1

6
1

文字

分享

1
6
1

為何聽音樂能達到忘我的「出神」體驗?——以腦造影剖析音樂與大腦的關係

科學月刊_96
・2021/12/06 ・3361字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/蔡振家|臺大音樂學研究所副教授,著有《另類閱聽:表演藝術中的大腦疾病與音聲異常》、《音樂認知心理學》等。

聆聽某些音樂時,你曾體驗過一種喪失自我感受,無法妥善控制思想或行為的狀況嗎?這種感受被心理學家稱為「出神」。今年一群加拿大認知神經科學家們發現,當音樂導致出神狀態時,身體感覺的改變可能跟右腦角回的活化有關。而過往文獻也指出,這個腦區若是功能異常,可能導致人們產生「出體經驗」,覺得自己的靈魂與身體相互分離。

  • 你是否曾經忘卻自我的存在?你是否嚮往天人合一、超現實的感官體驗?

有些人能夠進入特殊的意識狀態,暫時喪失了平時的「自我感受」,甚至無法妥善控制自己的思想或行為,這就是心理學家所說的出神(trance,也譯為昏迷)。有些出神狀態純屬精神病理現象,此處暫不討論;本文特別聚焦於某些宗教文化中提及的出神,它跟冥想、催眠有關。人類學家研究了全球近 500 個社會,發現其中大約有一半具有起乩或附身出神(possession trance)的傳統,且其他形式的出神狀態也時有所聞——放眼全世界,通靈少女其實一點也不孤單。

  • 為什麼我們能進入「出神」狀態?

從演化的觀點來看,人類之所以能進入這種特殊的意識狀態,有部分原因可能與遠古時代社群之間的戰爭有關。在某些文化中,群眾在戰鬥之前會一起跳勇士舞,並且齊聲吶喊,這些行為可以讓他們共同進入戰鬥出神(battle trance)的狀態。在這種意識狀態下,人們會喪失自我、不假思索地服從領袖,做出平常不敢做的破壞與殺戮舉動,而且也不太會感到恐懼與疼痛。可見這些「犧牲小我」的信念與行為,在人類遠祖的戰鬥行為中,應該是受到鼓勵的。

另外,有些出神狀態則比較平靜、神祕,在朦朧恍惚之中,喪失個人的存在感,彷彿進入了宗教或神話裡的奇幻世界。無論是催眠、冥想、誦經、跳舞,都有可能導致這類的出神狀態,而在許多古老的文化中,常以鼓聲或木魚聲引導人們出神。研究指出,每分鐘約 240 次的單調聲響,較容易讓聽者改變意識狀態,沉浸於無邊無際的時間之流,體驗到種種宗教境界與性靈感悟。

以科學的腦造影,研究玄祕的出神

  • 如此神祕的意識狀態,我們可以用科學方法研究嗎?

2015 年,認知神經科學家發表了一項研究,他們在實驗中以單調的鼓聲讓參與者進入出神狀態,同時以功能性磁振造影(functional magnetic resonance imaging, fMRI)測量他們各個腦區的活化情形。結果發現,在參與者出神之際,產生內在思維的腦區與負責控制的腦區之間,產生了更緊密的互動,這可能是因為後者提升了前者的主導地位,讓人們能更專注於內在世界,同時忽略外界的單調聲響。

-----廣告,請繼續往下閱讀-----

該實驗也發現出神狀態的另一個腦部活化特徵:負責聽覺的低階腦區,彼此缺乏互動,好似對單調的聲響「聽而不聞」。這項研究顯示,當人們聽到具有高度可預測性的聲響時,各個神經網路之間的互動會產生改變,其中負責控制的腦區,一方面把注意力移開感官環境,不再處理外界傳入的訊息;另一方面,則放大了對於自我內在世界的注意力。在一些宗教文化中,以單調的鼓聲或木魚聲輔助冥想,可以讓人啟動一趟精神旅程,藉由產生內在思維的腦區編織想像,對於人生產生新的洞察。

藏傳佛教的「歌唱碗」,也稱為喜馬拉雅碗或冥想碗,可用於冥想和紓緩壓力。圖/Pixabay

音樂導致出神狀態時,身體感覺也會有所改變?

有關於音樂導致的出神狀態,以上的解釋難道是唯一答案嗎?今(2021)年,加拿大認知神經科學家從另一個角度研究出神,得到了非常有趣的結果,以下略作介紹。

在某些古老的音樂文化中,伴隨著音樂與舞蹈的儀式,有些人可以大幅改變身體感受,甚至覺得被祖靈附身。這種活動的特點之一,是讓自己跟他人做出類似的舞蹈動作,從而消弭了自我與群體間的差異,達到「去個人化」(deindividuation)的效果。早在幾千年前,非洲部落中的一些祭司,就經常以音樂及舞蹈呼喚他們的祖先,讓祖靈進入自己的身體。

一位具有 20 年南非歌舞祭儀經驗的女性,參加了功能性磁振造影實驗,讓科學家掃描她的大腦。實驗採用分塊設計,也就是在一個時間範圍內進行一項任務,其中休息區塊長 30 秒,聽音樂想像舞蹈的區塊長 60 秒,兩種區塊交替 5 次。

-----廣告,請繼續往下閱讀-----

在聽音樂想像舞蹈的任務中,這位受試者嘗試進入出神狀態,就像她平常所做的歌舞祭儀,只不過在掃描機器內無法真的做出舞蹈動作,只能憑空想像。掃描完成後,受試者立即對 5 個聽音樂想像舞蹈的區塊作評量,指出她剛剛進入出神狀態的程度,結果這位受試者將 5 個區塊中的最後 2 個區塊,評定為高度出神狀態。這個結果其實並不令人意外,畢竟在掃描機器內要習慣掃描時的噪音、還要習慣身體不能任意移動,需要一點時間去適應。

有趣的是,受試者在實驗之後表示,當她進入高度出神狀態的時候,一如往常產生種種感受,包括手指刺痛、噁心,以及看到奇特的光、聞到奇特氣味。她看到自己在未知地點的上空漂浮,也體驗到高度敏銳的身體感覺。她的眼瞼快速顫動,呼吸增加,心中充滿喜樂。此外,她也彷彿看到自己與其他祭司一同跳舞的景象。

而這位受試者的腦部活化型態,似乎與她以上描述的感受相互呼應。受試者在處於高度出神狀態時,伴隨著右腦頂葉一個稱為「角回」(angular gyrus,圖一)的腦區活化增加。而過去的文獻指出,這個腦區若是功能異常,可能導致出體經驗(out-of-body experience),覺得自己的靈魂與身體相互分離。此外,一些文獻也提到,在祈禱和冥想期間,若對於自我的存在有特殊感受,則右腦角回的活化亦會增加。而有些中風患者的右腦頂葉受損,則是會導致單側空間忽略(unilateral spatial neglect)的症狀,使他們無法察覺到單側的空間訊息,當這類患者聆聽自己喜愛的音樂時,單側忽略的症狀會有所緩解。腦造影結果顯示,悅耳音樂會導致右腦角回附近的功能產生變化,因此綜合以上各項研究可推斷,當音樂導致出神狀態時,身體感覺的改變可能跟右腦角回有關。

圖一:右腦中的角回位置。當音樂導致出神狀態時,身體感的改變可能跟右腦角回有關。圖/Wikimedia Commons

以現代科學,剖析音樂與大腦的關係

另一個有趣的發現,是關於出神狀態下聽覺與視覺訊息的處理。前面我們提到一篇 2015 年的論文,以單調的鼓聲誘發出神,結果發現大腦似乎對外界聲響聽而不聞。不過也有其他的出神狀態,並非完全沉浸於內在世界,而是必須持續注意音樂的律動,加拿大學者在今年研究的南非歌舞祭儀,就屬於後者。根據參與這項研究的受試者描述,她在高度出神之際,心中浮現一個鮮明的景象:自己正在跟其他祭司一同跳舞。她的腦造影結果也顯示,在高度出神之際,大腦聽覺皮質與視覺皮質的活化都變強,因此,她當時應該是專注地聆聽著音樂,並且想像群舞場景,而這也會活化相關的記憶與情感。

-----廣告,請繼續往下閱讀-----

筆者在讀了這篇論文之後,不禁想到多年前課堂上的一段場景。當時我在臺北藝術大學的傳統藝術研究所兼課,有一天正好介紹到峇里島的甘美朗音樂(Gamelan),指出這種音樂可以讓人進入出神狀態。我播放了一段甘美朗音樂之後,班上一位來自道士家族的同學表示這種音樂實在太有效果,再聽下去就要當場進入出神狀態了!我看他說得鄭重,連忙停掉音樂。

甘美朗(Gamelan)是印尼歷史最悠久的一種民族音樂。圖/Pixabay

在大型演唱會、原住民歌舞祭儀等場合,我們都可以觀察到音樂的深刻力量,它能讓人們暫時改變自我,進入奇妙的意識狀態。在許多人類文化中,這種魔法已經存在了數千年,而如今科學家們也正逐漸揭開它的面紗,在腦中追尋身心靈的美麗境界。

延伸閱讀

  1. Rogerson, R.G., Barnstaple, R.E. and DeSouza, J.F., Neural Correlates of a Trance Process and Alternative States of Consciousness in a Traditional Healer, Brain Sci, Vol.11(4):497, 2021.
  2. Hove, M.J. et al., Brain Network Reconfiguration and Perceptual Decoupling During an Absorptive State of Consciousness, Cereb Cortex, Vol.26(7):3116-24, 2016.
  • 〈本文選自《科學月刊》2021 年 12 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
文章難易度
所有討論 1
科學月刊_96
249 篇文章 ・ 3653 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

5
1

文字

分享

0
5
1
在連接體迷宮尋找生命意義——專訪 2023 Taiwan 顯微攝影競賽銀獎得主劉柏亨
顯微觀點_96
・2024/04/29 ・4856字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

擴張顯微術、免疫螢光標記搭配雷射共軛焦顯微鏡,果蠅腦部緻密的多巴胺神經網路展開在我們眼前。初看猶如璀璨星雲,接近端詳就能發現神經束繁複清晰,聯繫著綻放光芒的神經元,猶如從太空站觀看的都會夜景。

這張精彩的作品「Wiring the Brain」,是以果蠅大腦探索連接體學,尋找腦部運作奧秘的路線圖之一,由清華大學腦科學中心的博士生劉柏亨拍攝。獲得 2023 Taiwan 顯微攝影競賽銀獎,不僅是劉柏亨在追求科學真相途中的額外收穫,也是他對自己多元興趣的重要實踐。

從材料工程到腦神經 追求變化的躍動旅程

大學時主修材料科學的劉柏亨,從「自修復材料」開始,研究興趣逐漸從工程領域轉向仿生(Bio-inspired)科技。他的碩士班題目是以生物晶片模仿心臟,作為藥物篩選平台。對他自己和指導教授都是嶄新的題目。

-----廣告,請繼續往下閱讀-----
清大腦科學中心是劉柏亨建立神經生物學知識與系統性思考的地方
清大腦科學中心是劉柏亨建立神經生物學知識與系統性思考模式的殿堂,也是每天磨練科學技藝的工作坊。 攝影:楊雅棠

「我是個很好動的人,因此選擇了一個全天都在活動的器官。」

——劉柏亨說,當時雖有學長研究細胞遷移,但對他來說還不夠「動感」,因此選擇團隊中沒有先例的心臟作為研發目標。

以仿生材料模擬心臟的過程中,劉柏亨意識到,「我對細胞、組織的基本原理還不夠了解,容易以工程師的觀念模擬心臟特性,有時會違反真實、整體的生理學。」他因此萌生了建立生醫知識基礎的求知慾。

劉柏亨想要挑戰更複雜的器官,進入江安世院士領導的清華大學腦科學研究中心攻讀博士,將短期具體研究目標放在「腦神經的影像化」,長期的探索方向則是「系統性地理解『生命現象』」。

電子顯微鏡下的果蠅
電子顯微鏡下的果蠅。果蠅的基因與人類同源性高,遺傳工程易於操作,並能呈現複雜多樣的行為,是研究腦科學的關鍵模式生物。Courtesy of Wellcome Collection.

無畏複雜 以系統視野理解生命

劉柏亨說明,上一階段的生命科學著重精準分析特定分子的功能,逐步研究細胞生理的單一面向。但人體不只由數種分子或細胞組成,而是上兆個細胞形成群體、互相影響,才展現出人類個體的生命表現。

系統生物學(Systems Biology)觀念,整合地理解人類生命,是劉柏亨著迷的目標。他說,因為分子與細胞生物學研究充分累積,現今的生醫知識基礎與技術成熟,已形成科學家投入系統生物學的良好時機。

-----廣告,請繼續往下閱讀-----

其中最吸引他的,是呈現腦神經系統的「連接體(Connectome)」及探究其整體運作的「連接體學(Connectomics)」。

連接體學是探究精神官能症狀、神經性疼痛、認知退化等腦部相關疾病的最新路徑。解碼線蟲、果蠅等模式生物較為簡單的神經連接體,將能推動對人類腦部運作方式的理解,也是神經生物學與醫學的關鍵方向。

系統生物學重視聯繫與整合的思維,不僅是劉柏亨追求知識的途徑,也延伸了他對生物學專業與社會的觀點。

這位接連跨足不同領域的博士生說,擷取腦神經影像的程序從前端的生物材料製備,到後端影像系統的工程科技都不可或缺,不是一個人的專業能力能夠包辦。

-----廣告,請繼續往下閱讀-----

他因此體悟,每張顯微影像都結合多種專業,而生物學的每一步進展也是不同領域科學家努力的整體成果,並非一個天才在單一領域獨力鑽研而成。

「許多不同的神經細胞彼此透過突觸聯繫彼此,建構出有神奇功能的腦。就像是人與人建立連結,建構社群與社會。」

——劉柏亨在頒獎典禮現場如此介紹自己獲獎的顯微影像。
果蠅腦連接體
果蠅幼蟲腦連接體的全腦圖譜,終於在 2023 年上旬由霍華.休斯醫學研究所、約翰.霍普金斯大學與劍橋大學的團隊合作完成。加入線蟲、海鞘幼蟲(Ciona intestinalis larva)、沙蠶幼蟲(Platynereis dumerilii larva)等生物的行列,達到突觸等級的完全連接體地圖。 Courtesy of Science

工程師的生物學 如調酒般逐步改良

這張螢光染色的果蠅腦神經多巴胺網路圖,輸出到超過人腦的截面積,依然清楚呈現星羅棋布的迴路與神經元。跨越繞射極限的清晰成像,要歸功於擴張顯微術(Expansion Microscopy)與劉柏亨逐步改良工法的耐心。

劉柏亨解釋,擴張顯微術中「分解」步驟對螢光訊號最為關鍵。蛋白酶能夠有效分解(digest)樣本的蛋白質骨架,讓樣本順利擴張,但是會犧牲不少螢光蛋白與解析度。

替代方法是以藥物促使蛋白質變性(denature)降低張力,維持螢光訊號強度,但是樣本擴張過程會有較多阻撓,導致結構變形。劉柏亨說,

-----廣告,請繼續往下閱讀-----

「結構變形,就不是原本要追求的東西,訊號再強也沒有用。」

劉柏亨與擴張後只有灰塵大小的果蠅腦樣本。
劉柏亨與擴張後依然只有灰塵大小的果蠅腦樣本。 攝影:楊雅棠

他笑稱自己「『像個工程師』地追求實驗最佳化,把兩種分解途徑混成雞尾酒,每一杯都稍微調整改良。」他調和兩種分解概念,嘗試不同藥劑濃度、工序、實驗溫度;或以生物素化(Biotinylation, 在樣本擴張前使用), 鍵擊化學(Click Chemistry, 在樣本擴張後使用)放大螢光訊號。

經過了近四十份的樣本製作與拍攝,終於得到滿意的影像。他敘述製作過程的語氣輕快,其實每一次擴張顯微術的製備與拍攝,都是漫長嚴謹的科學工作。

每一組樣本(大約十顆果蠅腦)的免疫螢光染色工期大約一週,擴張過程耗時三至四天;以轉盤式共軛焦顯微鏡拍攝單顆擴張的果蠅腦樣本,則需要 18 小時左右;接著要花上一整天,等待軟體拼接壓縮上萬張圖片。

獲獎的「Wiring the Brain」就是超過 10 萬張顯微照片的拼接疊合而成,包含將原本立體的影像透過專用軟體壓縮成平面。劉柏亨譬喻,「打開全新的 iPhone15 Pro,按住快門連拍直到記憶體滿載罷工,就是一張果蠅連接體影像需要的容量。」

-----廣告,請繼續往下閱讀-----

繁密的連接體影像,不僅讓劉柏亨在連接體學的迷宮中前進,也能滿足他對美感與藝術的追求。在實驗室外也是攝影愛好者的劉柏亨,本學期正在修習清大科技藝術研究所曹存慧老師的生物藝術課程。

藝術家的生物學實驗室:向外延伸感官 向內反思存在

劉柏亨興奮地分享,他正與組員規劃虛擬展覽「藝術家的生物學實驗室」,模擬一個身懷生物科技的藝術家,會如何規劃他的實驗室。

腦機介面、組織再生、基因工程,是三個劉柏亨想要優先呈現的技術。

從編輯 DNA,改變蛋白質,最後型態出現差異,基因工程是現代生物技術的基礎。組織再生可以展現生物體修復能力與生醫工程的可能性。腦機介面則是最直接觸及心智能力、感官範疇,也結合最多精密工程技術的領域。

-----廣告,請繼續往下閱讀-----

「這個藝術家本身帶有基因或感官的缺陷,試圖用生物科技延伸他的感官。參觀者能體驗生物科技延伸感官、改變身體的能力,並從中反思我們作為個體存在於環境中,與環境互動的關係。」

——劉柏亨解釋藝術計畫的初衷,一如對顯微技術的投入。
劉柏亨善於以日常生活譬喻科學知識。圖為20203顯微攝影競賽作品展覽現場
劉柏亨善於以日常生活譬喻科學知識。圖為 2023顯微攝影競賽作品展覽現場。攝影:林任遠

與藝術學院同學合作的過程中,劉柏亨發現組員們對生物學的知識足夠,較為不同的是,藝術領域的組員對於色彩組合或實驗操作,常常比科學領域的學生更加直覺,帶來浪漫的不確定性及意外的創造性。這種風格能與劉柏亨的藝術追求產生共鳴,但是科學研究必須要求精確,在浪漫與精確之間拿捏,也是他練習的目標。

另一方面,藝術學院的組員也常引導劉柏亨設計出更簡潔的生物學科普展示;或是透過討論,讓他想傳達的科學概念更具體明確。

使新奇成為日常元素 顯微鏡是好奇心泉源

從攝影、腦神經到生物藝術,劉柏亨喜歡讓心智保持活躍與好奇。他形容自己,「每天我都需要新的刺激,我喜歡讓學習新事物成為生活的常態。」他對顯微技術的投入,也是由碩士班期間的好奇心開啟。

當時的實驗室備有共軛焦顯微鏡,劉柏亨並不負責保養,也不須理解光路,但是好奇心驅使他向前來校正的工程師陳正義學習。劉柏亨說「正義哥算是我的顯微技術啟蒙老師,只要他出現在實驗室,我就會站在旁邊追問。」

-----廣告,請繼續往下閱讀-----

現在劉柏亨遇到超越既有能力的顯微技術問題,不僅會和團隊成員討論,也會向其他實驗室的技術人員,甚至教授求教。參與不同團隊合作架設光學系統的過程,讓他深入了解雷射共軛焦顯微技術的原理,並體驗以精密工程逐步實現理論。

劉柏亨認為,顯微技術不僅是延伸感官的工具,更提供理解周遭世界的全新方式。隨著理解方式改變,好奇心與探索的內在動力會源源不絕地湧出。

「顯微鏡其實是激起好奇心的動力引擎。」

——劉柏亨認為從日常生活進入微觀世界,最重要的回饋是對人內在的激勵,不只是外在的觀察。

從機器管家出發 追問生命的意義

對自己的研究目標轉換,劉柏亨說「心臟的細胞運作起來具有高協同性,像是訓練有素的樂儀隊。但腦神經的運作瞬息萬變,隨時變化,更像是社會中的人際連結。」儘管像是越級打怪,他仍想探索更複雜的生命系統。

說到自己對生物學的內在動機,劉柏亨回憶,「我一直記得電影《機器管家》(Bicentennial Man,1999 年上映)。透過機械工程組合無機的零件,可以模擬一個真實的人類,與人建立感情。其中一定需要對生命原理的了解,非常神秘。」

對複雜生命現象進行整合研究,進而建立精密的仿生系統,這個系統不僅可能成為藥品篩選、器官再生平台,在更遠的未來可能成為人的延伸,甚至模仿人的整體生命表現。

機器管家
《機器管家》以晶片使機器得到情感能力的技術令人神往,同時也不斷促使觀眾反思「人」與「生命」的定義。 Courtesy of Wikipedia

這個猶如科幻小說楔子的目標,由劉柏亨敏銳的好奇心與多元的科學技藝積累堆砌而成。他說,

「在理解、實現這個系統的過程中,我會掌握生命的意義。」

參考文獻

查看原始文章

討論功能關閉中。

0

3
0

文字

分享

0
3
0
迴盪在耳際的聲音——迴響與聆聽知多少!
雅文兒童聽語文教基金會_96
・2023/06/28 ・2048字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/樊家欣|雅文基金會聽語科學研究中心 助理研究員 

P. LEAGUE 最大咖球星林書豪加盟鋼鐵人隊,帶領鋼鐵人打出新氣象,並獲選為籃球單月最有價值球員「三連霸」,堪稱史上第一人!你,也愛打籃球嗎?當你在體育館時,是否有察覺到周圍的聲音跟平常不太一樣呢? 

迴響,能讓聲音隔空變魔術!

體育館一般有挑高的設計以及較大的室內容積,當其中有聲音產生,傳遞到周圍較硬的介質表面「反射」回來,而產生延遲和失真的現象,稱為「迴響(Reverberation)」。由於空間容積與迴響時間成正比,空間越大,迴響時間隨之延長。沒有進行吸音處理的體育館,運球聲、腳步聲、群眾吆喝聲等人造聲音將迴盪在空間中,聲音必須經過更長的時間才會完全消失,使人在體育館倍感喧騰。

 聲音傳遞出去遇到牆面,反射回來形成迴響。圖/shutterstock

善用設計,打造餘音繞樑的迴響聲學空間 

迴響在不同的空間,會因周圍反射的材質,展現不同的聲景樣貌,例如:音樂廳就是利用各種不同的「形狀」「材質」來平衡聲音,再將之導向聽眾。

早期音樂廳的「形狀」只有鞋盒式,台北國家音樂廳就是歐洲數百年經典傳統鞋盒式音樂廳,平面觀眾席的聲響很好,但是後面的眺望台座位,由於天花板空間被擋住,與前面造成相異聲場,聲音就顯得不夠飽滿;而高雄衛武營音樂廳,其內部設計柏林愛樂廳一樣,採用的是葡萄園式音響設計,所有觀眾皆處在同一個屋簷下,觀眾席如同葡萄園般由舞台四周錯落展開,享受相同的音場,因此聲響均等優美。

-----廣告,請繼續往下閱讀-----

從細部來看,「材質」平坦而堅硬的表面能反彈聲音、柔軟的表面可吸收聲音,粗糙的表面則會將入射的聲波散射。在牆壁和天花板上裝設經特別設計的嵌板,就能使聲音在抵達你的耳朵之前,先被調整並優化[3]。藉由空間整體的設計,能讓迴響成為小精靈,締造優美的聲學空間。

打造餘音繞樑的音樂廳。圖/shutterstock

迴響時間過長,對聆聽語音是個壞消息⋯⋯

美國國家標準協會(American National Standards Institutes, ANSI)於 2002 年建議迴響時間(Reverberation Time)少於 600 毫秒(= 0.6 秒)有最佳的語音理解和學習。在安靜的情境中,如果反射回來的語音較早抵達聽者的耳朵,則原聲和迴響會在聽覺系統裡整合,可能提升語音辨識度(Speech Recognition);而較晚抵達的迴響,則不會與原聲有加成的作用,反而會遮蔽或模糊原本的聲音,而使語音辨識表現下降。除了語音辨識度之外,也可能因聲音的失真,而使聆聽變得費力。

聆聽費力度(Listening Effort)為一更敏感的指標,在一些迴響時間過長的情境中,即使語音辨識度沒有下降,但聆聽者可能因著迴響,而使聆聽造成負擔,或進一步使記憶或理解力下降[5],相關文章可以參考連結。因此,迴響時間過長,會提高語音辨識的難度和增加聆聽費力度。

善用科技,讓聽損者輕鬆聽清楚

一般人在有迴響的地方聽講可能會覺得比較不清楚或費力,而對於有聽力損失的人來說,會更容易受到迴響的不利影響[4] [6]。因此,許多配戴助聽器或人工電子耳的聽損者,在聽講或聲音環境較為複雜的地方會搭配使用輔助聆聽裝置(Assistive Listening Device),如T線圈(Telecoil,又稱 T-coil)、藍芽及數位遠端麥克風等。此類裝置可將聲音訊號轉換,以無線的方式傳輸至助聽器/人工電子耳,來克服環境中迴響的干擾或距離因素,幫助聽損者聽得更清楚也更輕鬆[1] [2],相關文章也可參考連結

-----廣告,請繼續往下閱讀-----

綜言之,迴響在不同的聲學空間會產生不同的效應:在設計不良的空間會產生聽覺上的干擾,而在好的聲學空間則能使聆聽成為一種享受;另外,藉著輔助聆聽裝置也能幫助我們克服迴響等外部因素而有好的聆聽

參考文獻

  1. 吳彥玢(2019)。助聽器使用者使用數位遠端無線麥克風系統與動態調頻系統之比較〔未出版之碩士論文〕。國立台北護理健康大學語言治療與聽力研究所。
  2. 林郡儀、張秀雯(2016)。校園聽覺環境及聽覺輔具之應用發展。輔具之友,39,29-34。
  3. 凌美雪(2018年08月14日)。鞋盒式或葡萄園式、柏林愛樂黃金之音怎麼聽?自由時報。ltn.com.tw
  4. Brennan, M. A., McCreery, R. W., Massey, J. (2021). Influence of Audibility and Distortion on Recognition of Reverberant Speech for Children and Adults with Hearing Aid Amplification. Journal of the American Academy of Audiology, 33, 170-180. Doi: 10.1055/a-1678-3381.
  5. Picou, E. M., Gordon, J., Ricketts, T. A. (2016). The Effects of Noise and Reverberation on Listening Effort in Adults With Normal Hearing. Ear and Hearing,37(1), 1-13. Doi: 10.1097/AUD.0000000000000222.
  6. Xu, L., Luo, J., Xie, D., Chao, X., Wang, R., Zahorik, P., Luo, X. (2022). Reverberation Degrades Pitch Perception but Not Mandarin Tone and Vowel Recognition of Cochlear Implant Users. Ear and Hearing, 43(4), 1139-1150. Doi: 10.1097/AUD.0000000000001173.
雅文兒童聽語文教基金會_96
56 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。