1

6
1

文字

分享

1
6
1

「超流體」是什麼酷東西?為何它可以逃離容器?:千變萬化的流體(二)

ntucase_96
・2021/12/05 ・2519字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/劉詠鯤

本文轉載自 CASE 報科學 《千變萬化的流體(二):超流體

剛睡醒的早晨,沖泡好一杯香氣四溢的咖啡,加入鮮奶、糖攪拌後準備享用時,卻發現咖啡似乎還在不停的旋轉,沒有停下來的跡象。仔細看,還會發現咖啡竟然開始沿著杯壁向上攀爬、越過杯口,最後在杯子底部匯聚、滴落。很明顯,以上場景純屬虛構,咖啡可不會這樣。但大自然中卻有種流體有這樣的性質,那就是:超流體。

在上一篇文章<千變萬化的流體(一):一個做了 90 年的實驗>中,我們介紹了流體的黏滯性。其中瀝青具有非常大的黏性,其流動十分緩慢,外在表現基本上和固體無異。黏滯性極小的一端,則存在著一種不具有任何黏滯性的流體,便是超流體。超流體具有許多神奇的性質,例如可以通過極微小的毛細管、將超流體放在容器中,它會沿著容器壁爬升,跑出容器外…等等。令人感到可惜的是,具有如此神奇性質的超流體,目前只有在極端低溫的條件下才能存在。

圖一、逃離容器的超流體。裝在容器內的超流體(液態氦),會沿著容器壁向上爬升、超過容器口,最後在容器外匯聚、滴落,直到所有的液態氦全數「逃離」。圖片來源:Alfred Leitner

超流體是什麼?

1937 年,科學家卡皮查與艾倫,在嘗試將氦-4這種元素冷卻到極低溫時,發現當溫度低於 2.17 K(−270.98°C)時,氦的性質突然發生改變[1]。在以下連結的影片中呈現了氦-4冷卻的過程。

我們可以發現當氦的溫度逐漸下降,氦突然從原本如沸騰般充滿氣泡的情況,突然「安靜」了下來,那時便是氦-4的溫度達到「臨界溫度」,發生根本性質的改變(物理上稱為「相變」),從一般流體轉變為超流體。

-----廣告,請繼續往下閱讀-----

為什麼會出現這個景象?這裡我們要介紹超流體的第一個重要性質:「超流體內部不存在溫度差」[2]。這意味著,若是我們在超流體的一端加熱,溫度可以瞬間傳遞到超流體的另一端。這個性質在一般流體中可沒那麼常見,讓我們回想一下生活中最常見的流體之一:水。

當我們將一壺水,放在瓦斯爐上加熱時會看到水的熱對流現象:最靠近火源的水溫度上升最快,因為密度減小而上浮,旁邊溫度較低的冷水則往中央靠近,形成對流。對流愈是劇烈,整個流體便顯得愈不平靜。但若是我們加熱的是超流體,由於超流體的熱傳導率是無限大,因此熱源所釋放的熱量會在一瞬間傳遞到整個超流體中。由於內部沒有溫差,不會出現如熱水般的劇烈對流現象,顯得特別「安靜」。

這種特性顯示超流體分子的性質,就如同一個巨大的整體:若流體中有一個地方溫度改變,所有分子就要一起改變。這種性質來自於氦-4是一種「玻色子」。玻色子這種粒子在極低溫的情況下,會傾向於所有粒子都落回最低能量狀態(基態),這個現象被稱為玻色-愛因斯坦凝聚。蘇聯物理學家朗道透過此理論,解釋了氦-4為何在極低溫下會形成超流體。

打個比喻,剛成年的少年們,每個人都有獨特的生活模式,但到成功嶺受訓時,便全部「凝聚」在一起,形成一個具有共同性質的集體。有趣的是,由於少年們都具有極為相似的性質,因此他們之間的「摩擦」(彼此之間的交互作用,也就是黏滯性)會大幅下降,形成獨特的超流體現象。

-----廣告,請繼續往下閱讀-----

有縮骨功的超流體?

若是我們手邊有兩種流體,想要判斷哪一種可以通過一根細管子。我們的生活經驗告訴我們,愈黏的流體,愈不容易通過。黏性愈大的流體,代表它們分子之間的作用力愈大。打個比喻的話,可以說它們更愛「群聚」,若是要通過某一個孔洞,那就要讓大部分的分子一起通過才行。例如,固體可以想像成是一種黏性無限大的流體。想要讓一個硬幣通過吸管,那吸管勢必要比硬幣大才行。那黏滯性為零的超流體,會怎麼表現呢?它們的分子之間可以說「毫無感情」,因此只要細管的孔徑允許一個分子通過,那超流體就有辦法流過這根極細的管子。

反重力的超流體?

超流體沿著容器壁爬升又是怎麼回事呢?若是我們將水裝在一根試管中,仔細觀察,可以發現管壁的水位比中央的水位來的高,這個稱為水的「附著力」,也就是容器壁對於水分子有個吸引力。那為什麼容器壁不會將水一直拉上去,而會停在某個位置呢?一方面是地心引力,另一方面是水分子之間「扯後腿」的黏滯力。水分子想要沿著杯壁向上爬,但黏滯性就如同他不是自己一個人爬,而是攜家帶眷外掛行李,因此爬到某一個高度就爬不動了(如圖二)。

這時讀者大概可以想到超流體是怎麼回事了。如特種部隊的超流體分子,它沿著容器壁攀爬只需要自己能爬上去就可以。最終的結果,便是超流體會在容器壁形成只有一個分子厚度的薄膜,將整個容器包裹起來。延伸到容器外的流體,在地心引力影響下便會匯聚在容器底端,向下低落,形成了超流體「逃出容器」的奇特現象。

圖二、不同流體附著力影響示意圖。一般流體,如圖 (a) 中的水,由於黏滯力較大(如同攀岩者負重較重),只能爬升到有限的高度;超流體由於不具有黏滯性,分子間互不影響,可以如圖 (b) 般沿著容器壁爬升、甚至跑到容器外。

在發現超流體現象之前,沒有人預期到物質在被降至極低溫後會表現出如此截然不同的性質。隨著科技的進步,人們逐漸有能力一探各種極端條件下物質的變化,相信還有非常多有趣的現象在等著我們。

-----廣告,請繼續往下閱讀-----

註解

[1] 除了氦-4以外,它的同位素氦-3也在更接近絕對溫度時(0.0026K)展現出了超流體的性質。
[2] 由於這個性質和超導體的「超導體內部不存在電位差」十分相近,因此得名「超流體」。

參考資料:

[1] Superfluidity
[2] Pyotr Kapitsa Biographical
[3] The Strange, Frictionless World of Superfluids

文章難易度
所有討論 1
ntucase_96
30 篇文章 ・ 1347 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。

0

4
1

文字

分享

0
4
1
微擾理論:我們有沒有可能遮蔽了新的物理?——《撞出上帝的粒子》
貓頭鷹出版社_96
・2023/01/27 ・2632字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

對撞機能夠給出什麼答案?

物理學家想用大型強子對撞機來解答的重要問題,可以總結如下:在大型強子對撞機的能量級下,粒子物理的標準模型是否有效?「對撞機能量級」是個大大的躍進,因為其能量大小超越了電弱對稱破缺尺度;在這個尺度之上,兩種基本作用力相互統一,而 W 和 Z 玻色子、甚至所有其他基本粒子的質量,也許都是起源於此。

從空中鳥瞰大型強子對撞機的地理環境。圖/wikipedia

如果標準模型可以成功描述新能量範疇的現象,希格斯粒子應該就會存在,但看來不會有什麼其他的新發現;反之,如果標準模型失效,也許就沒有希格斯粒子了,不過背後一定會藏著稀奇古怪的事物。其實有個不易察覺的問題會左右這件事:我們究竟有多了解標準模型在此能量級下預測的現象?這並不容易回答。

一般而言我們並沒有能耐百分之百準確地解出標準模型。所有人都是用近似法。而絕大多數的近似方法之所以可行,是因為基本作用力的「耦合」,也就是強度,沒有很大。「耦合」就是在物理過程對應的費曼圖中,每個作用頂點帶有的值。(參見【科學解釋 8】)

微擾理論的應用

作用力的強度可以用一個數值來表示。如果說這個數值是 0.1,那麼兩個粒子交互作用的機率就會和 0.1 乘上 0.1,也就是 0.01 成正比。要是有三個粒子,機率就變成 0.1 的三次方,0.001,四個粒子的話就是 0.0001,如此這般。由此可知,如果耦合值很小,你就可以忽略比方說四個粒子以上的粒子交互作用―超過這個臨界值的項對於主要結果都只是極小的微擾罷了,因為前面至少會乘上 0.1 的五次方,也就是 0.00001。

-----廣告,請繼續往下閱讀-----

可見更多粒子的反應項只會些微改變原本的結果而已。這就是「微擾理論」的例子,微擾理論廣泛運用於解決物理界和化學界中許多的問題。只要耦合值很小、也就是作用力很弱,這個理論就十分準確。

然而,這種近似法並不是永遠有效。微擾理論失效的地方大多涉及強核力、也就是量子色動力學。這就是為何大家要把這種作用力稱為強核力。我們不是故意要混淆視聽的,強核力的確和它的名字一樣難以應付。

舉例來說,在我們對撞質子,想一探其內部夸克及膠子的種類分布時,某些方面的資訊其實無法從先前所提的原則計算得到(參見 4.5 節)。除此之外,我們也無法算出夸克和膠子最後是如何結合成新的強子的。雖然大家手上有量子色動力學的限制條件,也有一些基本的能量守恆、及動量守恆定律,以及不少從其他地方得到的數據,卻無法用微擾理論。

由二個上夸克及一個下夸克所構成的質子。圖/wikipedia

原因在於強核力的耦合值非常接近一,不論幾次方都還是一。因此,不管你計算的對象是幾個粒子,得到的結果都不會收斂到某個可信的值。最終我們只好依據自己的經驗來猜測結果、或建立模型。而這樣的結論一直都有調整空間。

-----廣告,請繼續往下閱讀-----

因此我們要嚴肅看待一個問題:大家在調整模型的時候,實際上可能會遮蔽了令人興奮的新物理。要避免這個問題,你得拿自己熟悉、以微擾理論計算的結果,連結上自己還不太明白、有調整空間的模型。我想像出一個比較毛骨悚然的情景來譬喻這件事――一具以精準預測架構的骨架,嵌在以最佳猜想組成的濕軟肉體內。

肉體的形狀可以改變。你可以重搥它的肚子,或捏它的臉頰(相對來說比較不痛);但是它有兩隻手兩隻腳,如果你打斷了某根骨頭,自己一定會知道。

用既有的知識探索未知

無論如何,大家利用電腦程式來把可塑的模型、與不易動搖的微擾理論整合在一起,而且絕大部分的工作都已經完成了;這種程式就是蒙地卡羅事件產生器(Monte Carlo event generator)。程式不但能編譯大部分我們擁有的粒子對撞現象的相關知識,同時也是個珍貴的工具,能協助物理學家設計新的實驗,並釐清既有的實驗對不同模擬數據會如何反應與解讀。「蒙地卡羅」這個名字有其典故,因為就和俄羅斯輪盤賭注一樣,這種事件產生器用上了很多隨機的數字。

這一切其實都牽涉到一點有趣的科學社會學。身為一位理論學家,有時你會因為投入某類蒙地卡羅事件產生器相關的研究而吃虧。你的一篇論文可能已經被引用了數千次,大家還是會說:「不過是電腦軟體罷了。」或是「這只是蒙地卡羅那類的玩意兒。」反之,要是你是發表一篇弦論的論文,又被引用這麼多次的話,你就能像個巨人般橫行全世界了。但說到底,弦論努力想預測的現象距離實證還是很遙遠,蒙地卡羅事件產生器卻可以實際解釋數據。

-----廣告,請繼續往下閱讀-----

蒙地卡羅事件產生器雖然不是唯一的辦法,大致上仍是物理學家在理解標準模型的意義、與儘量試著利用模型精確預測現象時,所付出的一份心血。

粒子物理標準模型。圖/wikipedia

雖然和大型強子對撞機的學界相比,蒙地卡羅事件產生器的研究社群規模較小,但相對來說,這個領域的成員盡的心力甚至不會比大家建造對撞機的付出還要少。美國物理學會也許是考量到了這一點,將 2011 年的櫻井獎(J.J. Sakurai Prize)頒給在這個領域工作的三位理論學家,分別是韋伯(Bryan Webber)、阿塔瑞利(Guido Altarelli)、斯舍斯特蘭(Torbjörn Sjöstrand)。頒獎典禮的引言如下:

因為三位物理學家的洞見,我們得以縝密驗證粒子物理的標準模型,實現高能物理實驗的目標、並從中學習量子色動力學、電弱交互作用、與可能的新物理的確切知識。

我很開心他們獲獎,因為其中兩位是我很親近的朋友,也更是因為三人所寫的計算方法及程式對大型強子對撞機幾乎所有的研究都十分重要,像是確保大家不會在不知情的情況下遮蔽任何新的物理。當前,我們正在嘗試確認希格斯粒子搜尋實驗的不定變數大小,並縮減其數量;人人都在尋找關鍵的三標準差證據、甚至是五標準差的大發現。為了這個目標,許多人夜以繼日持續比對新的數據和蒙地卡羅事件產生器的結果。

——本文摘自《撞出上帝的粒子:深入史上最大實驗現場》,2022 年 12 月,貓頭鷹出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
貓頭鷹出版社_96
62 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

3

16
2

文字

分享

3
16
2
鋪馬路的「瀝青」是液體?放置 94 年只滴下整整 9 滴:千變萬化的流體(一)
ntucase_96
・2021/12/04 ・2242字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/劉詠鯤

本文轉載自 CASE 報科學 《千變萬化的流體(一):一個做了90年的實驗

從躺在沙灘上,吹拂身體而過的微風,到吃果醬吐司時,苦苦等待滴落的黏稠果醬;光滑如鏡的湖水到構成平整路面的柏油(瀝青)。這些東西之間具有什麼共通性?又是什麼因素造成它們表現出來的性質,具有如此大的差異?

海水與海風都具有流體的特性。圖/Pixabay

流體,泛指任何可以流動的物體,在我們的經驗中,主要包含了氣體和液體。例如充斥我們四周的空氣,以及隨處可見的水。但實際上,有些我們看似為固體的東西,其實也屬於流體,例如堅硬的玻璃。以上這些物質都落在流體的範疇。很顯然地,它們之間應該有某種決定性的差異,那便是它們的「黏滯性」。

流體的黏滯性

從微觀的角度來看,黏滯性可以被看成是流體分子之間的吸引力強弱。我們可以想像眼前有一杯水和一坨麻糬。當我們對著它們吹一口氣時,從微觀的角度來說,便是在對它們表層的分子施力。水分子之間的吸引力比較弱,因此表層的水在受力後能夠自由移動,形成波紋;但麻糬分子之間的作用力較強,表層分子被其他分子緊緊抓住,因此不會形成明顯的運動。

麻糬看起來已經很黏了,但在黏滯性排行榜中,它可能還排不太進去。在生活中存在著一種黏滯係數非常大的流體,雖然可能大家都沒把他當成流體過,那便是:瀝青。為了量測瀝青的黏滯係數,物理學家進行了一個「持續時間最長」的實驗:「瀝青滴漏實驗」。到目前(2021 年)為止,已經持續了 90 幾年。有興趣的讀者可以透過以下連結參與這個實驗的直播:http://www.thetenthwatch.com/feed/

-----廣告,請繼續往下閱讀-----
圖一、瀝青滴落實驗。筆者於 2021/8/17 截圖自上述實驗直播。

若是讀者們沒有看出瀝青正在滴落,不用懷疑播放鍵是不是壞了。畢竟,根據實驗記錄,上一次滴落花了 13 年時間!這個實驗從 1927 年架設完畢,到目前為止,一共只有 9 滴瀝青滴下。以此估計,瀝青的黏滯係數會是水的千億倍。因此,瀝青大概會是黏滯係數排行榜榜首的候選人之一。

那若是我們看向另一端,黏滯係數很小的部分,可以想像當這樣的流體一旦受到外力,會非常容易流動。也許讀者們會好奇,有沒有可能黏滯係數為零呢?有,這種流體被稱作「超流體」。打個比喻,若是咖啡是種超流體,當我們加入奶精、糖攪拌完後,過半個小時來看,會發現它還在不停的旋轉,完全沒有停下來的跡象!這種流體具有非常獨特的性質,但由於其背後物理原理較為複雜(有數個諾貝爾物理獎都與此題目有關),筆者將此題目留至下一篇文章,再進行完整的介紹。接下來,我們先介紹如何描述流體的運動,也就是流體流動的類型:層流與紊流。

層流與紊流

當我們想要描述流體時,可以將某一個特定時刻,流體中每一個點的瞬間速度以箭頭的方式標出,箭頭的方向指向該點的運動方向,箭頭長度則為運動速度大小。例如在一根細管中,若有水流過,可以預期水流會和管壁大致平行。此外,由於管壁的摩擦力,靠近管壁的流體速度會最慢,正中間的流體則最快,形成如圖二般的速度分布。

圖二、管內流體速度分布示意圖。

這種情形下,流體可以被看作一層一層、彼此不會互相混合且穩定的流動,稱為「層流」。雖然表面上看起來流體分子之間如排隊般,以非常整齊的隊伍前進,但是實際上,流體中存在各種各樣的不穩定性(流體中的不穩定性遍布日常生活中,我們會在超流體之後的文章和各位讀者介紹此現象。),會使得流體發生微小的擾動。若是流體的黏滯性夠大,這些微小的擾動便會被摩擦力消耗掉,使得整體看起來依舊穩定流動;但若是擾動足夠克服摩擦力,則不同層之間的流體會開始混合,形成如漩渦般的複雜結構,這種情況被稱為紊流。由以上描述可知,流體的運動會是哪種情況,會和擾動大小與流體黏滯性有關。在科學上,會透過流體的「雷諾數」來加以描述一個流體運動屬於哪種類型。

-----廣告,請繼續往下閱讀-----

層流與紊流的現象在日常生活中其實非常普遍,我們不需要去計算雷諾數,也能夠從流體的外觀來大致分辨它是處於層流還是紊流。例如在欣賞壯麗的瀑布時(如圖三),會發現在水流落下之前,水的流動是相對平穩,顏色呈現深藍色;但當水開始下落形成瀑布時,水的流動變的不穩定,形成白色的水花。讀者們看到這裡,想必已經可以判斷它們分別對應的流體運動種類為何了。

圖三、尼加拉瀑布風景圖。可看到水流在落下前流動較穩定,接近層流;落下後則轉為紊流,充滿白色的泡沫。圖片來源:Kevin Payravi

流體在日常中無處不在,流體性質的研究並非僅僅只是純科學的探索,它們早以走進每個人的生活中。例如飛機機翼如何設計增加浮力、高鐵車頭什麼形狀可以降低風阻、甚至容器瓶口要如何設計,才不會倒水時沿著瓶身留下…等等,這些都和流體的特性密切相關。流體,值得我們更深入的認識它!

參考資料

2021.12.12 PM 0:45 更新:圖三敘述原寫「尼加拉瓜瀑布」。感謝 codocodo2009 提醒,已修改成「尼加拉瀑布」。

所有討論 3
ntucase_96
30 篇文章 ・ 1347 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。

4

11
3

文字

分享

4
11
3
從黑洞自旋速度推估「暗物質」的可能真面目!——極輕玻色子
ntucase_96
・2021/11/12 ・2341字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

  • 撰文|劉詠鯤

本文轉載自 CASE 科學報 《宇宙中的旋轉木馬——利用黑洞尋找暗物質

空無一人的遊樂園中,旋轉木馬快速的旋轉著。突然,憑空出現一群小孩跳上木馬,從旋轉木馬獲得高速後,又集體跳下,一哄而散,只留下轉速驟降,緩慢旋轉的木馬……。這看似荒誕的場景,卻是理論預測可能在宇宙中隨時發生的事。其中旋轉木馬指的是什麼?憑空出現的孩子們又代表了誰?

圖/pixabay

在生活的周遭,我們能夠感受到(看到、摸到)某個東西存在。是因為構成我們周遭世界的粒子,幾乎都會透過電磁力互相作用。但是在廣闊的宇宙中,這樣的物質只佔總數的 15%,剩下 85% 物質,我們摸不到、看不到,因此被稱為「暗」物質。科學家透過天文觀測證據,推測在宇宙中必須存在龐大數量的暗物質,它們提供的重力,使各個星系不至於分崩離析。因此,暗物質是種「我們知道它應該要存在,但又不知道它是什麼」的東西,是當下最前沿的物理學研究在嘗試明白的重要議題。關於暗物質的真面目,目前有各種物理模型嘗試描述,其中一模型預測了一種假想粒子:「極輕玻色子[1]」。

印度物理學家-薩特延德拉·納特·玻色,他的量子物理研究為愛因斯坦凝聚理論提供了基礎;玻色子就是以他的名字為命名依據。
(圖/維基百科

暗物質的可能真面目——極輕玻色子

在基本粒子中,電子的質量已經算是較輕的。而極輕玻色子,它的質量大約只有電子質量的 10 億分之一,因此稱它為「極輕」,和其他理論模型預測的大質量暗物質候選人區隔。由於他們幾乎不跟周圍的物質發生交互作用,因此到目前為止,科學家尚無法確認這種粒子究竟存不存在。如果存在,那它們很有可能就是暗物質的真面目。

面對這種未知,科學家們是如何尋找暗物質的呢?其中一種策略是「排除法」。想像我們有天回家時發現手機不見了,理論上來說,手機可能出現的地方有無數個,但我們會透過回憶、親朋好友的描述,來限縮手機可能出現的範圍,如此就能避免海底撈針的窘境,大大增加了找到的可能性。

-----廣告,請繼續往下閱讀-----

根據理論推估,極輕玻色子的質量範圍可能落在 10-33-10-6 電子伏特這麼龐大的範圍之中。科學家目前正嘗試用各種方法,有的經由設計精密的實驗對特定質量範圍進行地毯式搜索,有的透過天文觀測數據嘗試去限縮可能的質量範圍。在《物理評論快訊》4 月的一篇論文中[2],麻省理工學院-雷射干涉引力波天文台(LIGO)實驗室的科學家,利用「黑洞」來搜尋這種極輕粒子。這種概念聽起來十分不可思議,黑洞的質量至少是電子的倍,比極輕玻色子的質量至少大了 70 個數量級,作為對比,一個成年人和太陽質量大約只差了 30 個數量級。如此一個超級巨型的天體,是如何與微觀世界的基本粒子扯上關係的呢?這要提到量子理論預測的神奇現象:「超輻射(Superradiance)」。

麻省理工學院-雷射干涉引力波天文台(LIGO)。(圖/ LIGO

超輻射與黑洞自旋速度

量子理論告訴我們,在非常小的尺度下,古典理論將會失效,我們不再能將粒子視為一個單一質點。這個尺度被稱為康普頓波長(Compton Wavelength),它和粒子的質量成反比。質量極小的極輕玻色子,所對應的康普頓波長則非常大。對於特定質量的玻色子,其康普頓波長會和黑洞的尺寸差不多。當這個條件滿足,超輻射便會發生:黑洞附近強大的重力場,從真空中產生數量龐大的玻色子向外輻射出。這些玻色子,會將黑洞的能量帶走,使其自旋減慢。根據科學家的估計,這個減速作用可以持續數千年,使黑洞的自旋速度明顯減慢。

(圖/ pixabay

黑洞的自旋速度,可以透過分析 LIGO 偵測器訊號得知。LIGO 偵測器主要偵測黑洞、中子星互相環繞、合併所放出的微弱重力波訊號(關於重力波偵測器的更多詳細介紹,可參考 CASE:「愛因斯坦預測成真:首次偵測到重力波訊號」及相關系列文章)。研究團隊分析了 45 組黑洞互繞事件,這些黑洞具有 10-70 倍太陽質量。這對應到和它們發生交互作用的玻色子質量介於電子伏特。

其中有兩個黑洞,被發現以非常高的轉速在旋轉著。若是這個質量範圍的玻色子確實存在,那這些黑洞速度應該被減速至一半以下。因此,這兩個高轉速黑洞的存在,暗示著沒有與其發生交互作用的極輕玻色子。那有沒有可能黑洞的確被減速,但存在其他加速機制使黑洞又重新被加速?例如藉由吸入大量吸積盤[2]物質,獲得能量及動量?研究團隊也對此進行了仔細的估算,發現各種重新加速的機制,皆要耗費極長時間才能加速到現在的速度,這種可能性微乎其微。因此,這兩個高轉速黑洞的存在,基本上可以排除了特定範圍的極輕玻色子質量範圍。

-----廣告,請繼續往下閱讀-----

這個實驗協助縮小了搜尋極輕玻色子的質量範圍,也是首個利用黑洞重力波資訊尋找暗物質的嘗試,可以說是一個重力波實驗與粒子物理很棒的跨界合作!

註解

  1. 在量子力學中,粒子可被分為「費米子」、「玻色子」,兩者具有截然不同的性質。若以比喻的說法,費米子較為孤僻,不喜歡大量群聚;玻色子則恰恰相反。
  2. 在黑洞周圍,受黑洞強大重力吸引的物質所形成的圓盤狀結構。

參考資料

  1. Fast-spinning black holes narrow the search for dark matter particles
  2. K. Y. Ng et al. , Constraints on Ultralight Scalar Bosons within Black Hole Spin Measurements from the LIGO-Virgo GWTC-2, Phys. Rev. Lett. 126, 151102. 2021
所有討論 4
ntucase_96
30 篇文章 ・ 1347 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。