Loading [MathJax]/extensions/tex2jax.js

0

3
1

文字

分享

0
3
1

氣候變遷讓缺水、淹水更嚴重,臺灣做好準備了嗎?——專訪水利署賴建信署長

鳥苷三磷酸 (PanSci Promo)_96
・2023/10/31 ・3262字 ・閱讀時間約 6 分鐘

本文由 經濟部水利署 委託,泛科學企劃執行。

「30年後,我們將面對更嚴峻的缺水考驗。」水利署署長賴建信接受我們採訪時坦承地說。

水利署署長賴建信

近年,全臺西部地區都曾遇過「供五停二」的停水措施,,缺水問題更早已是全球問題。根據 2021 年發表在 Nature Communication 上的論文,2016 年全球有 9.33 億的城市人口面臨缺水問題,約為總人口的 12 %;依據過往趨勢推測,至 2050 年,全球將有 16.93-23.73 億的城市人口面臨缺水問題,相當於 2050 年總人口的 17%-24%。

為什麼全球缺水問題會如此嚴重呢?賴建信署長認為首要是「氣候變遷」改變了降雨強度與頻率,並舉生活中的經驗來說明氣候變遷:

「生活在臺灣地區的我們,會感覺到最近好像很久都不會下雨,然後不下雨的時候很熱,但一下雨,雨滴大到打在身上都會痛。」而近期紐約暴雨造成地鐵淹水癱瘓,也是氣候變遷造成的。

-----廣告,請繼續往下閱讀-----

氣候變遷讓降雨更加極端

賴署長說:「可以說以後的降雨會非常集中在特定某幾天。就像剛剛講的,就是突然暴雨,然後接下來一個大乾旱。 」

無論是缺水還是淹水,氣候變遷造成的影響都不容忽視,賴署長表示,不只是降雨頻率會更低,降雨地區也會更加不平均,降雨的強度也會有所提升。

依照聯合國政府間氣候變化專門委員會最糟糕的預測(SSP5-8.5),到了這個世紀中,臺灣暴雨強度會比世紀初提升 20%,世紀末會提升 40%,即便是最優預測(SSP1-2.6),也會在世紀中提升 15.7%。

據上所述,氣候變遷讓全人類無法迴避「降雨不均造成的地區性缺水」,以及「降雨強度提升造成的地區性水災」這兩個問題。雖然個人、企業與政府都為了減緩氣候變遷有所作為,但賴署長也表示,我們該「從科學擁抱殘酷現實,對未來做最壞打算」。

簡單來說,若所有締約國都遵守聯合國氣候變遷大會(COP)的決議完成減碳工作,那氣候變遷也只是不再加劇,並不會立刻恢復到過去的型態,而只要有其中幾項沒有達成,那全世界就得面對更嚴峻的情況。

-----廣告,請繼續往下閱讀-----

回到開頭賴署長所說的 30 年,我們還有時間做好基礎建設,降低氣候變遷對人民造成的影響。「從2016年開始,我們就思考這些問題,思考說臺灣未來面對的自然環境,我們應該如何因應、構築一個怎麼樣的未來。所以當時我們就開始思考包括區域調度、多元水源等相關計畫。」

賴署長提到的「區域調度」相關計畫,即是目前正在進行的「珍珠串計畫」。

地區性缺水解決方案—「珍珠串計畫」

「珍珠串計畫」預計把台灣西部像珍珠一樣珍貴的水源,用聯通管線串聯起來,讓珍貴的水資源可以妥為應用。

臺灣降雨時間和空間差異極大,桃園至屏東等西部地區,在 5 月至 10 月是豐水期,11 月到隔年 4 月是枯水期,然而北北基與宜蘭等東北地區,卻是完全相反,10 月至隔年 4 月有東北季風帶來的豐沛雨量,此時若能將東北地區的水調度至西部地區,將能緩解西部地區缺水。而未來面對更加極端的降雨情況,也能提供一定的支援。

珍珠串計畫的聯通管線預計將在 2028 年全數完成,而在 2021 年旱災中搶先開通的「桃園—新竹備援管線」,從桃園每日調度 20 萬噸的水給新竹,在旱災期間總計調度 2300 萬噸,約是 0.6 座寶山第二水庫的蓄水量,不僅讓新竹地區免於限水所苦,也讓新竹科學園區的科技業能維持生產。

-----廣告,請繼續往下閱讀-----
寶山第二水庫。圖/Wikipedia

不僅管線串聯,更要開創「多元水源」

有了聯通管串聯,就能解決缺水問題嗎?賴署長給出否定答案:「如果只有一種供水方式,突然有意外就完了。當然要有多股水源,多條管線。」

過往開發新水源,直覺想到的是蓋水庫,不過蓋水庫不僅要謹慎評估該地是否有充足水源,考慮安全性及經濟性是否合理,更要謹慎評估對環境生態的影響,通常一座水庫從規劃到興建完成,需耗時數十年的時間。

為了因應氣候變遷與逐步增加的用水量,水利署目前已朝「多元水源」的方式來尋找新水源,像是南化與寶山第二水庫藉由「溢流堰加高」擴增蓄水量,臺中水楠經貿園區淨化污水再利用的「再生水」,以及以及高屏溪的「伏流水」與新竹的「海淡水」,這些多元水源將與水庫水、川流水及地下水等傳統水源共同支撐起全臺用水。

此外,水利署也正想辦法讓洪水資源化,臺灣山高水急,大雨過後的洪水大部分都流向大海,只有少部分可被水庫收集,像是「河槽人工湖」就能增加收集水量,來供應日常使用,或補注超抽的地下水。

地區性強降雨解決方案—從「不淹水」轉變為「耐災韌性」

受氣候變遷影響,近年臺灣短延時強降雨頻率提高,低窪地區或排水系統也時常發生淹水,顯現目前臺灣防洪工程的不足。

-----廣告,請繼續往下閱讀-----

過去臺灣由於預算有限,治水策略多以建護岸、堤防或下水道為主,然而這種作法有其極限,即便已完成防洪工程的區域,也未必能面對未來極端降雨的情況,為此,水利署改變過往治水策略,從「不淹水」轉變為「耐災韌性、與水共生」,而在多年來中央與地方政府的聯合推動下,各地開始邁向「逕流分攤」的方式來治理水患。

「逕流」是指下雨時地表土壤無法吸收的水份,在地表形成的水流。「逕流分攤」是在淹水較為嚴重的河段,於新建(或改建)公共設施時,以不妨礙設施功能,建設洪水期間可收集逕流的滯洪池。此外,為提升土地耐淹能力,「出流管制」政策也要求開發單位,必須提升建築物的透水、保水與滯洪能力。

以日本東京鶴見川為例,由於東京市的發展,導致土地保水、滲透能力降低,洪水尖峰流量增加,更容易發生淹水。為此日本將橫濱日產體育館建置成兼具滯洪功能的公共設施,來應對鶴見川的洪峰流量,館場下方的滯洪池高度高達五公尺,平日則作為停車場使用。

橫濱日產體育館。圖/Wikipedia

「我們希望所有的土地都能更有效地利用,例如我們學校的操場,如果下面是一個蓄水池,那大雨下來是不是就不容易淹水了?」賴署長表示,近期開工的鹿港洛津國小的地下停車場兼滯洪池工程,正是「逕流分攤」的案例。

風暴將至,我們能做好準備嗎?

賴署長略為嚴肅地說:「我不期待氣候型態會回到 30 年前。」並重提了在 IPCC 的最優預測(SSP1-2.6)下,臺灣仍必須在 2050 年面對暴雨強度提高 15.7% 的情況。

-----廣告,請繼續往下閱讀-----

無論我們怎麼做,風暴已確定到來,那麼我們能事先做好準備嗎?賴署長說:「我認為我們能做到的,是使用適當的方法趨吉避凶。」隨著科學進步,模擬變得越來越精準,但終究還是預測,存在不確定性,雖然 2050 年最優預測是暴雨強度提高 15.7%,但上限呢?真的就只有前面提到的 20% 嗎?賴署長提醒我們要面對氣候變遷的現實,並在面臨風暴來臨之前做好準備,這個準備不只要能面對預估強度,更要有足夠的韌性,來面對超越預期的情況。

最後,賴署長說:「每個巨大的改變,一定是從一個微小的生活習慣,比如說開始固定運動,或是固定減少能源浪費。」也許現在看來微不足道的小動作,都將是未來的「重要一步」,就像蝴蝶效應一樣。

相信科學數據,擁抱不確定性,積極做出因應,這不僅是賴署長個人的想法,也是水利署全體的信念,唯有如此,才能在超乎預期的「風暴」來臨之前,做出最好的選擇。

-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
末日模擬!從氣候變遷到核戰爭,人類未來將走向哪個結局?
PanSci_96
・2024/11/19 ・1957字 ・閱讀時間約 4 分鐘

科學家模擬的末日場景

隨著二氧化碳排放持續增加,全球的政治局勢日益緊張,世界上各國的承諾屢屢在國際會議中被辜負,戰爭的結束也似乎遙遙無期。警示世界末日的「末日鐘」越來越接近午夜,人類與地球的未來變得越來越悲觀。

這並非一種刻意的悲觀,而是基於氣候變遷和人類衝突升溫的現實。許多人或許和我一樣好奇,末日會不會真的臨近?如果會,那又會是什麼樣的場景?是氣候徹底失控的《明天過後》?還是生態浩劫後的全面沙漠化,需要武力生存的《沙丘》和《瘋狂麥斯》?或者是核戰之後,所有人生存在廢墟中的《異塵餘生》?

我們的未來走向尚未確定,但科學家已經率先模擬了不同的可能結局,讓我們可以一窺未來的模樣。這些模擬告訴我們,如果人類繼續走某些路徑,地球的結局將是如何。至於我們是否能避免這些結果,就得由全體人類共同決定。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

如何模擬出整顆星球的氣候變化?

要模擬整顆星球的大氣變化是一項龐大的任務,至少需要三大要素:理論、資料、和計算資源。

-----廣告,請繼續往下閱讀-----

首先,人類對氣候系統的物理和化學模式需要有足夠的了解,也就是大氣理論必須足夠完備。其次,需要足夠多的資料來模擬整個行星。這些資料包括地球半徑、自轉速度、海洋分布、太陽輻射、大氣成分等等,甚至是地表的狀況與地形。台灣的中央山脈就能影響到西太平洋的颱風走向,進而影響整個東亞的氣候。如果希望盡可能還原地球的真實情況,還需考量海洋的垂直溫度分布、植物分布導致的生物地球化學反應等。

最後,還需要強大的計算資源,也就是超級電腦。由於資料量龐大,每個參數的小誤差都可能引發蝴蝶效應,影響到預測結果。因此,科學家通常會微調各項參數,並對每組參數進行多次計算,這些都需要大量的運算能力。

模擬沙丘中的荒漠星球

科幻小說《沙丘》中的厄拉科斯,經布里斯托大學模擬,揭示未來氣候可能。圖/wikimedia

科幻小說《沙丘》中的厄拉科斯(Arrakis)是一顆完全荒漠化的星球,英國布里斯托大學的亞歷山大·法恩沃斯等人曾對這顆星球進行了模擬。他們使用在研究地球氣候變遷時使用的氣候模型,並結合小說中的設定,如大氣中的二氧化碳濃度和臭氧含量等,模擬了 500 年後的厄拉科斯氣候。

模擬結果顯示,厄拉科斯的赤道和熱帶地區夏季高溫達 45 度,冬季不低於 15 度。而高緯度地區則更為極端,夏季高溫可達 70 度,冬季最低可達 -75 度。由於大氣濕度和雲層的存在,極地反而比赤道更溫暖。此外,儘管小說中描述厄拉科斯幾乎沒有降雨,但模擬顯示高緯度和山區仍會有少量降雨。

-----廣告,請繼續往下閱讀-----

這些結果顯示,科學家不僅愛科幻,也樂於用科學方法來驗證科幻中的設定。這些模擬能讓我們更了解地球的氣候系統,並讓我們警惕荒漠化的危機。

核戰後的世界:核冬天的可怕景象

如果人類全面爆發核戰爭,戰後的世界會是什麼樣子?研究顯示,大規模的核武攻擊將產生大量的輻射塵和煙灰,進入大氣層並遮蔽陽光,導致「核冬天」的到來。

2019 年的一篇研究模擬了美俄之間的全面核戰爭,結果顯示,爆發後的第一年,全球氣溫將大幅下降,北半球的夏季溫度將下降 25 度,冬季氣溫則會降至零下,植物生長期縮短至僅剩 25 天。煙灰遮蔽陽光,導致全球糧食供應崩潰,第二年可能有 50 億人面臨飢餓。

這些模擬結果告訴我們,全面核戰將帶來毀滅性的後果,核冬天將使人類無法正常生活,這是真正的末日場景。

-----廣告,請繼續往下閱讀-----
核戰模擬顯示,氣溫驟降與糧食崩潰將致全球大饑荒。圖/envato

地球的未來會是如何?

地球未來的命運取決於我們今天的選擇。如果我們對氣候變遷置之不理,兩極冰帽將完全融化,海平面上升,許多沿海地區將被淹沒。雖然不至於像《水世界》中那樣極端,但低地區域的居民將面臨嚴重的生存挑戰。

如果人類選擇繼續衝突,甚至爆發毀滅性戰爭,我們的未來將如《瘋狂麥斯》或《異塵餘生》般,生存在廢墟中,面對乾旱、糧食短缺與持續的環境破壞。

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
新北「氣候行動徵件」活動總獎金 8 萬元 號召青年展開行動成為氣候領袖
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/23 ・1247字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

全球正面臨急遽的氣候變遷,世界公民必須共同面對,環保局發布「新北 2024 國際青年氣候行動論壇——氣候行動團隊創意徵件」,鼓勵臺灣青年從校園或社區出發,針對觀察到的環境問題提出行動方案,入選隊伍將獲得專業導師指導並帶領實踐提案內容,最終勝出者不只可獲新臺幣 4 萬元獎勵金,更有機會放眼國際,於年底的紐約荒野中心青年氣候高峰會上展現成果。環保局將於 5 月 24 日下午辦理線上說明會,徵件日期至 6 月 24 日截止,歡迎有興趣參與的學生及老師報名參與!

報名網址:https://reurl.cc/Ke0gQn

環保局表示,新北市已連續 3 年辦理青年氣候論壇,建立與青年交流對話的平台,今(113)年更持續與紐約荒野中心(The Wild Center)攜手,號召青年以行動應對氣候變遷,培養青年成為氣候領袖。實踐淨零永續的道路上,青年的角色非常重要,去年新北市青年氣候論壇邀請到荒野中心氣候行動主任 Jen Kretser,分享了許多紐約青年行動案例,像是大學生於學院頂樓設置太陽能板,實現「上課教室自主發電」的校園計畫,又如同學自發建立校園田園、自主提出畢業晚會減塑需求等,引起與會臺灣青年們的廣大迴響,提出許多問題進行討論。

新北市環保局「2023 新北青年氣候論壇」,邀請到美國紐約荒野中心氣候行動主任 Jen Kretser(左 3),分享了許多紐約青年行動案例

環保局長期關注青年行動力,辦理「環保小局長計畫」、「永續未來學院」、「青年氣候論壇」等活動,致力推動全齡化的環境教育,今發布的「氣候行動團隊創意徵件」,進一步鼓勵臺灣「青」世代成為行動發起者,提出自己的問題觀察與創意解方,並真正落實行動,由青年自己決定從何處開始改變,即使是日常生活中觀察到看似微小的行動,都有可能在實踐後擴大影響到整個校園、社區,甚至整座城市。

環保局說明,氣候行動徵件邀請全臺高中職及大專院校學生,透過影像紀錄、實體行動、循環設計、社群媒體傳播等多元方式呈現創意永續行動提案,徵件至 6 月 24 日止,經初選後 4 組入選隊伍將在新北市展開為期一個月的短期氣候行動實踐,同時由環保局媒合專業導師進行線上課程,最後於 8 月「新北 2024 國際青年氣候行動論壇」進行決選,優勝的隊伍除可獲得獎勵金外,更能持續推展氣候行動並製成行動影片,影片有機會在年底紐約荒野中心青年氣候高峰會上進行分享,讓青年氣候行動與國際接軌。

環保局將於 5 月 24 日下午辦理線上說明會,歡迎有興趣參與的學生及老師報名參與,徵件簡章及更多相關資訊可至環保局官網或「新北 2024 氣候行動團隊創意徵件」活動網站查詢。

※ 5/24 徵件線上說明會報名網址:https://reurl.cc/Ke0gQn
※ 環保局官網簡章:https://www.epd.ntpc.gov.tw/Article/Info?ID=11254
※ 「新北 2024 氣候行動團隊創意徵件」活動網站:https://greenage2024.com

-----廣告,請繼續往下閱讀-----

本文轉自新北市政府環境保護局網站

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia