Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

因應水患與城市調適

thisbigcity城事
・2013/01/11 ・1051字 ・閱讀時間約 2 分鐘 ・SR值 536 ・七年級

-----廣告,請繼續往下閱讀-----

颱風來時淹水的臺北市@維基
颱風來時淹水的臺北市@維基

過去幾年間,世界各地陸續遭遇重大水患,未來數十年內,洪水威脅還會更加嚴重,我們該如何調整城鎮,增加都市生活彈性?

巨大鋼門將自地底升起,阻擋洪水湧來,河口防洪壩緜延數公里,將預防海水倒灌;自動充氣包將封住隧道及地下鐵路,避免水災淹沒。

許多人的住家將會隨水勢高低漂浮,並連結至彈性管線,讓居民與財物不受大水侵襲,並在潮水退去後回歸原處。

包括美國俄亥俄州、義大利威尼斯、阿根廷、菲律賓等地,近期水災造成重大財務與人身損失,英國環境署指出,水患已是英國第一大天災威脅,將來不論國內外風險都將惡化。

-----廣告,請繼續往下閱讀-----

在人類歷史中,主要聚落皆位於河港附近的低窪地區,氣候變遷已導致海平面上升與天氣更加極端,日漸威脅這些聚落

受人口成長與都市化趨勢影響,愈來愈多民眾都身陷水患風險,森林砍伐、集約農業、水泥覆蓋大片土地,都造成豪雨與河水溢堤時,自然排水能力降低。

flood

世界必須學著調適,重要設施若置於水患風險區域,考量必須更加審慎,電腦伺服器、轉換器、備用發電機不能再存放於地下室,變電所與用水處理廠也得移至危險區域之外。

公用事業必須投資微型供應網,縮小斷電、供水污染、網路中斷區域,各國規劃相關法律與建築法規也得要求變更設計。

-----廣告,請繼續往下閱讀-----

換言之,農民除了耕作收成之外,政府也該鼓勵或資助農民植樹或掘池,以減緩、儲存或吸收溢流,鹽沼等天然防護措施將成動植物樂園,也可發揮巨大海綿功用;在城市裡,新公園與遊樂場將提供民眾遊憩去處,水患發生時亦不會出現損失。

這些防護與改善工程都需要財源,其中或許有些容易完成的選項,也可能達到雙贏目標,同時增進生態環境,關心此事的個人與地區單位也會願意分攤部分成本。

不過大型方案仍需公務機構投資,由於都市土地價值頗高,經濟中斷與人身損失成本極大,這些經費都有必要,也愈早起步愈好。

展望未來,智慧防洪技術與解決方案將陸續面世,其中又將以系統方案最佳,先重新檢視人與水的關係,而不只是想著如何阻擋浪潮升高。

-----廣告,請繼續往下閱讀-----

 

作者:Peter Madden(「未來論壇」執行長)

本文原載於獨立永續專業團體「未來論壇」雜誌《Green Futures》。照片來源:Torcello TrioStevep2008

轉載自 This Big City 城事

-----廣告,請繼續往下閱讀-----
文章難易度
thisbigcity城事
45 篇文章 ・ 0 位粉絲
《城事》為永續城市部落格,長期發掘關於建築、設計、文化、科技、運輸、單車的都市創新構想,曾數度獲獎。《城事》網羅世界各地城市生活作者,文章曾發表於Next American City、Planetizen、Sustainable Cities Collective、IBM Smarter Cities等網站。《城事》遍尋全球,在世界奮力邁向永續的時刻,呈現城市帶來的種種機會,力求保持樂觀,但不忘批判。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
1

文字

分享

0
3
1
氣候變遷讓缺水、淹水更嚴重,臺灣做好準備了嗎?——專訪水利署賴建信署長
鳥苷三磷酸 (PanSci Promo)_96
・2023/10/31 ・3262字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文由 經濟部水利署 委託,泛科學企劃執行。

「30年後,我們將面對更嚴峻的缺水考驗。」水利署署長賴建信接受我們採訪時坦承地說。

水利署署長賴建信

近年,全臺西部地區都曾遇過「供五停二」的停水措施,,缺水問題更早已是全球問題。根據 2021 年發表在 Nature Communication 上的論文,2016 年全球有 9.33 億的城市人口面臨缺水問題,約為總人口的 12 %;依據過往趨勢推測,至 2050 年,全球將有 16.93-23.73 億的城市人口面臨缺水問題,相當於 2050 年總人口的 17%-24%。

為什麼全球缺水問題會如此嚴重呢?賴建信署長認為首要是「氣候變遷」改變了降雨強度與頻率,並舉生活中的經驗來說明氣候變遷:

「生活在臺灣地區的我們,會感覺到最近好像很久都不會下雨,然後不下雨的時候很熱,但一下雨,雨滴大到打在身上都會痛。」而近期紐約暴雨造成地鐵淹水癱瘓,也是氣候變遷造成的。

-----廣告,請繼續往下閱讀-----

氣候變遷讓降雨更加極端

賴署長說:「可以說以後的降雨會非常集中在特定某幾天。就像剛剛講的,就是突然暴雨,然後接下來一個大乾旱。 」

無論是缺水還是淹水,氣候變遷造成的影響都不容忽視,賴署長表示,不只是降雨頻率會更低,降雨地區也會更加不平均,降雨的強度也會有所提升。

依照聯合國政府間氣候變化專門委員會最糟糕的預測(SSP5-8.5),到了這個世紀中,臺灣暴雨強度會比世紀初提升 20%,世紀末會提升 40%,即便是最優預測(SSP1-2.6),也會在世紀中提升 15.7%。

據上所述,氣候變遷讓全人類無法迴避「降雨不均造成的地區性缺水」,以及「降雨強度提升造成的地區性水災」這兩個問題。雖然個人、企業與政府都為了減緩氣候變遷有所作為,但賴署長也表示,我們該「從科學擁抱殘酷現實,對未來做最壞打算」。

簡單來說,若所有締約國都遵守聯合國氣候變遷大會(COP)的決議完成減碳工作,那氣候變遷也只是不再加劇,並不會立刻恢復到過去的型態,而只要有其中幾項沒有達成,那全世界就得面對更嚴峻的情況。

-----廣告,請繼續往下閱讀-----

回到開頭賴署長所說的 30 年,我們還有時間做好基礎建設,降低氣候變遷對人民造成的影響。「從2016年開始,我們就思考這些問題,思考說臺灣未來面對的自然環境,我們應該如何因應、構築一個怎麼樣的未來。所以當時我們就開始思考包括區域調度、多元水源等相關計畫。」

賴署長提到的「區域調度」相關計畫,即是目前正在進行的「珍珠串計畫」。

地區性缺水解決方案—「珍珠串計畫」

「珍珠串計畫」預計把台灣西部像珍珠一樣珍貴的水源,用聯通管線串聯起來,讓珍貴的水資源可以妥為應用。

臺灣降雨時間和空間差異極大,桃園至屏東等西部地區,在 5 月至 10 月是豐水期,11 月到隔年 4 月是枯水期,然而北北基與宜蘭等東北地區,卻是完全相反,10 月至隔年 4 月有東北季風帶來的豐沛雨量,此時若能將東北地區的水調度至西部地區,將能緩解西部地區缺水。而未來面對更加極端的降雨情況,也能提供一定的支援。

珍珠串計畫的聯通管線預計將在 2028 年全數完成,而在 2021 年旱災中搶先開通的「桃園—新竹備援管線」,從桃園每日調度 20 萬噸的水給新竹,在旱災期間總計調度 2300 萬噸,約是 0.6 座寶山第二水庫的蓄水量,不僅讓新竹地區免於限水所苦,也讓新竹科學園區的科技業能維持生產。

-----廣告,請繼續往下閱讀-----
寶山第二水庫。圖/Wikipedia

不僅管線串聯,更要開創「多元水源」

有了聯通管串聯,就能解決缺水問題嗎?賴署長給出否定答案:「如果只有一種供水方式,突然有意外就完了。當然要有多股水源,多條管線。」

過往開發新水源,直覺想到的是蓋水庫,不過蓋水庫不僅要謹慎評估該地是否有充足水源,考慮安全性及經濟性是否合理,更要謹慎評估對環境生態的影響,通常一座水庫從規劃到興建完成,需耗時數十年的時間。

為了因應氣候變遷與逐步增加的用水量,水利署目前已朝「多元水源」的方式來尋找新水源,像是南化與寶山第二水庫藉由「溢流堰加高」擴增蓄水量,臺中水楠經貿園區淨化污水再利用的「再生水」,以及以及高屏溪的「伏流水」與新竹的「海淡水」,這些多元水源將與水庫水、川流水及地下水等傳統水源共同支撐起全臺用水。

此外,水利署也正想辦法讓洪水資源化,臺灣山高水急,大雨過後的洪水大部分都流向大海,只有少部分可被水庫收集,像是「河槽人工湖」就能增加收集水量,來供應日常使用,或補注超抽的地下水。

地區性強降雨解決方案—從「不淹水」轉變為「耐災韌性」

受氣候變遷影響,近年臺灣短延時強降雨頻率提高,低窪地區或排水系統也時常發生淹水,顯現目前臺灣防洪工程的不足。

-----廣告,請繼續往下閱讀-----

過去臺灣由於預算有限,治水策略多以建護岸、堤防或下水道為主,然而這種作法有其極限,即便已完成防洪工程的區域,也未必能面對未來極端降雨的情況,為此,水利署改變過往治水策略,從「不淹水」轉變為「耐災韌性、與水共生」,而在多年來中央與地方政府的聯合推動下,各地開始邁向「逕流分攤」的方式來治理水患。

「逕流」是指下雨時地表土壤無法吸收的水份,在地表形成的水流。「逕流分攤」是在淹水較為嚴重的河段,於新建(或改建)公共設施時,以不妨礙設施功能,建設洪水期間可收集逕流的滯洪池。此外,為提升土地耐淹能力,「出流管制」政策也要求開發單位,必須提升建築物的透水、保水與滯洪能力。

以日本東京鶴見川為例,由於東京市的發展,導致土地保水、滲透能力降低,洪水尖峰流量增加,更容易發生淹水。為此日本將橫濱日產體育館建置成兼具滯洪功能的公共設施,來應對鶴見川的洪峰流量,館場下方的滯洪池高度高達五公尺,平日則作為停車場使用。

橫濱日產體育館。圖/Wikipedia

「我們希望所有的土地都能更有效地利用,例如我們學校的操場,如果下面是一個蓄水池,那大雨下來是不是就不容易淹水了?」賴署長表示,近期開工的鹿港洛津國小的地下停車場兼滯洪池工程,正是「逕流分攤」的案例。

風暴將至,我們能做好準備嗎?

賴署長略為嚴肅地說:「我不期待氣候型態會回到 30 年前。」並重提了在 IPCC 的最優預測(SSP1-2.6)下,臺灣仍必須在 2050 年面對暴雨強度提高 15.7% 的情況。

-----廣告,請繼續往下閱讀-----

無論我們怎麼做,風暴已確定到來,那麼我們能事先做好準備嗎?賴署長說:「我認為我們能做到的,是使用適當的方法趨吉避凶。」隨著科學進步,模擬變得越來越精準,但終究還是預測,存在不確定性,雖然 2050 年最優預測是暴雨強度提高 15.7%,但上限呢?真的就只有前面提到的 20% 嗎?賴署長提醒我們要面對氣候變遷的現實,並在面臨風暴來臨之前做好準備,這個準備不只要能面對預估強度,更要有足夠的韌性,來面對超越預期的情況。

最後,賴署長說:「每個巨大的改變,一定是從一個微小的生活習慣,比如說開始固定運動,或是固定減少能源浪費。」也許現在看來微不足道的小動作,都將是未來的「重要一步」,就像蝴蝶效應一樣。

相信科學數據,擁抱不確定性,積極做出因應,這不僅是賴署長個人的想法,也是水利署全體的信念,唯有如此,才能在超乎預期的「風暴」來臨之前,做出最好的選擇。

-----廣告,請繼續往下閱讀-----

0

2
1

文字

分享

0
2
1
無聲的溺水:溺水的死亡人數可能比你想像中更多?掌握救溺五步驟——叫、叫、伸、拋、划
椀濘_96
・2022/07/21 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

近台灣掀起一股露營的風潮,正逢暑假期間,野外溯溪、戲水活動盛行,然而消暑玩樂之餘別忘了,水域安全的觀念尤為重要。

根據內政部統計近年的各級水域救援數據,平均每年約有 700 多人溺水,死亡人數超過一半,其中又以發生地點為溪河的事故案件最多,而且這個數字正在逐年增加……。

全球溺水死亡的人數,比你想像中更多

2021 年 9 月,一篇發表於專業醫學期刊《刺胳針全球衛生》(The Lancet Public Health)的研究顯示,比起其他重大公共衛生問題,溺水在全球各地造成的死亡人數更多,然而這點卻很常被忽視。

研究中提到,在高收入國家中,溺水為 1~24 歲兒童和青年人的第六大死因;在澳洲、法國、紐西蘭、瑞士和美國,則是 1~4 歲兒童的第二大死因。而在中低收入國家,溺水的死亡率是高收入國家的三倍以上。

在溺水死亡率居高不下的背後,可能包括監督過失與兒童缺乏游泳技能的問題。

溺水與全球各地其他重大公共衛生等問題相比,死亡人數更多。
圖/envato

除了休閒活動之外,無法預測的天災──洪水,也是造成溺水死亡率偏高的原因之一。由於氣候變遷,遭受洪水災害的人數,以及相關的災害嚴重程度都在增加,預估未來還會持續上升。

-----廣告,請繼續往下閱讀-----

值得注意的是,氣候變遷也導致海洋變暖,進而影響世界上從事漁業或水產養殖的 6000 萬人,也迫使小規模的家計型漁業(artisanal fishery)需要到更遠的地方捕魚。這意味著船隻需要停泊在不熟悉,甚是不適合的水域中進行長時間的捕魚作業,導致漁民落船溺水的風險也跟著提高。

容易被忽視的危險水域

  • 溪流

台灣溪流多數蜿蜒湍急,河道可能會有高低差或縮減等情形,從事溪流的水上活動時,應謹慎評估該溪谷地形的風險。另外,一條溪流的流速並非均一致,而是呈現分層;水面及靠河床處往往流速較慢,水面下則較快,這點亦被輕忽,還需多加留意。

例如台灣溪域中蠻常出現的「翻滾流」(backwash),溪流經過瞬間落差的地形(如:瀑布、攔沙壩、水壩等)時,在重力作用下,下沖的水流會將落水處侵蝕凹陷,由於撞擊河床後的水流方向改變,以逆流的方式流向上游,而上方的空氣也會被水流捲入,當水流的浮力大於流動的慣性時,上下水流就會來回捲動,就形成一個不停翻滾的迴圈;人會因此卡住,甚至被吸附翻滾而無法脫離,造成嚴重傷亡。

翻滾流的模擬影片。
在水淺時可以很明顯地看到翻滾流,但在水深的時候,除非靠近否則難以被察覺。 影/ YouTube

除翻滾流外,水面下還可能暗藏「渦流」(又稱漩渦)。

-----廣告,請繼續往下閱讀-----

渦流由反水流形成,是一種漩渦型水平滾動的水漩;水流經石頭孔隙時會相互推擠,進而形成圓錐狀渦旋(Vortex),渦流會捲入從旁流經的物或人,將其捲沉至水底或石縫間,無法脫離。

除水流外,另一潛在殺手則是石頭。除了長期受水流影響外,其上附著的蘚苔、藻類等也使得石頭表面變得光滑,踩踏行走時若稍有不慎,則可能跌入水深處,情急下便提高了溺水風險。

  • 海邊

於海邊戲水時,「離岸流」(Rip current)容易被忽視但卻隱藏著巨大危機……。

離岸流又稱「裂流」,為一種從海岸帶到海中、向外海方向快速移動的海流,流向幾乎與岸線垂直。離岸流和巨浪並不相同,通常是毫無防備的情況下突然出現,而且在任何天氣條件下都可能發生,持續時間從幾分鐘到幾星期不等,可能突然出現、突然消失。若發現該水域兩側均為海浪,但中間出現相對平靜無浪的區域時,應有所察覺此處有離岸流,盡量遠離。

-----廣告,請繼續往下閱讀-----
離岸流示意圖。圖/Wikipedia

強勁的海流能將強壯的人迅速帶離海邊,將人推向外海,若試圖抵抗,則會因體力耗盡而發生溺水事故。若不幸遭遇離岸流時,可試著讓自己漂浮於海面,保留體力揮手向救生員求助。

離岸流宣導影片。影/YouTube

溺水時,比你想像得更難求助

也許你想像中發生溺水時應該是用力揮打四肢拍水、大聲喊叫等大動作來呼救,但其實不然。

當人溺水時會想拼命嘗試把頭伸出水面呼救,若過程中不甚吸入水使聲帶進水,聲帶及上呼吸道因而緊繃,造成無法順利發聲。

等到無力、頭部低於水面時,冰冷的水流入上呼吸道引起咽喉痙攣緊縮、氣管收緊,再後來喉頭放鬆,便會使大量水份灌入呼吸道及肺部,肺泡無法換氣,人體因此無法呼吸而窒息,導致腦部缺氧受損甚至死亡。

-----廣告,請繼續往下閱讀-----

整個溺水的過程遠比我們想像中來的無聲無息,這致命的傷害僅短短幾分鐘,即使一旁有人也難以察覺,直到溺水者無意識漂浮於水面時已為時已晚。

而兒童溺水事故,也比想像中更危險,為台灣 5 歲以下幼童的三大死亡原因之一。

夏季從事水上活動時,應選擇有專業救生員、救生裝備的安全水域環境。圖/Pixabay

幼兒處於溺水狀態時,較成人更加難以察覺,家長往往以為有在旁照看就能避免憾事發生。而大部分溺水後的兒童,都會有嚴重的腦缺氧後遺症,影響著日後正常的生活機能。

但有些徵兆可幫助大家判斷,孩子是在游泳還是正在溺水,例如:眼神呆滯無法聚焦、身體呈垂直且腳沒有活動等等。

-----廣告,請繼續往下閱讀-----

溺水救法及注意事項

看到有人溺水時,若不是接受過水難救助訓練的專業人員,請不要貿然下水施救!

切記救溺五步驟:叫叫伸拋划。

:大聲呼救。

:撥打 119 求助。

:利用延伸物,如:竹竿、樹枝等,讓溺水者抓住。

:向溺水者拋送漂浮物,如:瓶、球、繩等。

:利用大型浮具,如:救生船、救生圈等,划向溺水者,將之救援。

除此之外,夏季從事水上活動時,暖身需要做確實,避免抽筋、肌肉痙攣等情況,並且選擇有專業救生員、救生裝備的安全水域環境。如果出現身體不適、飲酒後、精神情緒狀態不穩定時,請不要輕易下水!

最有效的預防不外乎就是將基本的水上安全、游泳技能,融入進教育課程,從根本上幫助防止溺水事件的發生。

-----廣告,請繼續往下閱讀-----
切記救溺五步驟:叫叫伸拋划。 圖/envato
  1. Medd, D. R., Scarr, J., Larson, K., Vaughan, J., & Krug, E. G. (2021). Drowning Prevention: Turning the Tide on a Leading Killer. The Lancet Public Health, 6(9), e692–e695.
  2. 秘境苦花潭溺水事件:如何判斷渦流、翻滾流與渡溪安全
  3. 海邊戲水 先來認識「離岸流」—台灣環境資訊協會-環境資訊中心
  4. 離岸流—維基百科
  5. 溺水的人其實不太會掙扎,乾性溺水也可能致命!(懶人包)—照護線上
  6. 兒童溺水知多少—中國醫藥大學兒童醫院
  7. 發現有人溺水,救溺五步驟—臺北市政府消防局防災科學教育館
  8. 救人五招:「叫叫伸拋划」—中華民國紅十字會
-----廣告,請繼續往下閱讀-----
椀濘_96
12 篇文章 ・ 20 位粉絲
喜歡探索浪漫的事物; 比如宇宙、生命、文字, 還有你。(嘿嘿 _ 每天都過著甜甜的小日子♡(*’ー’*)

0

0
0

文字

分享

0
0
0
因應水患與城市調適
thisbigcity城事
・2013/01/11 ・1051字 ・閱讀時間約 2 分鐘 ・SR值 536 ・七年級

-----廣告,請繼續往下閱讀-----

颱風來時淹水的臺北市@維基
颱風來時淹水的臺北市@維基

過去幾年間,世界各地陸續遭遇重大水患,未來數十年內,洪水威脅還會更加嚴重,我們該如何調整城鎮,增加都市生活彈性?

巨大鋼門將自地底升起,阻擋洪水湧來,河口防洪壩緜延數公里,將預防海水倒灌;自動充氣包將封住隧道及地下鐵路,避免水災淹沒。

許多人的住家將會隨水勢高低漂浮,並連結至彈性管線,讓居民與財物不受大水侵襲,並在潮水退去後回歸原處。

-----廣告,請繼續往下閱讀-----

包括美國俄亥俄州、義大利威尼斯、阿根廷、菲律賓等地,近期水災造成重大財務與人身損失,英國環境署指出,水患已是英國第一大天災威脅,將來不論國內外風險都將惡化。

在人類歷史中,主要聚落皆位於河港附近的低窪地區,氣候變遷已導致海平面上升與天氣更加極端,日漸威脅這些聚落

受人口成長與都市化趨勢影響,愈來愈多民眾都身陷水患風險,森林砍伐、集約農業、水泥覆蓋大片土地,都造成豪雨與河水溢堤時,自然排水能力降低。

flood

世界必須學著調適,重要設施若置於水患風險區域,考量必須更加審慎,電腦伺服器、轉換器、備用發電機不能再存放於地下室,變電所與用水處理廠也得移至危險區域之外。

-----廣告,請繼續往下閱讀-----

公用事業必須投資微型供應網,縮小斷電、供水污染、網路中斷區域,各國規劃相關法律與建築法規也得要求變更設計。

換言之,農民除了耕作收成之外,政府也該鼓勵或資助農民植樹或掘池,以減緩、儲存或吸收溢流,鹽沼等天然防護措施將成動植物樂園,也可發揮巨大海綿功用;在城市裡,新公園與遊樂場將提供民眾遊憩去處,水患發生時亦不會出現損失。

這些防護與改善工程都需要財源,其中或許有些容易完成的選項,也可能達到雙贏目標,同時增進生態環境,關心此事的個人與地區單位也會願意分攤部分成本。

不過大型方案仍需公務機構投資,由於都市土地價值頗高,經濟中斷與人身損失成本極大,這些經費都有必要,也愈早起步愈好。

-----廣告,請繼續往下閱讀-----

展望未來,智慧防洪技術與解決方案將陸續面世,其中又將以系統方案最佳,先重新檢視人與水的關係,而不只是想著如何阻擋浪潮升高。

 

作者:Peter Madden(「未來論壇」執行長)

本文原載於獨立永續專業團體「未來論壇」雜誌《Green Futures》。照片來源:Torcello TrioStevep2008

轉載自 This Big City 城事

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
thisbigcity城事
45 篇文章 ・ 0 位粉絲
《城事》為永續城市部落格,長期發掘關於建築、設計、文化、科技、運輸、單車的都市創新構想,曾數度獲獎。《城事》網羅世界各地城市生活作者,文章曾發表於Next American City、Planetizen、Sustainable Cities Collective、IBM Smarter Cities等網站。《城事》遍尋全球,在世界奮力邁向永續的時刻,呈現城市帶來的種種機會,力求保持樂觀,但不忘批判。