博士,從國中開始即養成寫日記的習慣,大學時期曾一度憧憬寫作的美好世界,成為科學家後,「寫作基因」帶給陳玉如博士敢於想像與冒險的念頭,讓她從設計質譜儀到分析 DNA,進而再挑戰以質譜儀開發更好的蛋白質體分析法,從摯愛的化學與跨領域到應用面、執行癌症醫學相關研究。

陳博士笑著說:「科學研究也是一種寫作,陳述一個完整的故事,讓人願意讀下去。」

除了如寫作敘事般建構規劃與想像,陳博士在研究上也發揮她善於溝通的特質,陳玉如博士表示,癌症研究是整合型的分析,需要蛋白體和基因分析技術、資訊分析、臨床醫學等各領域的專家跨領域合作,但要整合這麼多領域的領袖談何容易?陳玉如努力學習基因,並理解臨床醫師想問的問題及研究基因體學的科學家在做什麼,然後一起把基因和蛋白質的數據、以及臨床症狀整合、連貫起來,並不斷與不同領域的專家溝通,讓彼此互相了解,才打通一關又一關,取得研究成果。在學生眼中,積極熱情、樂於學習且執行力高的陳博士,是他們的精神領導,也是像媽媽和朋友的溫暖存在,永遠抱持正向開放的態度,鼓勵並協助他們堅持直至成功。

「新秀獎」得主 中央研究院天文及天文物理研究所林俐暉研究員

  • 用光學及電波望遠鏡觀測宇宙奧秘,她是入選台灣女科學家新秀獎的首位天文學者

林俐暉博士於中央研究院天文及天文物理研究所擔任研究員,研究著重在大尺度環境對於星系演化的影響,包括星系之間的交互作用以及星系團中星系的性質。利用多波段的天文觀測,有系統地探討星系與星系碰撞的頻率、星系交互作用期間對於恆星形成之效應,以及星系碰撞與大尺度環境的相關性。

而近年來,林俐暉博士結合地面最大電波望遠鏡 ALMA 以及光學史隆巡天計畫第四代的「艋舺」(MaNGA)觀測計畫,領導近三十位國際天文學家,進行 ALMaQUEST(ALMA-MaNGA QUEnching and STar formation)的國際合作計畫。林俐暉博士是第一位入選台灣女科學家新秀獎的天文學者。

-----廣告,請繼續往下閱讀-----
  • 「當你覺得別人都很厲害的時候更應該欣喜,表示自己還有進步的空間,這個世界可以更好!」正向態度讓她隨心選擇不設限

受雙親為物理學者的家庭環境薰陶,林俐暉博士雖自小接觸物理領域,但林博士的志向卻未因此設限。學生時期的她,除了是數理資優生,也喜歡古典文學,兼具理性與感性的她,一路從探索物理科學、宇宙星系到中國文學,累積了廣泛的興趣,豐富她的人生,也讓她對下一代的教育,延續原生家庭保持自由且開放的態度。此外,林博士分享印象很深刻的一句話:「當你覺得別人都很厲害的時候更應該欣喜,表示自己還有進步的空間,這個世界可以更好。」對林博士來說,有學習典範是科研路上一件很棒的事情。

近年來,林俐暉博士擔任台灣物理學會女性委員會的成員之一,為培育下一代女性科學家盡一份心力。她鼓勵有志從事科學的女性學子,除了培養足夠的熱情和興趣,更重要的是,永遠保持正向的態度。她特別感謝同事的支持,讓她投入家庭的同時,仍然可以從事研究工作。

林博士談到,期望將台灣萊雅致力推動多元共融、堅信多元化與包容性的企業精神也帶入學術界,有朝一日讓所有的女性研究員,都能無後顧之憂地投入科研工作。

「新秀獎」得主 臺灣大學電機工程學系電子工程學研究所胡璧合副教授

  • 讓人類的世界更加安全便利,她獲台積電張忠謀親自頒獎

「你在英雄電影裡看見的未來高科技,就是我們想做的事情!」胡璧合博士的研究領域為前瞻奈米電子元件及記憶體電路設計,透過元件及電路的共同最佳化,使下世代電子元件及記憶體電路表現高密度、低功耗及高能效等特性。

談到最難忘的學術成就,胡博士於交通大學智慧型記憶體及晶片系統實驗室擔任助理研究員期間,擔任國科會計畫主持人,研究鍺通道鰭式場效電晶體靜態隨機存取記憶體之讀取寫入輔助電路設計,於 2014 年獲得台灣半導體產業協會頒發博士後研究員半導體獎,並由台積電董事長張忠謀博士頒發,該獎項給予胡博士在學術研究旅程中莫大的鼓勵。

半導體產業是台灣的支柱與優勢產業,為國家經濟與安全的基石。胡博士於頂尖國際會議及重要國際期刊的發表,展現其團隊豐沛的研究能量,研究成果具學理創新及前瞻性。在產業發展部份,胡博士持續與台灣半導體科技公司執行產學合作計畫,透過加強學界與業界的接軌,在電子元件及記憶體領域持續研發創新,共同培育未來半導體產業高階人才。

-----廣告,請繼續往下閱讀-----
  • 她是科學家,也可以是三寶媽!

胡璧合博士出生於台灣彰化,父母皆從事傳統產業。她感謝母親與婆婆的大力支持,讓她可以在孩子幼年時當假日母親,平日則全心投入研究工作。胡博士分享:「我們一直在做調整,在孩子2歲後接回身邊,由先生負責孩子上學,再由我接送放學,在實驗室,把兩張椅子併在一起,小孩也可以睡午覺。」這是身為女科學家,努力在工作與家庭之間取得平衡的生活面貌。

累積在中央大學與台灣大學任教的經驗,胡博士發現,碩士畢業後,許多學生會選擇投入產業端工作,繼續攻讀博士的人則越來越少。即使支持學生未來發展的選擇,但多數碩士人才都投入業界的情況也形成隱憂:「台灣的半導體產業有良好的發展環境,但需要有人不斷做研究找出方向,才能往前帶動整個市場持續蓬勃發展。」

另一方面,胡博士觀察到女性在成績和研究表現上都非常好,鼓勵女學生應保持自信和平靜的心態,關注自身的狀態和成長。同時也鼓勵女性加入實驗室,相信女性細心的特質,可以帶動實驗室的工作氛圍越來越好。

孟粹珠獎學金:中央大學物理研究所博士班謝妮恩同學

  • 研究一氧化碳冰晶光脫附作用,她為天文學界提供嶄新視角

謝妮恩同學於大學三年級即進行星際冰晶在真空紫外光與 X 射線照射下的光脫附作用與光化學反應之專題研究,並在天文學相關議題研究上的表現卓越,於 2019 年獲得科技部博士生千里馬計畫與台西計畫的補助,前往西班牙馬德里皇家天文生物研究中心進行訪問研究。

期間,她師承 Dr. Muñoz Caro 進行二氧化碳紅外光譜之詳細探討,提供完整光譜數據庫與星際冰晶生成溫度歷史之參考,對於天文觀測中的分子結構標定是不可或缺的。2022 年,以第一作者身分發表論文,建立一個描述生長溫度對於一氧化碳冰晶光脫附作用影響的模型。此模型指出分子的真空紫外光吸收截面、能量傳遞深度、單層冰晶的光脫附貢獻量與有效表面積等參數須同時考慮,方能提供冰晶分子光脫附一個嶄新的視角。

謝妮恩博士展現優秀的團隊管理能力,協助指導多名碩士生和專題生,帶領團隊解決研究上的難題,並逐一完成論文。謝博士參與研討會的經驗豐富,除了台灣物理年會之外,也在國際研討會上多次獲選為口頭報告講者,曾於 2020 年第五屆亞洲分子光譜年會榮獲 LiHong Xu Award 之殊榮。優異的研究成果榮獲 2019 年吳健雄獎學金及 2021 年中技社科技獎學金(研究組),在學生眾多的理工領域獲得這份殊榮實屬不易,更是對於謝博士的一大肯定與鼓勵。

-----廣告,請繼續往下閱讀-----

關於台灣傑出女科學家獎

16 年來,本獎項共表揚傑出獎及新秀獎共計 49 位優秀台灣女性科學家,包括 2 位前、現任中研院副院長、多位中研院院士及大專院校教授及研究中心研究員等。

根據教育部的數據顯示,女性投考科學類組的比例持續成長,從 2007 年到 2021 年,大專院校科技類女學生占比上升了 5.5%。然而在男女受教權均等的台灣,女性投入科研領域成為科學家的比例,與全球女性科學家占比同樣只有不到三分之一,性別比例尚有很大的差距,因而仍需要持續推動鼓勵女性參與科學,盼透過「台灣傑出女科學家獎」鼓舞更多有志科學的女性投入科研,促進科學界多元發展,加速台灣科技精進。

了解更多台灣傑出女科學家獎

2023 年第十六屆台灣傑出女科學家獎得主簡介


[1] 依據遴選辦法規定,按公元單雙數年,交替輪選物質科學、數學、與資訊科學領域(公元單數年)或生命科學(公元雙數年)領域的傑出研究者。今年為公元單數年,本屆各類獎項得主皆從「物質科學、數學、與資訊科學」領域的女科學家中選出。

文章難易度
PanSci_96
1226 篇文章 ・ 2337 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

3
2

文字

分享

0
3
2
量子力學可以幫你判斷物體溫度?從古典物理過渡到近代的一大推手——黑體輻射
PanSci_96
・2024/03/24 ・3639字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

1894 年,美國物理學家邁克生(Albert Abraham Michelson)作為芝加哥大學物理系的創立者,在為學校的瑞爾森物理實驗室(Ryerson Physical Laboratory)落成典禮致詞時,表示:「雖然無法斷言說,未來的物理學不會比過去那些驚奇更令人驚嘆,但似乎大部分的重要基本原則都已經被穩固地建立了。」

以我們現在的後見之明,這段話聽起來固然錯得離譜,但在當時,從 17、18 到 19 世紀,在伽利略、牛頓、馬克士威等前輩的的貢獻之下,物理學已經達成了非凡的成就。

我們現在稱為古典的物理學,對於整個世界的描述幾乎是面面俱到了,事實上沒有人預料到 20 世紀將出現徹底顛覆世界物理學認知的重要理論,量子力學。

而這最一開始竟只是出自於一件不起眼的研究,關於物體發出的光。

-----廣告,請繼續往下閱讀-----

萬物皆輻射

在此我們要先理解一個觀念:所有物體無時無刻不在發出電磁波輻射,包括了你、我、你正使用的螢幕,以及我們生活中的所有物品。

至於為什麼會這樣子呢?其中一個主要原因是,物體都是由原子、分子組成,所以內部充滿了帶電粒子,例如電子。這些帶電粒子隨著溫度,時時刻刻不停地擾動著,在過程中,就會以電磁波的形式放出能量。

除了上述原因之外,物體發出的電磁波輻射,還可能有其他來源,我們就暫時省略不提。無論如何,從小到大我們都學過的,熱的傳遞方式分成傳導、對流、輻射三種,其中的輻射,就是我們現在在談的,物體以電磁波形式發出的能量。

那麼,這些輻射能量有什麼樣的特徵呢?為了搞清楚這件事,我們必須先找個適當的範本來研究。

-----廣告,請繼續往下閱讀-----

理想上最好的選擇是,這個範本必須能夠吸收所有外在環境照射在上面的光線,只會發出因自身溫度而產生的電磁輻射。這樣子的話,我們去測量它發出的電磁波,就不會受到反射的電磁波干擾,而能確保電磁波是來自它自己本身。

這樣子的理想物體,稱為黑體;畢竟,黑色物體之所以是黑的,就是因為它能夠吸收外在環境光線,且不太會反射。而在我們日常生活中,最接近理想的黑體,就是一點也不黑、還超亮的太陽!這是因為我們很大程度可以肯定,太陽發出來的光,幾乎都是源於它自身,而非反射自外在環境的光線。

或者我們把一個空腔打洞後,從洞口發出的電磁波,也會近似於黑體輻射,因為所有入射洞口的光都會進入空腔,而不被反射。煉鐵用的鼓風爐,就類似這樣子的結構。

到目前為止,一切聽起來都只是物理學上一個平凡的研究題目。奇怪的是,在對電磁學已經擁有完整瞭解的 19 世紀後半到 20 世紀初,科學家儘管已經藉由實驗得到了觀測數據,但要用以往的物理理論正確推導出黑體的電磁波輻射,卻遇到困難。正是由此開始,古典物理學出現了破口。

-----廣告,請繼續往下閱讀-----

黑體輻射

由黑體發出的輻射,以現在理論所知,長得像這個樣子。縱軸代表黑體輻射出來的能量功率,橫軸代表黑體輻射出來的電磁波波長。

在理想狀況下,黑體輻射只跟黑體的溫度有關,而跟黑體的形狀和材質無關。

以溫度分別處在絕對溫標 3000K、4000K 和 5000K 的黑體輻射為例,我們可以看到,隨著黑體的溫度越高,輻射出來的能量功率也越大;同時,輻射功率最高的波段,也朝短波長、高頻率的方向靠近。

為了解釋這個曲線,物理學家們開始運用「當時」畢生所學來找出函數方程式,分成了兩派:

-----廣告,請繼續往下閱讀-----

一派是 1896 年,由德國物理學家維因(Wilhelm Carl Werner Otto Fritz Franz Wien),由熱力學出發推導出的黑體輻射公式,另一派,在 1900 與 1905 年,英國物理學家瑞立(John William Strutt, 3rd Baron Rayleigh)和金斯(James Jeans),則是藉由電磁學概念,也推導出了他們的黑體輻射公式,稱為瑞立-金斯定律。

你看,若是同時擺上這兩個推導公式,會發現他們都各自對了一半?

維因近似 Wien approximation 只在高頻率的波段才精確。而瑞立-金斯定律只對低頻率波段比較精確,更預測輻射的強度會隨著電磁波頻率的提升而趨近無限大,等等,無限大?――這顯然不合理,因為現實中的黑體並不會放出無限大的能量。

顯然這兩個解釋都不夠精確。

-----廣告,請繼續往下閱讀-----

就這樣,在 1894 年邁克生才說,物理學可能沒有更令人驚嘆的東西了,結果沒幾年,古典物理學築起的輝煌成就,被黑體輻射遮掩了部分光芒,而且沒人知道,這是怎麼一回事。

普朗克的黑體輻射公式

就在古典物理學面臨進退維谷局面的時候,那個男人出現了——德國物理學家普朗克(Max Planck)。

1878年學生時代的普朗克。圖/wikimedia

普朗克於 1900 年就推導出了他的黑體輻射公式,比上述瑞立和金斯最終在 1905 年提出的結果要更早,史稱普朗克定律(Planck’s law)。普朗克假想,在黑體中,存在許多帶電且不斷振盪、稱為「振子」的虛擬單元,並假設它們的能量只能是某個基本單位能量的整數倍。

這個基本單位能量寫成 E=hν,和電磁輻射的頻率 ν 成正比,比例常數 h 則稱為普朗克常數。換言之,黑體輻射出來的能量,以hν為基本單位、是一個個可數的「量」加起來的,也就是能量被「量子化」了。

-----廣告,請繼續往下閱讀-----

根據以上假設,再加上不同能量的「振子」像是遵循熱力學中的粒子分佈,普朗克成功推導出吻合黑體輻射實驗觀測的公式。

普朗克的方程式,同時包含了維因近似和瑞立-金斯定律的優點,不管在低頻率還是高頻率的波段,都非常精確。如果我們比較在地球大氣層頂端觀測到的太陽輻射光譜,可以發現觀測數據和普朗克的公式吻合得非常好。

其實有趣的是普朗克根本不認為這是物理現象,他認為,他假設的能量量子化,只是數學上用來推導的手段,而沒有察覺他在物理上的深遠涵意。但無論如何,普朗克成功解決了黑體輻射的難題,並得到符合觀測的方程式。直到現在,我們依然使用著普朗克的方程式來描述黑體輻射。不只如此,在現實生活中,有許多的應用,都由此而來。

正因為不同溫度的物體,會發出不同特徵的電磁波,反過來想,藉由測量物體發出的電磁波,我們就能得知該物體的溫度。在疫情期間,我們可以看到某些場合會放置螢幕,上面呈現類似這樣子的畫面。

-----廣告,請繼續往下閱讀-----

事實上,這些儀器測量的,是特定波長的紅外線。紅外線屬於不可見光,也是室溫物體所發出的電磁輻射中,功率最大的波段。只要分析我們身體發出的紅外線,就能在一定程度上判斷我們的體溫。當然,一來我們都不是完美的黑體,二來環境因素也可能產生干擾,所以還是會有些許誤差。

藉由黑體輻射的研究,我們還可以將黑體的溫度與發出的可見光顏色標準化。

在畫面中,有彩虹背景的部分,代表可見光的範圍,當黑體的溫度越高,發出的電磁輻射,在可見光部分越偏冷色系。當我們在購買燈泡的時候,會在包裝上看到色溫標示,就是由此而來。所以,如果你想要溫暖一點的光線,就要購買色溫較低,約兩、三千 K 左右的燈泡。

結語

事實上,在黑體輻射研究最蓬勃發展的 19 世紀後半,正值第二次工業革命,當時鋼鐵的鍛冶技術出現許多重大進步。

德國鐵血宰相俾斯麥曾經說,當代的重大問題要用鐵和血來解決。

就傳統而言,煉鋼要靠工匠用肉眼,從鋼鐵的顏色來判斷溫度,但若能更精確地判斷溫度,無疑會有很大幫助。

德國作為鋼鐵業發達國家,在黑體輻射的研究上,曾做出許多貢獻,這一方面固然可能是學術的求知慾使然,但另一方面,也可以說跟社會的需求與脈動是完全吻合的。
總而言之,普朗克藉由引進能量量子化的概念,成功用數學式描述了黑體輻射;這件事成為後來量子力學發展的起點。儘管普朗克本人沒有察覺能量量子化背後的深意,但有另一位勇者在數年後繼承了普朗克的想法,並做出意味深長的詮釋,那就是下一個故事的主角――愛因斯坦的事了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

0

5
0

文字

分享

0
5
0
台灣第一位女醫師!培養無數助產士的台中之母——蔡阿信
PanSci_96
・2023/02/01 ・3144字 ・閱讀時間約 6 分鐘

  • 文/Peggy

說到「阿信」這個名字,你腦中第一個浮現的,是誰的身影?是超長壽日劇中那位不屈不撓的堅毅主角?還是五月天裡面那位一開口就嗨爆全場的主唱?

今天,我們要介紹的這個「阿信」,不僅是台灣第一位提倡限制生育、救治無數貧苦病人的仁醫,更培育了無數助產士、與學生合力接生了大半個台中的人,被譽為「台中之母」。

「台灣第一位女醫師」、「台中之母」——蔡阿信。
圖/維基百科

這位帶領台灣婦產科領域邁向新階段,間接影響了數代人的傳奇人物,便是「台灣第一位女醫師」——蔡阿信。

天生反骨,靠實力拚上東京女子醫專

蔡阿信出生於 1899 年日治時代的萬華,雖然看起來非常文靜乖巧,實際上卻是個非常有自己的想法、且十分願意堅持的人。比如說,當大家都在吃飯睡覺打東東的年紀時,11 歲的蔡阿信就自己努力跟母親爭取進入台灣第一所女子中學「淡水女學校」(台灣北部長老教會女學堂),以全校最小的年齡,成功成為了該校第一屆的學生。

台灣第一所女子中學——私立淡水高等女學校。圖/
PanSci 泛科學 YouTube

18 歲畢業後,經女校老師鼓勵蔡阿信更下定決心前往日本醫校進修,頂著母親的反對、鄰居的閒言閒語,最終在日本「立教高等女學校」修習兩年日文之後,如願考上日本唯一一所「東京女子醫學專門學校」(現東京女子醫科大學)學醫。

-----廣告,請繼續往下閱讀-----

「別人越反對,越激起她的決心,非達目的,不肯罷休。」

其實,蔡阿信固執的個性,從更小的時候就看得出來。在她 5 歲時,由於生父去世,家境陷入困頓,母親曾將阿信送給一對牧師夫婦當童養媳,但阿信小妹妹呢,偏不要乖乖聽話,靠著雙腳自己從大龍峒一路走回艋舺,這麼來回跑了幾次之後,養父母終於招架不住,把她送回了原本的家。

正是靠著這樣「不太乖」的態度,蔡阿信走出了一條前無古人的路,踏上了赴日習醫之旅。

學成歸國!打破傳統框架的台灣首位女醫師

醫科大學的課業十分繁重,蔡阿信咬牙堅持,幾年下來背了幾百種人體相關的拉丁文名詞,度過了無數個與屍體相伴的夜晚,終於在 1921 年學成歸國。

我們普通人的畢業可能是吃吃謝師宴啦、拍拍照啦,可蔡阿信的畢業,卻是一大群記者守在基隆港夾道歡迎,更以「萬綠叢中一點紅」的斗大報紙標題來形容這位剛出爐的畢業生。

-----廣告,請繼續往下閱讀-----

記者們可不是在故意炒新聞,而是台灣第一位日本科班出生的女醫師實在是太過難得。在當時的社會氛圍下,大多數人仍然普遍懷抱著「女子無才便是德」的想法,更會用裹小腳(還好阿信逃過了這項折磨)、童養媳等等習俗去規範和限制女性發展。

在這樣的風氣下,許多女生根本不曾獲得讀書的機會,而即便是讀了書,也容易受性別刻板印象影響,認為男生就應該當醫生、當警察,女生就該能當護士、當老師。更別提當時的「雙軌學制」從中學起就依據性別將學習內容分流,讓男生著重學習理科與工藝、女生著重學習家政與美育,逐步打造「男子要成為國家棟樑、女子要成為賢妻良母」的套路。

而蔡阿信的存在,卻打破了固有的框架,開了女性學醫的先河,也讓許多人意識到女性還有許多不同的生涯選擇。

同理且慈悲,清信醫院救治無數艱苦人(kan-khóo-lâng)

蔡阿信於 1924 年與「台灣文化協會」的成員,為著名的民族運動人士彭華英結婚,一開始先在台北開設婦產科醫院,之後 1926 年 6 月轉在台中成立了「清信醫院」。

-----廣告,請繼續往下閱讀-----

她收診金的規矩是這樣的:富者多收,貧者少收,赤貧免費。赤貧除了免費,往往還會附帶贈送嬰兒衫、煉乳等等物資。這樣俠義精神,除了為阿信換來了很多雞鴨魚肉和蔬果(誤),更是讓許多弱勢族群得到了救治的機會。

清信醫院產婆講習生募集廣告。圖/維基百科

不僅如此,蔡阿信還秉持著「獨接生不如眾接生」的精神,在醫院成立了「清信產婆學校」,每半年招收 30 個學生,為期一年,讓學生們邊上課還能邊在醫院實習。就這樣每年培育出 5、60 名助產士,不僅為許多台灣婦女提供了就業機會、打破了看診時原有的語言隔閡,更是大幅度降低了產婦和胎兒死亡率。

學校營運的10 年間,蔡阿信共計培養出了 500 名左右的助產士,默默達成了「整個城市的助產士都是我的學生」的成就。為了獎勵她在醫療上的貢獻,日本更是連續多年頒發了「獎勵私立產院」的賞金給她。

不過,平平是醫生,為何阿信感覺特別「有愛」?這或許是源自於她剛畢業後的一段經歷。

-----廣告,請繼續往下閱讀-----

阿信當年剛歸國時,擅長的婦科專業剛好沒有醫院開缺,只好轉而到眼科實習。指導醫生給阿信的第一項作業,便是「蒙著眼睛在床上躺三天」,為的是體驗失明者的生活。或許是這一場「震撼教育」,讓阿信學到了同理與同情,更影響了她往後數十年的行醫方向。

1934 年,清信醫院產婆講習修業留影(紅點為蔡阿信)。圖/維基百科

二戰後長期旅居國外,基金會遺愛人間

雖然阿信將醫院經營得有聲有色,但二戰爆發後,台灣也被捲入其中,許多家長擔心女兒學醫之後恐怕會被徵召上戰場,習醫的學生便越來越少,也連帶影響了醫院經營。阿信於是收起了醫院,在 1938 年前往美國遊學,除了在哈佛等大學進行研究外,她也曾赴加拿大訪問;在戰爭期間,則被加拿大政府委派至日僑集中營擔任駐營醫師。

戰後蔡阿信雖然順利回到台灣,卻在政治動盪下決心移居海外,1949 年與英裔加籍的吉卜生牧師再婚後,1953 年起便定居於加拿大,在享受退休生活的同時,從事著社會服務的工作。

在伴侶過世後,阿信從自身體會出發,以畢生積蓄與朋友在台灣共同成立了「財團法人至誠社會服務基金會」照顧喪偶的婦女。直到現在,這個基金會仍在持續運作中。

-----廣告,請繼續往下閱讀-----

台中之母、助產士之師、台灣第一位女醫師……我們後世的描述中,在蔡阿信的身上貼滿了各式各樣的標籤,但她的一生,其實就是場撕掉舊有社會標籤的馬拉松。正是這樣無視框架又充滿人文關懷的心,讓蔡阿信活出了與眾不同的故事。

參考資料

  1. 成令方,性別、醫師專業和個人選擇:台灣與中國女醫師的教育與職業選擇,1930-1950,女學學誌:婦女與性別研究,2002。
  2. 台灣醫界人物百人傳
  3. 台灣第一位女醫師 – 蔡阿信
  4. 破繭薪女性–台灣第一位女醫師蔡阿信
  5. 台灣第一位女醫師有多神?七歲能背千家詩、打敗日人考上醫學院…也許你阿嬤也被她接生過
  6. 台灣女人的故事!台灣首位女醫師蔡阿信展神童天分…不顧家人反對逆天改命成仁醫|呂捷 張齡予主持|【呂讀台灣完整版】20200531|三立新聞台
  7. 台灣第一位女醫師蔡阿信的故事【民視台灣學堂】這些人這些事 2019.04.17—盧俊義
  8. 漫話科技_蔡阿信篇