0

0
0

文字

分享

0
0
0

中子星核心中有超流體

peregrine
・2011/03/22 ・1252字 ・閱讀時間約 2 分鐘 ・SR值 591 ・九年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

美國航太總署錢德拉X-射線觀測衛星(NASA`s Chandra X-ray Observatory),於一顆中子星的核心中,業已首度發現超流體(superfluid:一種異乎尋常、無摩擦力的物質態)的直接證據。於地球上之實驗室中產生的超流體展現了異常屬性,諸如能向上攀升及從密閉容器中消失。就瞭解已知最高密度物質中的核交互作用(nuclear interactions)而言,上述發現具有諸多重要意涵。

圖片引用自原文

中子星含有已知可觀測的最稠密物質。一茶匙的中子星物質重60億噸。這類恆星的核心壓力很高,以至於大部分的帶電粒子(電子及質子)結合,形成一顆幾乎由不帶電粒子組成,而被稱為中子星的恆星。

兩支獨立的研究團隊研究了一顆超新星的殘留物─仙后星座A(Cassipoeia A 或簡稱Cas A)。當從地球觀測時,這顯然是顆1萬1千光年外之巨大恆星,約在330年前爆炸的殘留物。錢德拉X-射線觀測衛星的數據發現,該超新星爆炸後殘餘之超稠密中子星的溫度迅速下降,顯示該中子星曾於十年期間冷卻約達4%。

於2011年2月25日版《物理評論記事》(Physical Review Letters)雜誌發表一篇論文的研究團隊領導人,墨西哥國立自治大學(the National Autonomous University in Mexico)的Dany Page宣稱:「雖然聽起來似乎不大,不過上述的溫度下降,事實上是引人矚目且令人訝異的。這意味,該中子星內部發生某種不尋常的事。」

含有帶電粒子的超流體也是超導體,意味超流體能起如同完美導電體的作用,因而絕不會喪失能量。上述新發現強烈暗示,該恆星核心中殘餘的質子處於超流體狀態,由於具有電荷,因而也形成超導體。

 

俄羅斯聖彼得堡loffe研究所的Peter Shterning是論文被英國《皇家天文協會通告月刊》(the journal Monthly Notices of the Royal Astronomical Society)採納的另一支研究團隊領導人,他宣稱:「錢德拉X-射線觀測衛星發現仙后星座A中子星迅速冷卻,是此類中子星核心事實上由超流體及超導物質組成的首度直接證據。」

這兩支團隊證實,上述溫度迅速冷卻起因於,該中子星在被發現前約100年內,核心中產生了中子超流體。預期冷卻會持續幾十年,而後減緩下來。

於地球上,物質在接近絕對零度的極低溫度下,開始發生超流動性。不過,於中子星內,能在接近攝氏10億度的溫度下出現超流動性。迄今,在估測此臨界溫度上,有著極大的不確定性。該項新研究將臨界溫度局限於攝氏5億到10億度間。

仙后星座A將使研究人員們得以驗證,束縛亞原子粒子的強核力(strong nuclear force)於超稠密物質中,如何起作用的模型。就瞭解中子星中,包括自轉突變(glitches)、中子星進動(precession:旋轉軸方位的改變)、磁星爆發(magnetar outbursts)及中子星磁場的演變等一系列變化而言,上述結果也是重要的。

被稱為自轉突變之中子星自旋速度的小幅突然改變,先前已提供了中子星外殼中有超流動性之中子的證據。由於中子星外殼密度比核心密度低很多,因而來自仙后星座A的最新訊息揭露了,有關該中子星超稠密之內部區域的新資訊。

冷卻的仙后星座A中子星是由來自加拿大阿爾伯塔大學(the University of Alberta, Canada)的合撰人Craig Heinke及來自英國南安普敦大學(the University of Southampton, UK)的Wnee Ho,於2010年首度發現的。該項研究是天文學家們首次測定一顆年幼中子星的冷卻速度。

原文網址:NASA’S Chandra Finds Superfluid in Neutron Star’s Core
翻譯:peregrine | 本文原發表於PEREGRINE科學點滴

文章難易度
peregrine
38 篇文章 ・ 0 位粉絲

0

3
1

文字

分享

0
3
1
天文學家發現至今最年輕、威力相當於「一萬個螃蟹」的中子星
全國大學天文社聯盟
・2022/07/31 ・3383字 ・閱讀時間約 7 分鐘

  • 文/語星葉

2018 年,在特大天線陣巡天計畫(VLA Sky Survey, VLASS)的資料中,一個來自遙遠星系的不尋常電波源,吸引了天文學家的注意。經過四年的觀察與分析,他們認為這個未知電波源,最可能是來自一個非常年輕且威力強大的中子星。

圖一、畫家筆下的脈衝星,中央黃色部分為脈衝星與周遭雲氣交互作用產生的脈衝星風星雲,外圍球對稱的絲狀結構則為超新星爆炸殘骸。圖/Melissa Weiss, NRAO/AUI/NSF

這個電波源在二十年前,在特大天線陣的第一個巡天計畫「FIRST」資料中尚不存在,代表這是個「瞬變天體(Transient)」,即在人類的時間尺度中,可觀察到明顯變化的天體——別忘了,人類的千年歷史,在宇宙時間尺度下都只是一瞬。

在當今望遠鏡技術的快速推進下,瞬變天體其實並不罕見。每天都有許多新的瞬變天體被望遠鏡捕捉。然而,至今仍有許多瞬變天體覆著未知的面紗,例如 21 世紀新發現、被稱作「快速電波爆(Fast radio burst, FRB,圖二)」的瞬變天體,便是今日天文物理學的熱門主題。

科學家對其極高光度、極短時距的成因和來源都還沒有定論。不過,這個新發現的電波源未來有望為我們帶來解答!

圖二、2006 年,人類發現的第一個快速電波爆訊號。這個訊號時距僅 0.005 秒,強度卻是最小可偵測訊號的 100 倍(見右上角小圖)。不同頻率的訊號有顯著的位移,代表這個訊號來自銀河之外的遙遠星際。圖/Lorimer et al. 2007

天文學家認為,這次的未知電波源,最可能是來自一顆脈衝星(Pulsar,圖一)、甚至可能同時是一顆磁星(Magnetar,圖六),與周遭氣體交互作用所產生的星雲亮光。脈衝星和磁星都是中子星的一種,至於它們分別是什麼,以及為何會有這些不同的名稱,則要回顧一下中子星的發現史。

圖三、位於美國新墨西哥州的特大天線陣(Very Large Array, VLA)為一套擁有 27 支天線的電波望遠鏡。圖/NRAO/AUI/NSF

理論推演中子星、觀測發現脈衝星,證明中子星的存在

在 1933 年的美國物理年會上,也就是查兌克宣布發現中子後一年,兩個不相干的理論團隊雙雙提出,因恆星塌縮後反彈而形成的「超新星」爆發,會促使中心區域坍縮形成「中子星」,即體積極小、非常緻密,由中子擠在一起形成的天體。這無疑是一重大突破,在此之前,天文學界還不清楚超新星跟新星(Nova)是來自不同的物理機制,而「中子星」更是沒人提過的概念。

此後,超新星的概念快速普及,觀測上古往今來的超新星也如雨後春筍般被識別與發現。然而,中子星的概念,還要等到三十多年後脈衝星的發現,才被廣為接受。[3]

1967 年,一位年僅 24 歲的劍橋大學研究生約瑟琳.貝爾.伯奈爾(Jocelyn Bell Burnell,圖四)和她的指導教授安東尼.休伊什(Antony Hewish),在無線電望遠鏡資料中,發現了一種會以極短的週期快速閃爍的未知無線電波源,她們稱之為「脈衝星」。然而究竟是什麼原因產生這樣的訊號?他們沒有頭緒。

一開始,休伊什甚至認為可能是收到了來自遠方智慧生命的訊號,還暱稱為「小綠人(Little green man,20 世紀電影中外星人時常是綠色皮膚)」。因為他難以想像這樣短促而準確的週期性訊號,不是生命體、而是自然現象產生的。[4]

圖四、1967 年,時任劍橋大學研究生的約瑟琳眼尖地發現了週期性出現在電波影像的未知訊號。圖攝於當年 6 月。圖/Roger W Haworth

此時,被猜疑了三十多年的中子星概念再次登場,而且馬到成功,完美地解釋了這種短週期出現的電波訊號。原來脈衝星是高速旋轉的中子星,其高轉速及強磁場會在中子星的兩極產生高能帶電粒子,從而發射出無線電波波段的輻射。於是兩極的電波束便隨著中子星的高速自轉,如燈塔般週期性的指向地球,被電波望遠鏡所接收,這便是脈衝星的由來(見圖五)。電波脈衝星的自轉週期只有 0.1~10 秒,如此極端的物理性質,也只有中子星可以滿足了。

圖五、脈衝星的兩極高能帶電粒子會發射強電波束,隨著脈衝星高速自轉而規律地指向地球,被電波望遠鏡接收,此即脈衝星訊號的成因。

至於磁星,一種擁有超強磁場的中子星,其發現就更加戲劇性了。

發現磁星

1979 年是磁星粉墨登場的一年。時年 3 月 5 日,先是蘇聯的金星 11 號和 12 號兩顆人造衛星被不明的伽瑪射線給擊中,其搭載的光子計數器瞬間就被「打爆」,超越計數器所能計量的數額,接著這波伽瑪射線接連爆擊了 NASA 的繞太陽衛星和繞金星衛星的伽瑪射線接收器,而後通過地球(還好我們的地球大氣層會把伽瑪射線隔絕在外),襲擊數個繞地衛星後揚長而去。

當年天文學家接收到數個類似的伽瑪射線閃光,其中最亮的閃光(也就是 3 月 5 日那波)在 0.2 秒內釋放了相當於太陽燃燒 1000 年的能量!

這些閃光還具有週期性,在約一週內反覆出現並逐漸消失,有的甚至幾個月或幾年後還會再度出現。經過數十年的研究,如今天文學家認為這些訊號同樣來自中子星,但這類中子星的磁場比一般中子星強上數百到數萬倍,因此被冠以「磁星」之名。

圖六、繪筆下的磁星。圖/ESO/L. Calçada

威力相當於「一萬個螃蟹」的脈衝星風星雲

回到正題,天文學家分析 2018 年特大天線陣接收到的新電波源後發現,這個電波源來自約 4 億光年遠的一個矮星系,且坐落在許多大質量恆星之間,因此極可能是大質量恆星爆發後的殘骸。

超新星爆發之際,剛形成的中子星擁有超強磁場、極高速的自旋,但仍被爆炸所拋出的恆星碎片層層包裹而不可見。需待這層外殼緩緩擴張、物質密度降低以後,中子星所發出的光才得以「撥雲見日」,進入我們眼中。

與此同時,中子星強烈的磁場會拉扯外圍的帶電粒子,使其高速撞擊周遭星際物質,從而發出強烈的電磁輻射、形成圍繞中子星的明亮星雲,稱之為脈衝星風星雲(Pulsar wind nebula, PWN)。最有名的脈衝星風星雲——蟹狀星雲(Crab nebula,圖七)距離我們僅數千光年,因此我們對它有深入的觀察。

根據分析,這個電波源隨時間的光度變化和已知的脈衝星風星雲相似,因此研究人員認為最有可能的解釋,便是一個前所未見的超明亮脈衝星風星雲。

圖七、蟹狀星雲中心的中子星(圖片中央的橘紅色亮星)及周圍的脈衝星風星雲。藍色為錢卓望遠鏡拍攝的 X 射線、紅色為哈伯望遠鏡捕捉的可見光。圖/NASA

這個 20 年內便突破超新星爆炸煙塵的脈衝星,不僅是人類已知年紀最輕的中子星,更是一個威力強大的中子星。其發出的 X 光強度高達「一萬螃蟹」——不是筆者亂用,「螃蟹(Crab)」真的是一個天文學單位!

就像天文學家也常用「太陽質量」作為天體質量的單位,或是用「天文單位」衡量距離,一個「螃蟹」指的是一個蟹狀星雲發出的 X 射線強度。一個天體發出的 X 射線有幾個螃蟹,就是其亮度是蟹狀星雲幾倍的意思。之所以選擇蟹狀星雲作為標準,是因為在這個領域,它實在太近、太經典了。

言歸正傳,天文學家認為這顆脈衝星不僅是隻超級螃蟹,可能還是顆磁星——其磁場是人類目前所能製造的最強磁場的數億倍!由於磁星被認為可能是快速電波爆的來源,因此可以預期接下來這個年輕的候選磁星,將被天文學家們用望遠鏡細細關照,於其中能探究多少蛛絲馬跡,又有多少新發現尚待挖掘,讓我們引頸期待。

參考資料

  1. Astronomers Find Evidence for Most Powerful Pulsar in Distant Galaxy – National Radio Astronomy Observatory
  2. Dong, Dillon ; Hallinan, Gregg (2022). arXiv e-prints. 
  3. Baade and Zwicky: “Super-novae,” neutron stars, and cosmic rays
  4. Cosmic Search Vol. 1, No. 1 – Little Green Men, White Dwarfs or Pulsars?
  5. Kouveliotou, C.; Duncan, R. C.; Thompson, C. (February 2003). “Magnetars“. Scientific American.
全國大學天文社聯盟
6 篇文章 ・ 12 位粉絲

0

6
3

文字

分享

0
6
3
從太空窺探金星表面的派克太陽探測器
Heidi_96
・2022/03/04 ・3829字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

在天文觀測中,自古以來就有許多關於金星的紀錄。從 1960 年代起,蘇聯、美國太空總署(NASA)、歐洲太空總署(ESA)和日本也都相繼發射探測器,執行不同類型的太空任務,希望能夠更認識金星。

2020 年,NASA 的派克太陽探測器(Parker Solar Probe,簡稱「派克號」)首次在太空中以可見光拍攝金星表面,並在 2021 年 2 月再次拍攝一系列可見光照片後,將他們的分析成果公諸於世。

本篇文章將依序介紹金星探測史、派克號的探測方法、可見光照片的分析成果,以及金星探測的未來展望。現在,就讓我們從頭認識這位閃閃發亮的鄰居吧!

始於科學革命的金星之旅

對地球上的我們來說,月亮是夜空中最亮的天體,但你知道最亮的「行星」是哪一顆嗎?那就是本篇文章的主角——金星!金星的平均視星等,也就是肉眼所看到的平均星體亮度,大約是 -4.14,僅次於月亮的 -12.74 與太陽的 -26.74(數字越小就越亮)[1],不只是地球夜空中最亮的行星,更是太陽系第三明亮的星體。

有個這麼耀眼的酷東西掛在天上,想必科學家絕不會輕易放過!就在科學革命(1543–1687 年)期間,天文學領域突飛猛進——哥白尼提倡日心說、牛頓發現萬有引力、克卜勒導出行星運動定律等等。同時期的知名科學家還有伽利略,他改良望遠鏡,透過觀測金星相位(圖一),也就是金星表面的光照變化,得知金星並不是繞著地球運行,進而推翻當時蔚為盛行的地心說。

圖一:伽利略透過望遠鏡發現金星和月亮一樣有盈缺變化。圖片上半部分別是土星、木星和火星。圖/NASA

此後,眾多業餘天文學家和天文愛好者也都一窩蜂利用望遠鏡觀測金星。有許多人聲稱在背光側看見了微弱的灰白色光芒,並將其稱作「灰光」(Ashen light)。

有些人認為是灰光是金星上的閃電,有些人則認為是紫外線穿透金星大氣時,氧離子游離而輻射出的暗綠色光芒(類似地球上的極光現象),可是沒有人能夠確實拍照紀錄,因此當時普遍認為灰光只是一種視錯覺。時至今日,這些假設也都還沒有確切的科學根據。[2]

不斷演進的金星探測技術

時間來到 1960 年代,繼水手 2 號(Mariner 2)在 1962 年掠過金星後,金星 4 號(Venera 4) 在 1967 年進入金星大氣層進行分析,結果顯示金星大氣約含有 90-93% 二氧化碳、7% 氮氣,以及少許氧氣和水蒸氣。[3] 緊接著在 1975 年,金星 9 號(Venera 9)測出表面溫度約 485 °C、雲層厚度約 30–40 公里。除此之外,還拍下金星表面的 180 度全景照片(圖二),是史上第一個將金星照片傳回地球的探測器。[4]

圖二:1975 年 10 月 22 日,Venera 9 拍下第一張金星表面的照片。圖/NASA 

金星大氣層布滿厚厚的硫酸雲,不僅反射了大約 75% 的陽光,也阻擋了來自金星表面的大部分可見光。因此,科學家決定改用雷達儀器測繪金星表面。1990 年代,麥哲倫(Magellan)多次以雷達測繪金星表面的火山和隕石坑等地貌結構,其清晰程度與可見光測繪不相上下,可說是目前最詳細的金星地圖(圖三)。[5]

圖三:根據麥哲倫的數據資料製作的金星視圖。圖/NASA

此後,科學家進一步利用近紅外線(NIR)觀測金星背光面,因為近紅外線(波長 0.75–1.5 μm)有利於影像在低光環境下生成,而這個波段恰好也是大氣透明度最高的範圍,可以更清楚地看見金星表面。1998 年,卡西尼號(Cassini)以 0.85 μm 的波段觀測金星,可惜這種方法在技術上難以突破,因為輻射強度會隨著波長變短而迅速下降。直到 2020 年,派克號才終於以更短的波長捕捉到金星表面的輻射。

飛越金星七次的「派克號」

2018 年 8 月,派克號發射升空,飛往太陽(圖四)。為了在這漫長的旅途中節省燃料,派克號總共得進行七次重力輔助飛越(VGA),利用金星的引力逐步修正飛行軌道,最終在 2025 年抵達距離太陽中心 10 個太陽半徑(約 690 萬公里)的地方,進行日冕和太陽風的測量任務。

七次重力輔助飛越(VGA)的時程分別如下[6]

  • VGA1:2018 年 10 月 3 日
  • VGA2:2019 年 12 月 26 日
  • VGA3:2020 年 7 月 11 日
  • VGA4:2021 年 2 月 20 日
  • VGA5:2021 年 10 月 16 日
  • VGA6:2023 年 8 月 21 日
  • VGA7:2024 年 11 月 6 日
圖四:準備發射升空的派克號。圖/NASA

截至目前(2022 年 3 月),派克號順利完成了前 5 次 VGA。在 VGA1 和 VGA2 期間,派克號都沒有任何動作。

後來,科學家認為可以利用其搭載的 WISPR 望遠鏡(Wide-Field Imager for Parker Solar Probe)觀測金星雲層。WISPR 可說是派克號的靈魂之窗,但它並不只是一座望遠鏡,而是兩座寬頻光學望遠鏡—— WISPR-I(Inner)和 WISPR-O(Outer),兩者配備的濾光片都只能讓可見光(波長 0.5–0.8 μm)通過。

於是,在 VGA3 和 VGA4 期間,科學家突發奇想,讓 WISPR 對準金星的向光面和背光面,分別拍下照片,想藉此測量雲的速度。沒想到 WISPR 竟然直接穿透了厚重的雲層,以可見光拍攝到明暗不一的表面,同時達成「以光學望遠鏡觀測金星表面」和「從太空拍攝金星表面的可見光照片」兩項創舉。

這時候,問題來了!WISPR 的最短曝光時間是 2 秒,但金星的向光面太亮了,拍出來的照片張張過曝、過飽和,還產生假影,使得原圖和電腦重組照片有所誤差。為了避免這樣的問題,科學家只好放棄拍攝向光面,改以背光面的照片作為研究材料。

WISPR 拍攝的可見光照片

VGA3 期間拍攝的照片只有兩張可以用,其中一張如下(圖五,黑白部分)。在這張照片長達 18.4 秒的曝光期間,派克號不斷被宇宙塵埃(漂浮在太空中的小顆粒)撞擊,造成隔熱罩上的材料燒毀,留下許多水平方向的刮痕。若是忽略刮痕,可以清楚看到明暗不一致的區域,而造成顏色深淺不一的主要原因就是金星的地形特徵。

藉由比對 WISPR 照片與麥哲倫的雷達地形圖(圖五,彩色部分),科學家得以了解溫度如何隨高度變化。圖中黑色(紅色)部分是金星最大的高地區域,位於阿芙蘿黛蒂高地(Aphrodite Terra)西邊的奧瓦達區(Ovda Regio)——越接近白色的區塊越熱,是低海拔地形;越接近黑色的區塊則越冷,是高海拔地形。

圖五:VGA3 觀測到的金星可見光影像(黑白)與麥哲倫雷達地形圖(彩色)的對比。圖/NASA

有了 VGA3 的失敗經驗後,VGA4 的照片就沒有出現刮痕了,而且還從不同的角度拍到了金星表面(圖六)。在 VGA3 期間,派克號是從金星後方飛越,因此 WISPR 拍到的是金星的東側邊緣;在 VGA4 期間,派克號則是從金星前方飛越,因此 WISPR 拍到的是金星的西側邊緣——這讓科學家能夠更細微、更全面地觀察金星的背光面。

圖六:VGA4 觀測到的金星可見光影像(黑白)與麥哲倫雷達地形圖(彩色)的對比。圖/NASA

金星探測的未來展望

雖然金星、地球和火星都是在同一時間形成,現在卻大不相同——火星的大氣層非常稀薄,而金星的大氣層非常厚重。為了解開這個謎團,NASA 和 ESA 在 2021 年 6 月宣布了 3 項全新的金星探測任務,分別是 VERITAS[7]、DAVINCI[8] 和 EnVision[9]。這些任務將進一步探測金星的大氣、地質和其他條件,瞭解這顆星球是否曾經宜居,又是如何演變成現在的樣貌。

至於派克號,不幸的消息是,2021 年 10 月的 VGA5 不利於背光面拍攝,而 2023 年 8 月的 VGA6 也將是如此。如果你也和我一樣想看更多 WISPR 拍攝的可見光照片,就讓我們期待 2024 年 11 月的最後一次飛越(VGA7)吧!

NASA 官方針對派克號金星探測任務的介紹。影/YouTube-NASA

註解

  1. Apparent magnitude – Wikipedia
  2. Ashen light – Wikipedia
  3. Venera 4 – Wikipedia
  4. Venera 9 – Wikipedia
  5. Magellan (spacecraft) – Wikipedia
  6. Parker Solar Probe: The Mission
  7. In Depth | Veritas – NASA Solar System Exploration
  8. DAVINCI Homepage – Probe and Flyby Mission to Venus Atmosphere
  9. EnVision: a mission for understanding planets everywhere

參考資料

Heidi_96
6 篇文章 ・ 12 位粉絲
PanSci 編輯部角落生物|外語系還沒畢業,潛心於翻譯與教學,試圖淡化語言與知識的隔閡。

3

8
2

文字

分享

3
8
2
各國意識抬頭,太空碎片帶來的災難有多嚴重?
黃 正中_96
・2022/02/22 ・2181字 ・閱讀時間約 4 分鐘

十年前(2011 年)美國國家科學委員會(NRC)發布了一份報告,對於環繞地球的碎片數量發出了警報[1]。當時根據美國太空總署的估計,碎片已達到「臨界點」,導致在軌道上的碎片,不斷碰撞並產生更多碎片,從而增加了人造衛星故障的風險。十年過去了,繞地球運行的碎片數量越來越多,甚至風險增加得更快;是否太空碎片數量的臨界點正在逼近?沒有人知道答案,但可能很快。

何謂太空碎片?

首先,我們先來談談什麼是太空碎片。

依據美國航空太空總署(NASA)定義,太空碎片泛指不提供有效服務,且繞行地球運行的人造物,如廢棄衛星、留在軌道上的火箭與其零件、大碎片相互碰撞後產生的小碎片,均可為之。而太空碎片最主要來源為火箭殘餘燃料爆炸而產生的碎片。

根據全球最完整追蹤太空碎片的系統——美國太空監視網絡(SSN),所登錄的太空碎片已超過一億個。

衛星送入軌道,依照能量守恆和動量守恆定律,飛行的速度必須達到每秒幾公里,才能繞著地球飛行;因此如果它在軌道上撞到任何太空碎片,比如廢棄衛星撞到一片油漆碎片,即使不是災難性的,也可能造成巨大的損失。

太空碎片造成的災難有多嚴重?

自 1957 年以來,人造衛星和火箭製造了越來越多軌道碎片物體,大小從幾微米到幾米不等。儘管已經達成了一些國際協議,限制碎片的增長速度,各國卻沒有嚴格的計劃來減少現有碎片的數量。

地球周圍的太空充斥著碎片。圖/歐洲太空總署

如今越來越多功用的人造衛星被發射進入地球周圍的低軌道,然而其所造成的碎片與衛星數量分佈超過太空碎片容量限制時,則可能發生理論失控的碰撞反應[2]

最近,美國太空新聞(Spacenews)報導,非洲的小國家盧安達(Rwanda)向國際電信聯盟(ITU)申請 327,230 顆衛星[3],加拿大的開普勒新創公司提出 115,000 顆衛星的超級大型太空網路系統,加上亞馬遜、OneWeb、SpaceX 和 Telesat 等公司已經在積極開發的系統,以及地球靜止軌道上的通訊衛星,這些衛星數量遠遠超過預期需求的容量,達到碰撞臨界點的極限風險;問題是國際電信聯盟沒有執法權,國際電信聯盟對軌道壅塞的規定為零。

2007 年中國反衛星計劃試驗所產生的的碎片擴散,以及 2009 年銥星(Iridium)與俄羅斯 Cosmos 的碰撞,讓人們意識到,並提高了積極管理碎片情況的緊迫性,努力採取緩解方法,並提出了許多減少太空碎片的技術。去年(2021)年底,中國的天宮太空站緊急啟動姿態控制,以規避靠近中的星鏈(Starlink)太空網路衛星潛在的碰撞危機。

空間碎片撞擊試驗:以輕氣槍射擊鋁板的方式,模擬一片 14.2 克的塑料,以 5.334 公里/秒的飛行速度在太空低軌道與鋁板碰撞的情況。圖/前 NASA 工程師 Megs H. 推特貼文

「凱斯勒效應」和連鎖反應

美國 NASA 科學家在 1978 年提出凱斯勒效應(Kessler Effect)理論,說明當太空碎片達到或超過容量限制時,由於碎片碰撞而失效的太空船數量將顯著增加。地球軌道上大大小小的物體,數量將變得非常大,它們會不斷相互碰撞,產生更多碎片——最後成為一種被稱為「碰撞級密度」的連鎖反應。緊隨其後,新產生的碎片將呈指數倍增,直到近地太空被各種大小垃圾堵塞。

一旦這樣的衛星碰撞災難發生,整個連鎖反應可能只需要幾天或幾週的時間,最後可能只有幾顆衛星完好無損。

若是繼續毫無限制地增加巨型衛星星系,可能會導致數十年,甚至更長時間的太空活動完全喪失。

太空碎片一旦超過臨界點,造成碰撞災難,無論是太空網路、衛星導航、通訊衛星、地球監控、氣象預報等等,大部分可能都將失去功能。科技帶給人們的便利,以及所建立的文明,將大幅衰減、倒退。

如何解決太空碎片的問題?

若是我們什麼都不做,可能會導致每年 5 兆美元的太空商業收入損失。重新開放太空將花費至少數千億美元,並且可能需要數十年才能實現。若是能想出補救措施,就能確保太空碎片不會帶來災難性的問題,但這就需要一個非常縝密的計劃,涉及幾個新的太空系統和數十億美元的投資。

美國、歐盟、澳洲和日本以及各國的太空機構都意識到太空碎片問題的嚴重性,相繼提出不同的補救措施,包括:建立太空碎片追蹤機制,由觀測站和天文台精確跟蹤、監控太空物體的軌跡,避免現役衛星與大型物體相撞;提出減少計劃,清除太空小碎片物體的數量;跨國協調衛星的太空交通,以維持安全的飛行路徑;在設計人造衛星時,規劃衛星壽命結束前的退場機制,讓衛星降低軌道返回地球,並且在大氣層燒掉。這些方法目前都正在陸續實驗、進行中。

最近有一個例子,在今年 2 月初所發射的星鏈 (Starlink)太空網路衛星,發射時正好受到太陽風暴衝擊,有 40 顆衛星被風暴摧毀,幸好當時這一批衛星有返回地球的機制,能夠重新進入大氣層並燃燒掉,順利地減少了一批太空垃圾。

註解

  1. Report says space debris past ‘tipping point,’ NASA needs to step up action
  2. Space debris
  3. Satellite operators criticize “extreme” megaconstellation filings
  4. Space Debris: Wall-E’s Future is Real
所有討論 3
黃 正中_96
8 篇文章 ・ 5 位粉絲
國家實驗研究院國家太空中心研究員。勿忘對科學研究的熱情,勇敢築夢,實現夢想…...