Loading [MathJax]/extensions/tex2jax.js

2

3
3

文字

分享

2
3
3

為什麼東西會這麼好吃?是嗅覺、回憶還是化學鍵?——《完美歐姆蛋的化學》

日出出版
・2022/12/30 ・2854字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

嗅覺:廚房的第一道防線

嗅覺是我們在廚房裡的第一道防線,主要功能是防止我們接觸到可能會致命的東西,例如細菌。

有極小比例的人缺乏嗅覺,他們不僅無法擁有品嚐食物的完整體驗,也不具有可以防止我們吃下腐壞或變質食物的人類直覺。

我真的認識一位沒有嗅覺的人,有一次他媽媽去看他,結果一踏進他的公寓就差點吐出來。原來是有壞掉的雞肉埋藏在冰箱的某個角落,但是他聞不到。

嗅覺是我們在廚房裡的第一道防線。圖/pexels

至於對其他人來說,如果餐點聞起來和吃起來都很美味,兩種感官會結合在一起,形成所謂的風味。餐點的風味會讓人有所反應——而且每個人都有自己最喜歡的風味組合。

-----廣告,請繼續往下閱讀-----

話雖如此,全世界的每一種風味,從 Kraft 起司通心粉,到頂級餐廳的菜單,都是由四個分子組成:水、脂肪/油、蛋白質和碳水化合物。

味蕾的辨識能力:離子通道

人類的大腦非常擅長解析這些味道在微觀層次上的差異;事實上,大腦甚至可以分辨出我們是在攝取單醣還是多醣(也就是糖還是澱粉)。

這是因為我們的味蕾會辨識各式各樣的分子,然後傳送訊息給大腦。例如,當味蕾辨識出氫離子(H+),我們會覺得食物有酸味;另一方面,鹼金屬則會讓食物帶有鹹味。

就烘焙層面來說,這一點之所以很重要,是因為我們的大腦可以辨別單醣—水果混合物中的糖—和多醣—低筋麵粉中的澱粉—之間的差異。

-----廣告,請繼續往下閱讀-----

我敢說,派是最讚甜點的原因,正是甜(單醣)和鹹香(多醣)混合。(我也許有點偏頗——我有說過我媽會做無敵好吃的派嗎?)

我們的味蕾會辨識各式各樣的分子,然後傳送訊息給大腦。圖/pexels

我們的味蕾可以辨識各種分子,是因為大腦會監測特定離子在所謂的離子通道中的濃度,以剛才的例子來說就是 Na+ 和 H+。

這些離子通道位於人體器官中的細胞,並提供特別的途徑讓離子可以在人體內移動,就像道路可以讓汽車從一個地方移動到另一地。

當我們咬下含有大量鹽的食物,大腦會察覺到在舌頭上的離子通道移動的鈉離子數量增加。而當水合氫離子的濃度上升,大腦則會馬上知道我們正在吃有酸味的東西。

-----廣告,請繼續往下閱讀-----

而且,這一切都是瞬間發生。我們的大腦真的很強大。

各種味道的差別:化學鍵

從分子的層次來說,鹹/酸和甜/鹹香之間有個非常明顯的差異——分子之間的鍵。有鹹味和酸味的食物利用的是離子鍵,有甜味和鹹香的食物則是利用共價鍵。

這就是為什麼我們可以忍受非常甜的食物,卻無法接受超級酸的食物。舉例來說,吃藍莓派的時候,我們的味蕾會立刻辨識出甜味,但由於我們在吃甜食,離子通道並沒有派上用場。

基於相同的道理,苦味的程度會維持不變,因為濃度不影響整體的味道。不論你是喝一滴或一杯,味道都是一樣苦。

-----廣告,請繼續往下閱讀-----

由於甜、鹹香和苦味不需要經過人體內的離子通道就能抵達大腦,這三種味道通常會被歸為同一類。這些味道源於特定的共價分子和味蕾細胞膜中的受器所產生的化學反應。

這種反應發生的瞬間,我們的大腦就會察覺到甜、鹹香或者苦的味道。再次強調,這整個過程花不到一秒鐘。

甜、鹹香和苦味不需要經過人體內的離子通道就能抵達大腦。圖/pixabay

既然談到了這個話題,我想要快速釐清一個常見的誤會。人的整個舌頭可以相對平均地嚐到總共五種味道,也就是說味蕾並沒有分區!舌頭的每一吋都可以分辨出你的派有多甜。

總而言之,食物有五種主要的味道:甜、鹹、酸、鮮和苦。(鮮[umami]這個詞源自日語,字面上的意思就是美味,不過大多數人會用鹹香[savory]來表達這個概念。) 烘焙高手會利用這五種味道來組合出無限多種美妙的風味。

-----廣告,請繼續往下閱讀-----

看看經典的大黃派就知道了,內餡有 4 杯大黃(酸味)、2/3 杯糖(甜味)和一小撮鹽。再加上一點檸檬汁(更多酸味),就可以呈現出完美平衡的鹹—甜—酸可口風味。

經典的大黃派可以呈現出完美平衡的鹹-甜-酸可口風味。圖/pexels

不過我覺得特別有趣的地方在於,從化學的角度而言,每個人對相同的分子組合都有各自的解讀。有些人討厭大黃派,我卻完全吃不膩,為什麼呢? 

口味喜好常與過去經驗綁在一起

風味喜好完全取決於愉悅的心理狀態,這可以解釋為什麼人有最喜歡的食物,還有最喜歡的顏色、電影、歌曲等等。雖然大腦中的化學極為複雜,但一般來說,心理學家多半都認同一個理論:人之所以有最喜歡的東西,是源於他們首次接觸到這個東西時的正面經驗……而且他們的大腦會因此對不同的化學受器產生反應。

以食物來說,大多數人最愛的食物都是在年紀非常小的時候就固定下來。

-----廣告,請繼續往下閱讀-----

我這麼愛大黃派,很有可能是因為這是我人生中第一次吃到的派。那種甜—酸—鹹合而為一的風味,震撼了我幼小的心靈,後來我再也沒吃過任何勝過那次體驗的派。

味蕾辨識力可以訓練,也可能會退化

不過這套通用的理論有個例外:其實你可以訓練舌頭辨識出更多風味。就像你可以為了準備馬拉松或足球比賽而鍛鍊肌肉,只要努力、認真和大量接觸,你就可以學會辨識食物中的不同分子。

成功之後,這些人通常會發現一些自己開始喜歡上的新食物,這都是因為他們的味覺變得更加敏銳——簡單來說,他們可以辨識出的風味種類變多了。

有些人的味覺非常敏銳;舉例來說,我有遇過一些烘焙師可以立刻辨認出燕麥餅乾裡的一絲肉豆蔻味,或是有些老饕可以吃出自己最愛的泰式餐廳在某一種咖哩中加了哪一種魚露。

-----廣告,請繼續往下閱讀-----
有些老饕可以吃出自己最愛的泰式餐廳在某一種咖哩中加了哪一種魚露。圖/pexels

不過大部分的人年紀越大(或是菸抽的越多),大腦就越難解讀來自舌頭的訊號。

簡直就像是味蕾——或分辨離子和共價鍵分子的能力——折損或變遲鈍了,尤其是當你邁入老年。

所以,趕緊趁你還年輕的時候,多出去走走嘗試新食物吧。烤個大黃派和蘋果派,看看你比較喜歡哪一種。

——本文摘自《完美歐姆蛋的化學》,2022 年 12 月,日出出版出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
日出出版
13 篇文章 ・ 7 位粉絲

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
毒藥的歷史:死亡、救贖與科學的交匯點——《毒藥的滋味》
PanSci_96
・2024/09/03 ・2429字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

奪命計劃的冷酷藝術

在犯罪史上,謀殺是特別令人髮指的罪行;而在各種殺人手法之中,只有寥寥幾種會像毒藥那樣,令人有如此奇特的病態迷戀。與一時腦熱的衝動謀殺相比,毒殺所涉及的事前規劃與冷酷的算計,完全符合法律術語中的「惡意預謀」(malice aforethought)定義。毒殺需要預先籌畫並了解受害者的習慣,也必須考慮如何下毒。有些毒藥只要幾分鐘就能奪人性命,其他則可以長期慢性下毒,逐漸在體內積累,最終導致受害者必然的死亡。

這本書沒有要列出下毒者及受害者的清單,而是要探討毒物的性質,以及它們如何在分子、細胞和生理層面影響人體。每種毒藥都有獨特的致死機制,受害者所經歷的各種症狀往往都是線索,有助於抽絲剝繭找出他們被下了什麼毒。在少數情況下,這些知識有助於給予適當的治療,讓受害者能完全康復。但在大多數情況下,就算知道是什麼毒物對於治療也沒有幫助,因為根本沒有解藥。

毒殺因冷酷計劃與預謀惡意而特別令人髮指。 圖/envato

雖然毒物(poison)和毒素(toxin)這兩個詞經常互換使用,但嚴格來說它們並不相同。「毒物」是任何會對身體造成傷害的化學物質,可以是天然的,也可以是人造的,而「毒素」通常是指生物所製造的致命化學物質。不過如果你是被下毒的一方,那麼兩者的差異就只是學術討論了。

毒物的兩面性:從致命陷阱到救命藥

toxikon 這個字源自古希臘文,意思是「箭頭浸泡的毒物」,指的是塗抹在箭頭上以導致敵人死亡的植物萃取物。當 toxikon 這個字與希臘文的「研究」logia 相結合,就成為我們現在的「毒理學」或「毒素研究」(toxicology)這個詞。毒物一詞源自拉丁語的 potio,意思是「喝」,之後慢慢演變成古法語中的 puison 或 poison。「毒物」這個字在一二○○年首次出現在英語中,意思是「致命的藥水或物質」。

-----廣告,請繼續往下閱讀-----

從生物體中獲得的毒物通常是許多化學物質的混合物。例如,致命的茄科植物(也稱為顛茄)的粗萃物相當危險,從這些萃取物中也可以純化出化學物質阿托品(atropine)。同樣的,毛地黃花(foxglove)的植物本身也有毒,還能從中萃取出單一的化學物質毛地黃(digoxin)。

有一些歷史悠久的毒藥是混合幾種不同的毒物製作而成,例如「托法娜仙液」(Aqua tofana)就是混合了鉛、砷和顛茄的毒藥。

在瓶子裡人畜無害的化學物質最後怎麼會變成屍體裡發現的毒?無論是哪一種毒藥,在死亡發生之前都會有三個不同階段:下毒、行動和效果。

下毒有四種途徑:消化、呼吸、吸收或注射。也就是說,它們可能是被吃掉或喝掉,透過腸道進入體內;吸入肺部;直接透過皮膚吸收;或是透過注射到肌肉或血液中進入體內。兇手選擇何種方式讓毒物進入受害者體內,取決於毒物的性質。儘管有毒氣體已被用於殺戮,但這涉及一定程度的技術難度,因此並不實用,而且這種手法通常難以針對特定個人。

-----廣告,請繼續往下閱讀-----

透過眼睛和嘴巴的皮膚或黏膜吸收可能非常有效:兇手不必與受害者有任何接觸,甚至在中毒當下還能留在附近。光是將毒藥塗抹在受害者即將接觸的物品上就足以導致死亡。混合在食物或飲料中為大多數毒物提供了一條簡單的途徑,特別適用於固體結晶毒物,因為它們可以簡單灑在飯菜上或溶解在飲料中就好。

不過有一些毒物必須注射到體內才能發揮作用,有時候這是因為毒藥是一種蛋白質,如果加入食物攝取,就很容易被腸胃分解。此外,兇手一定要離受害者夠近才能注射毒物。

毒藥可透過皮膚、食物、或注射進入體內,兇手無需直接接觸即可致命。 圖/envato

毒藥如何摧毀人體機制?

現在我們來看毒物的核心:它們如何破壞身體的內部運作?

毒物確切的作用方式五花八門,而它們的效果則揭曉了許多人類生理學的奧秘。許多毒物會攻擊神經系統,破壞控制身體正常功能且高度複雜的電子訊號:如果阻斷的是心臟各部分之間的交流,可以視為毒物使心臟停止跳動並導致死亡;如果破壞控制呼吸的橫隔膜肌肉調節,同樣也會使呼吸停止,導致窒息而亡。

-----廣告,請繼續往下閱讀-----

也有些毒物會偽裝,隱藏真實身分後進入身體細胞,這些毒物的外型與細胞的重要成分極為相似,但不完全相同,因此可以進入細胞的新陳代謝過程,但無法執行正確的生化功能。毒物會假冒體內的細胞分子,使得細胞的化學作用緩慢停止,最終死亡。當死亡的細胞夠多,整個身體就會跟著死去。

如果不同的毒物以不同的方式發揮作用,不難想像受害者所經歷的症狀也會不同。以大多數消化型的毒物而言,無論作用方式為何,人體的第一反應通常是嘔吐和腹瀉,試圖藉此從體內清除毒物;影響心臟神經和電流訊號的毒物則會導致心悸,最終導致心跳停止;影響細胞化學性質的毒物通常會引起噁心、頭痛和嗜睡的症狀。毒物的作用及可怕後果的故事在本書中比比皆是。

雖然大多數人認為毒物是致命的藥物,但科學家也已經使用與毒物完全相同的化學物質來梳理細胞和器官內部的分子和細胞機制,利用這些資訊開發能夠治療和治癒多種疾病的新藥。舉例來說,科學家透過研究毛地黃植物中的毒物如何影響身體,成功研發出了治療充血性心臟衰竭的藥物。

現代外科手術時使用的常規藥物,同樣也是透過了解顛茄如何影響人體運作後問世,這種藥物除了能預防術後併發症,甚至還能治療在化學戰中受害的士兵。由此可知,化學物質的本質沒有好壞之分,它只是一種化學物質。造成差異的是使用這種化學物質的意圖:是要保護生命,或是奪去生命。

-----廣告,請繼續往下閱讀-----

——本文摘自《毒藥的滋味:11種致命分子與使用它們的凶手》,2024 年 7 月,方舟文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
黃瓜也可以當甜點?瓜籽肉會發出碘的味道?探索瓜味的多重宇宙——《料理滋味創意地圖》
積木文化
・2024/08/19 ・1432字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

黃瓜 CONCOMBRE

黃瓜可以只做成冷盤沙拉,也能在鹽水、英式醃菜中展現出多種滋味,甚至可以煮成配菜。它的滋味比看起來的要複雜許多:很明顯它有綠質及強烈的葉綠素滋味,但也有碘和奶油味。沒有交集的兩個世界,讓這種蔬菜能往兩種滋味方向去發揮!

黃瓜的芳香輪,解鎖更多黃瓜搭配。 圖/積木文化《料理滋味創意地圖

正確切削黃瓜:善用皮與苦味的微妙平衡

黃瓜外皮呈綠色並略帶苦味,想當然爾也有葉綠素滋味⋯⋯我們去皮不是為了美觀,而是要除掉這種苦味。又或者,我們可以刻意保留全部或部分黃瓜皮,對這有點侵略性的味道做進一步運用。經過斟酌的苦味能帶來無可否認的餘韻,也讓這種蔬菜含水量相當高的芳香特性變得複雜。薄荷、蒔蘿、青蘋果等「綠色」食材會凸顯出黃瓜的清新。

善用瓜味,或許會有意想不到的美味。 圖/積木文化《料理滋味創意地圖

籽肉的碘香秘密:黃瓜與海鮮、乳製品是絕配

為何把黃瓜的果肉跟籽吃進嘴裡時,能感受到碘味和奶油味呢?答案是因為醛類*1,存在於麵包皮和多種油裡。出乎意料的是,黃瓜能跟海藻、牡蠣、麵包和奶油做組合。為了發揮這些香氣,我們不妨將乳酸化合物(芒果、荔枝等)搭配帶乳香的乳狀食物(如希臘優格,這解釋了希臘沙拉醬﹝Tzatziki﹞*2 之所以成功的原因。或是藍紋乳酪、昂貝爾藍紋乳酪﹝Fourme d’Ambert﹞、馬斯卡彭乳酪也可以),以及一些像孔德里約(Condrieu)這樣帶奶油香味的酒。有了黃瓜內部的果肉跟籽,這些組合就保證成功。

*1:主要為 (E,z)-2,6- 壬烯醛、2-壬烯醛(non-2-énal)。

-----廣告,請繼續往下閱讀-----

*2:譯注:以希臘優格和黃瓜碎粒為主要材料的沙拉。

除了海鮮、乳製品之外,還有其他食物也可以嘗試看看。 圖/積木文化《料理滋味創意地圖

來試試吧!甘納許巧克力黃瓜

  • 準備甘納許:煮滾 300 毫升的水,加入 1 克洋菜粉,離火並倒進 150 克的黑巧克力碎片攪打混合,再倒進容器裡約 1 公分高度,隨後放進冰箱至少一小時。
  • 準備黃瓜:將黃瓜(用果汁機)榨成汁。提取 150 毫升,取其中一半與 1 克洋菜粉和一茶匙糖一起煮沸。離火,將剩下的另一半加進去,放涼後小心地倒在巧克力甘納許上(約 0.5 公分高),然後放進冰箱。
  • 擺盤:切成固定長度(約 6 公分長,1.5 公分寬)。可和黑巧克力圓脆片(Tuiles)一起食用。

不同變化:富含葉綠素的活力蔬果汁

選擇未處理過的小黃瓜,連皮榨汁,增強青綠及微苦滋味。這種富含葉綠素的果汁可以調味油醋汁、雞尾酒(琴酒等)和西班牙冷湯。可以將果汁冷凍在冰塊盒裡供多次使用。

——本文摘自 拉斐爾.歐蒙(Raphaël Haumont)、提耶里.馬克思(Thierry
Marx),《料理滋味創意地圖:法國材料物理化學專家聯手米其林主廚,15種香調、80種常見蔬果食材的氣味因子,探索 1,500 種創新風味搭配!》,2024 年 8 月,積木文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。