1

12
0

文字

分享

1
12
0

我已經鎖定你了!多頻譜影像處理演算法於軍事監測系統的應用

科技大觀園_96
・2021/11/04 ・2878字 ・閱讀時間約 5 分鐘

戰場上,分秒之差就能是決定勝敗生死的關鍵。因此如何更迅速捕捉敵軍的動向蹤跡,便成為國防軍備的一大研發重點。多頻譜影像技術能確切捕捉到物體反射的光譜資訊,並已在衛星、醫學、動植物辨識領域取得可行的成果。來自中正大學的研究團隊,便致力於建立多頻譜影響處理演算法的資料庫,期望能應用在軍事目標物的偵測追蹤上,為前線戰士助一臂之力!

掌握物體的「本色」:多頻譜影像技術

色差,是日常生活中會碰到的困擾:不管是印刷品的呈色與預想不符,或是網購的衣服顔色與想象中有所落差。這與傳統的色彩影像量測技術,如電腦電視使用的 RGB 三原色光模式及彩色印刷的 CMYK 四分色模式,在不同裝置上檢測及重現時出現的差異有關。但是,只要回歸到視覺與色彩形成的根本——光線,我們可以解決這些問題。

兩種模式最大的差異在於,三原色光模式的原理是紅、藍、綠的光線同時照射在視網膜上,我們眼睛會辨識成白光。四分色模式則是青色、洋紅、黃色顏料疊色後會變成黑色。RGB模式常用在螢幕等發光產品上,而CMYK模式則使用在印刷上。

大家都知道,光源照射物體後,會根據物體特性產生反射、吸收和透射等現象,人眼接收了物體反射的光線,會經由大腦分析視網膜收到的電子訊號,產生視覺色彩的感知。光線是一種電磁波,不同顔色的光有不同的頻率。而所謂的頻譜,就是物體的反射頻譜、投射頻譜或發光頻譜。頻譜影像,顧名思義即是每個畫素都帶有頻譜資訊的影像。

號稱可以捕捉物體本色的多頻譜影像技術(Multi-spectral imaging),厲害之處在於它可以直接擷取畫面頻譜的反射值。這個反射值是唯一值,不會受到不同廠牌的擷取技術或光源影響,因此是十分準確的影像資訊。一般頻譜影像的波段範圍落在可見光範圍(380 – 780nm),在定義上高光譜影像(hyper-spectrum)泛指使用儀器設備所拍攝到的多頻譜影像資料;超頻譜影像,則是以演算法將影像進行計算所得。其所具備的豐富影像資訊,也成為近年來醫學影像判識(如早期癌症病變的診斷)及衛星遙測的一大福音。

衛星遙測也可以使用多頻譜影像技術來提升影像資訊品質。圖/國家太空中心

從依靠人力,到交給演算法裝置代勞的自動目標識別演算法

自動辨識技術(Automatic target recognition,ATR)的源起,可以追溯至二戰前的雷達(註1)。雷達的操作原理,便是將電磁能量以定向方式發射至空間中,藉由接收空間中的物體所反射回來的電波,計算出物體的方向、高度及速度,並探測物體的形狀。過去的雷達偵測技術,仰賴訓練有素的操作員去解讀雷達訊號,如辨識戰機的大小、型號,以幫助戰場上的同胞第一時間掌握敵營的部署。

-----廣告,請繼續往下閱讀-----

不過,人的經驗能力終究有限,因此軍方目標偵測系統也逐漸從人力辨識,逐步發展至交由演算法或裝置來代勞,即自動辨識技術 ATR。準確率更高、速度更快的 ATR,除了可辨識海陸空的軍武,也能偵測生物性目標如動物、人類和植被。目前軍事上通常僅利用一個波段,如近或遠紅外光的資訊來判別目標物,但利用多頻譜影像或超頻譜影像豐富的資訊來進行目標物識別,卻有待發展。

雷達能夠計算出物體的方向、高度及速度,並探測物體的形狀。圖/pixabay

利用多頻譜影像技術,打造鎖定目標的軍事鷹眼!

如果能將多頻譜影響處理演算法帶來的豐富影像資訊,與 ATR 結合,將有望能提升偵測目標的準確率,在戰場上占盡先機。但這不是一件簡單的事:首先,軍武裝載空間有限,因此需以極精簡的光學裝置,來擷取到光路相同的不同波段影像;再來,多頻譜影像資料龐大,因此需整合不同波段的影像特性,以精確辨識俊基、船艦、坦克和建築等目標物;而如何將複雜的演算法轉化成運算夠快的晶片,應用在真實的武器上,也考驗科學家的能耐。

作為影像辨識技術領域的專業,來自國立中正大學的王祥辰教授研究團隊,就志在建立一套適於分析不同目標物特性的超頻譜影像資料庫、開發目標物偵測的多頻譜演算法程式庫,並打造一個方便高效的模擬及演算平台,讓軍方研究者可以進一步建立合適的 ATR 偵測法則。

這項計劃包含三個子系統,子系統 1 是建立多光譜及高光譜拍攝影像的資料庫。就像過去的雷達系統,是依賴熟練的操作員調度腦中記憶的資訊,去與雷達訊號進行比對辨識。要訓練機器裝置去指認出目標物,首先就得提供它一個可靠的影像資料庫作為基礎。為此,研究團隊在不同的天候條件下,拍攝不同波段下的各種目標物如電塔、水泥建築、海面船艦及空中飛行物,來建立一個涵蓋陸、海、空特性的多頻譜與高光譜影像資料庫。

-----廣告,請繼續往下閱讀-----

接著,上述涵蓋不同波段的影像,可以經過子系統 2,進行超頻譜展開運算。在子系統 2 時,為了減少計算量,使用者可設定挑選效果最好的數個頻帶,讓目標與其背景的差異達至最大化。這個過程如同指導電腦來玩「大家來找碴」的游戲,讓電腦可以學會如何在不同的場景、天氣條件下,快速辨識出指定的目標物。

子系統 2 將原本有限頻段的多頻譜影像,轉換為特定目標物適用的超頻譜影像,作為子系統 3 的輸入。在這個友善而直覺的圖形化人機介面,軍事研究人員可以在複雜的影像資料庫及法法則程式庫中不斷進行模擬,找出不同目標物的最佳化演算法則,縮短軍事研發所需的時間,提高所開發武器的效能。

如今,王教授的研究團隊已完成三個子系統的建設。此項研究成果,預計可以應用在各式對地、對空及對海飛彈,以及各式影像偵蒐系統的 ATR 設計開發上,成為新一代的鷹眼。而該研究的系統,也能幫助縮減開發測試的時間,對演算法和超頻譜頻帶最佳化都將有所助益。

【注解】

1.雷達(Radio Detection and Ranging,縮寫為 RADAR),是始於二戰前的偵測技術,其原理是利用將電磁能量以定向方式發射至空間中,藉由接收存在於空間中的物體所反射回來的電波,就可以計算出該物體的方向、高度及速度,並探測物體的形狀。

-----廣告,請繼續往下閱讀-----

參考文獻

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
科技大觀園_96
82 篇文章 ・ 1125 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

1
0

文字

分享

0
1
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
205 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

2
2

文字

分享

1
2
2
在臺海危機下,淺談戰地醫療
胡中行_96
・2022/08/18 ・4776字 ・閱讀時間約 9 分鐘

「護理人員不該因公殉職。」根據世界衛生組織(World Health Organisation,簡稱 WHO)的統計, 2022 年俄烏戰爭開打不到三個月,烏克蘭醫療相關的照護單位、運輸、人員、病患、補給與倉庫,就已經遭受 200 起攻擊,造成 75 死 54 傷。身處戰火中的護理人員[註1] Tetiana Freishyn 說:「空襲警報頻繁作響,永遠不曉得工作何時會被打斷。因為烽火綿延,我們接到許多開放性骨折(傷患)。這與一般腿骨受創大不相同,所以我們必須快速提升技能。」[1] 以俄烏戰爭為鑑,面對臺海政治局勢升溫,現在或許正是認識戰地醫療,有備無患的時機。

2022 年蔡英文總統慰勉海軍陸戰隊陸戰 66 旅。圖/總統府 on Flickr(CC BY 2.0

常見的戰爭外傷

將近九成的戰鬥死亡,發生在抵達醫療院所之前。[2] 戰場上受傷的主要原因,第一是遭受爆裂物波及,其次為槍擊。[3] 2022 年 4 月美軍《醫療期刊》分析戰時最常見的護理任務:傷患到院前,33% 為傷口包紮,35% 是施予非口服鴉片類藥物,而 7% 則為提供K他命。鴉片類藥物通常能有效紓解外傷的疼痛,可是隨著戰爭科技的演進,未來殺傷力更大的迫擊砲等武器,將可能減損其效益。[3]

美國歐洲陸軍野戰醫院。圖/U.S. Army Europe on Flickr(public domain

軍陣醫療分級

軍陣醫療單位依能力分為不同的等級,以美軍為例:

  • 角色一(Role 1)負責傷病預防和急救,其中包括「戰術戰鬥傷患照顧」。[4, 5](詳情請見下一節。)
  • 角色二(Role 2)能處理高級外傷、內科急診和初級手術,具輸血、 X 光等設備以及有限床位。[4, 5]
  • 角色三(Role 3)是可接納各類傷病,並執行專科手術的戰區醫院。[4, 5]
  • 角色四(Role 4)為提供最終治療的海外及美國本土醫院。(其中美國本土的單位,以前稱為角色五。)[4, 5]

臺灣也有類似的編制,稱作「二段三級」。第一段是「部隊衛勤」,包含負責急救的第一級,與涵蓋醫療站和外島野戰醫院的第二級;而第二段為「地區醫療」,即由三軍總醫院和其他國軍醫院組成的第三級[6, 7]

-----廣告,請繼續往下閱讀-----
美國特殊兩棲偵察部隊練習戰術戰鬥傷患照顧。圖/the U.S. Official Navy Page on Flickr(CC BY 2.0

戰術戰鬥傷患照顧

美軍於 1996 年建立了「戰術戰鬥傷患照顧」(Tactical Combat Casualty Care,簡稱 TCCC )的概念,目前陸軍官網開放免費下載第五版教學手冊。[2] 臺灣的民間團體翻譯了繁體中文摘要,有興趣的讀者可以參考看看。[8] 原版手冊中,從加壓止血和如何預防失溫等簡單的護理常識,到放置鼻咽呼吸道、氣胸針刺減壓,這類較為困難的技術都有介紹。儘管戰場上的檢傷分類是以戰術情形、負責任務與可用資源為考量; TCCC 原則上,要求情況嚴重的傷患,首先被撤離戰場。[2] 臺灣的國軍基本上也採用 TCCC,但《國防安全週報》第 79 期和 2018 年第 4 季的《陸軍後勤季刊》卻都強調,救援時必須以有戰力之官兵為優先。[9, 10]

TCCC 將傷患救護分為三個階段:

  • 第一階段交火時的照顧」:精準地向敵方回擊,以降低我方死傷,並用止血帶防止傷患大量失血。[2]尤其是傷患過多或傷到主要動脈時,使用止血帶會比加壓止血法實際。[11]
  • 第二階段戰術戰場照顧」:當敵軍不再有效攻擊,則可將傷患移動至有掩護的地方,並由醫護人員接手。[2]有別於一般基本救命術(basic life support,縮寫 BLS)的步驟,[註2]這裡採用的急救順序口訣是 MARCH,分別代表:[2, 10]
M預防大量失血(massive hemorrhage)
A暢通呼吸道(airway)
R維護胸腔壓力來確保呼吸(respiration)
C輸注液體進入循環(circulation)系統
H檢查頭部創傷/避免失溫(head injury/ hypothermia)

值得注意的是,遇到精神狀態改變的傷患,應立刻去除其武裝再開始救治;還有心肺復甦術不得在交戰區域內執行,[2] 也不可以影響到任務或其他的救援。[12]

  • 第三階段戰術撤退照顧」:將傷患運輸至他處。[2]
止血帶的使用方法。圖/臺灣備戰自訓手冊編輯委員會CC BY 4.0
沒有止血帶的時候,用三角巾或布條打活結,插入棒子,再打活結,然後扭緊並固定。來源/Pro Trainings Europe Ltd on YouTube

野戰醫院裡的心肺復甦術

在臺灣上過國防教育(昔為軍訓、護理)課程,或是當過兵的人,應該都對心肺復甦術(cardiopulmonary resuscitation,簡稱 CPR)不陌生。理想的 CPR 是以每分鐘 100 到 120 下的速度按壓胸部,深度約 5 至 6 公分;而胸部按壓與人工呼吸的比例應為 30:2[13] 問題是在實作時,病患所躺的平面,會影響按壓的精準度。2019 年《澳洲輔助醫療期刊》的瑞典論文,比較專業醫護人員在野戰醫院的地板、軍床(72 公分高)和軍用擔架(84 公分高)上做 CPR 的差別。研究發現後二者的硬度雖然足夠,但高度會導致表現失準。因此,在地板上做 CPR 效果最好[13]

-----廣告,請繼續往下閱讀-----
在地板上做 CPR,胸部按壓效果最好。圖/Martin Splitt on Unsplash

戰爭中的平民醫療

在戰爭中,理論上政府單位、軍方設施和人道救援組織,都可能會為平民提供醫療服務。[14] 不過,平民實際上能獲得的外傷照護,其實相當不足。過去人道救援組織介入時,為發揮有限資源的最大功效,經常容忍較高的死亡率。國家也可能會把救援傷兵,排在第一順位;而平民則必須仰賴家人,自食其力。[14] 2016 至 2017 年摩蘇爾戰役期間,WHO 於伊拉克首度建立平民傷患的轉介醫治管道(見下圖)[14, 15] 貫串運送與急救、野戰醫院,到普通醫院的整個流程。[15] 美國醫師還在 2018 年的《外科年鑑》上,為該創舉設計了一套改進的系統性架構。[14] 然而 2021 年《衝突與健康》期刊的一篇論文,質疑基於資源整合的困難,摩蘇爾模式未必能於其他戰場重現。[15]

摩蘇爾戰役中,救援平民傷患的管道。圖/參考資料 15,Figure 1(CC BY 4.0

2022 年俄烏戰爭期間,曾在摩蘇爾、阿富汗等戰役中參與人道工作的 Johan von Schreeb 醫師,受 WHO 邀請去烏克蘭協調國際醫療援助。[註3] 他發現即便烏克蘭原有完善的醫療系統,相關從業人員並不習慣處理戰時的外傷類型。於是,他的團隊為上百人開設工作坊和線上研討會,並引進骨科整形醫師與在地醫護合作。[16] 當然一般人無法臨時惡補專業醫療知識,但是若熟悉基本救命術和簡單的外傷急救,在戰亂中多少能提高傷患活著抵達醫院的機率更何況這些技巧也適用於承平時期的意外事故。因此,有興趣的臺灣民眾不妨現在就報名坊間的急救訓練,才能面對危機,處變不驚。

2022 年俄烏戰爭爆發後,烏克蘭平民在地下室學習急救技巧。來源:Forbes Breaking News on YouTube

補充資料

全民國防手冊

內政部警政署防空疏散避難專區

-----廣告,請繼續往下閱讀-----

臺灣備戰自訓手冊編輯委員會

臺灣民團協會

(影片)台灣若開戰!我沒有槍怎麼辦?那就能救一個是一個!軍警及危險工作人員更應配給!俄羅斯烏克蘭的戰爭借鏡|止血帶|生存學習 EP8 by JOBY on YouTube

(歡迎讀者留言提供更多資訊,謝謝。)

-----廣告,請繼續往下閱讀-----

備註

  1. 世界衛生組織的報導稱 Tetiana Freishyn 為「nurse」,[1] 從內容看不出她是護理師,還是護士。
  2. 各國的基本救命術口訣,好像差很多,不過實際動作大同小異。臺灣流行「叫叫 CABD」或「叫叫壓電」,步驟是檢查環境安全、確認病患意識;呼救、打 119 、取得 AED ;心臟按壓;暢通呼吸道;人工呼吸;以及電擊除顫。[17] 而澳洲政府公告的版本為「DRSABCD」代表注意環境是否危險(danger)、試探患者有無反應(response)、派人撥打 000 求助(send for help)、暢通呼吸道(airway)、觀察有沒有呼吸(breathing)、心肺復甦術(CPR)和用 AED 去顫(defibrillation)。[18]
  3. WHO 的新聞稿沒有明確定義 Johan von Schreeb 醫師負責的創傷救治管道(trauma pathway),是否僅服務一般民眾,但是提及的醫護不像是有軍職,否則不會不擅處理戰爭外傷,而且他們救助的對象還包含兒童。[16]

參考資料

  1. “We risk dying when going to work” – Ukrainian nurse shares her message on Nurses’ Day (World Health Organization, 12 MAY 2022)
  2. Pappal MF, Jean RS, Engle W, Fruendt JC. (2017) ‘Tactical Combat Casualty Care Handbook, Version 5’. Center for Army Lessons Learned.
  3. Wilson KE, Vasek M, VanFosson CA, et al. (2022) ‘An Assessment of Nursing Skills Required for Sustaining a Casualty during Prolonged Casualty Care: Implications for Training and Preparing for the Next Major War’. The Medical Journal.
  4. Knight RM, Moore CH, Silverman MB. (2020) ‘Time to Update Army Medical Doctrine’. Military Medicine, 185, 9-10, pp. e1343–e1346.
  5. Cubano MA & Butler FK. (2018) ‘Emergency War Surgery 5th Edition’. Borden Institute.
  6. 國軍衛生勤務規則(全國法規資料庫,accessed on 12 AUG 2022)
  7. 【社論】厚植軍陣醫學 整合醫衛戰力(青年日報,2020年9月10日)
  8. TCCC(台灣備戰自訓手冊編輯委員會,accessed on 13 AUG 2022)
  9. 國防安全週報 第79期(國防安全研究院,2019年12月27日)
  10. 國軍戰術戰傷發展與精進作法探討研析(陸軍後勤季刊,2018年11月)
  11. Pilgrim CHC. (2019) ‘An Overview of the Key Elements Required for Haemostasis Following Military Trauma from the Point of Injury to Definitive care’. Journal of Military and Veterans’ Health, 27, 2, pp. 82-90.
  12. Harold R. Montgomery. (2017) ‘Tactical Combat Casualty Care Quick Reference Guide First edition’. The Committee on TCCC.
  13. Abelsson A & Lundberg A. (2019) ‘CPR performed in battlefield emergency care.’ Australian Journal of Paramedicine, 16.
  14. Garber K, Stewart BT, Burkle F, et al. (2018) ‘A Framework for a Battlefield Trauma System for Civilians’. Annals of Surgery, 268, 1, pp. 30-31.
  15. Garber K, Kushner AL, Wren SM, et al. (2020) ‘Applying trauma systems concepts to humanitarian battlefield care: a qualitative analysis of the Mosul trauma pathway’. Conflict and Health, 14, 5.
  16. The importance of mass casualty training in the context of the war in Ukraine: an interview with Professor Johan von Schreeb (World Health Organization, 17 MAY 2022)
  17. 【大家不可不會的CPR-民眾版成人心肺復甦術】(內政部消防署,2022年6月24日)
  18. First aid basics (Healthdirect Australia by Australian Government, 2021)
-----廣告,請繼續往下閱讀-----
所有討論 1
胡中行_96
169 篇文章 ・ 66 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

0
1

文字

分享

0
0
1
為什麼剛好是雄風三型闖禍?美蘇與一顆超音速飛彈的故事
活躍星系核_96
・2016/07/07 ・6189字 ・閱讀時間約 12 分鐘 ・SR值 557 ・八年級

編按:雄風三型反艦飛彈誤射事件越演越烈,很多人的討論都聚焦在軍紀上,但射出去的那枚「雄風三型反艦飛彈」到底是何方神聖呢?而它的分類「超音速反艦飛彈」,又在軍武、戰略上是個怎樣的存在呢?雄風飛彈正確的使用方式到底為何?

這得一路追朔回冷戰時期,蘇聯與美國的抗爭,與他們的軍事戰略,和之後東亞局勢的戰略發展開始說起。

(本文轉載自假圖天國,原文名稱為《超音速飛彈的春天》)

文 / 假圖天國

是說長期以來,以美國為首的陣營,一直對發展超音速反艦飛彈興趣缺缺,除了少數的歐洲貨以外,這個領域一直是俄系武器的天下,甚至到今天,美國海軍仍然沒有現役的超音速反艦飛彈。形成這種情況的原因很多,除了過去軍事科技上的限制,雙方作戰思維的差異以外,也與美國與前蘇聯在國家戰略上的不同,有著密切的關係。就技術上來說,超音速反艦飛彈與超音速戰機最大的不同,就是超音速戰機會儘量在高空進行超音速飛行,由於高空的空氣比較稀薄,對超音速飛行的阻礙比較低,相對的也就比較安全。

但是超音速反艦飛彈則完全不同,有些超音速反艦飛彈雖然也有攻頂模式[註一]可以選擇,但是多數的情況都是以掠海飛行的模式居多,而在低空的空氣稠密處進行超音速飛行,其實是非常危險的一件事,稍一不慎可能就會失控墜海或在空中解體。

-----廣告,請繼續往下閱讀-----
  • 註一:攻頂模式。指飛彈在發射後,突然拉高彈道,再以高角度由目標的上方進行攻擊。這種攻擊模式常見於反艦飛彈或反裝甲飛彈。前者是要利用高速俯衝來突破艦隊防空網,後者則是因為絕大多數的裝甲車輛,其頂部的裝甲最為薄弱。

這次事件的主角:雄風三型反艦飛彈 (圖片來源:維基百科

伴隨「超音速」而來的詛咒

首先,低空的空氣擾動比較大,海上甚至比陸上更糟糕,因為超級潮溼的空氣讓超音速飛行更困難。而海浪造成的不規律氣流擾動通常都比陸地上更嚴重,超音速反艦飛彈以二至三倍的音速飛行,可以反應的時間餘裕很小,遇到亂流時很容易因為改正不及而讓彈體抖動失控。同時超音速飛行會造成很強的震波,貼海太近時,震波會影響海面,造成不規則碎浪,海面碎浪再形成空氣擾流,最後「反彈」回來影響彈體穩定性。所以超音速反艦飛彈的掠海飛行,飛行高度還是比一般的亞音速反艦飛彈要高很多。除此之外,超音速飛行時彈體會與空氣產生高速摩擦,速度越快溫度越高,這可能會形成三個問題:

一、可能讓彈體在高溫下解體自爆,特別是二十幾年前,航空特殊合金工藝還沒有今日進步時,這是一個非常難以克服的瓶頸。

二、高溫下,氣體離子化,會影響飛彈內電子儀器的穩定,特別彈錐內主動或被動雷達的靈敏度,在高速高溫下飛彈可能會變成半盲,嚴重的影響反艦飛彈的攻擊成功率。

-----廣告,請繼續往下閱讀-----

三、超音速反艦飛彈最大的宿命,也就是在超音速飛行下的高溫,會形成巨大的紅外線訊號,這等於是向敵人宣告自己的位置。絕大多數的艦上防空系統應該都不會漏掉這麼巨大的目標,海上艦艇可以很早就偵測到來襲的超音速反艦飛彈,有充裕的反應時間。再加入過去的火箭引擎技術較差,超音速反艦飛彈消耗燃料的速度非常快,只能放大彈體才能裝入足夠的燃料。這會形成一個對攻方很不利的情況,那就是超音速反艦飛彈的速度雖然比亞音速反艦飛彈快上很多,但是因為彈體大,熱源訊號大,飛行高度又比較高,所以往往比亞音速反艦飛彈更早被發現。就算飛行速度較快,但是艦上人員擁有的反應時間反而會比較長,而且反飛彈系統的獵殺成功率也更高。結果就是超音速反艦飛彈昂貴、複雜又佔空間,卻沒有非常顯著的優勢,等於白忙一場,這也讓美國海軍長期以來都對超音速反艦飛彈興趣缺缺。

xs2
(圖片來源:假圖天國)

戰術不同,飛彈不同

相反的,前蘇聯卻是超音速反艦飛彈的超級擁護者,在很長的一段時間裡,俄系巡洋艦或大型驅逐艦的最大外型特徵,就是左右船舷上的巨大型超音速反艦飛彈發射箱。原因在於:前蘇聯的海上航空兵力遠遠不如美國。這從冷戰時期雙方的航空母艦數量,與每一艘航空母艦的艦載機酬載能力對比,就可以一目瞭然。並不是說前蘇聯當時的科技實力不如美國,而是前蘇聯是橫跨歐亞的陸上國家,國家戰略重心在陸上作戰,而美國是兩洋國家,國家戰略重心在海洋之上,所以就出現了這樣的發展歧異。

前蘇聯海上艦隊的首要作戰目標,是嚇阻美國的航母艦隊靠近海岸來支援陸上作戰,若在大洋上狹路相逢,也要能有效摧毀美國的航空母艦戰鬥群。因此海上艦載機數量無法與美國相比的前蘇聯,就選擇了超音速反艦飛彈作為嚇阻戰略的發展重點,並搭配戰術性核武與「彈群戰術」來彌補過去超音速反艦飛彈的技術瓶頸。

-----廣告,請繼續往下閱讀-----

有趣的是,當前蘇聯解體以後,專為反制航母艦隊的超音速反艦飛彈一度被視為大而無當,應該會走入歷史之中。不料東亞情勢的急速轉變,又讓超音速反艦飛彈鹹魚翻身。除了台灣發展的雄風三型超音速反艦飛彈已經服役部署,日本所發展的 XASM-3 空射型超音速反艦飛彈也即將定型量產,南韓則傳出計畫引進俄羅斯的相關技術,發展新一代的超音速反艦飛彈。再加上越南從俄羅斯引進的數種超音速反艦飛彈,未來狹小的東亞海域裡,將會出現六、七種以上射程動輒上百公里超音速反艦飛彈,這背後的意義已不言可喻。

3
(圖片來源:假圖天國)

蘇聯如何駕馭超音速飛彈?

過去前蘇聯會選擇問題很多的超音速反艦飛彈為發展重點,原因在於超音速反艦飛彈的幾個缺點,對前蘇聯來說都可以克服。首先彈體過於龐大的問題對前蘇聯來說本來就是無法避免的,因為前蘇聯計畫以戰術性核武來一舉全殲美國的航母艦隊,過去的核子彈頭尺寸不小,就算是要裝在亞音速反艦飛彈上,也需要先放大彈體,因此無論如何這問題都無法避免。反而超音速反艦飛彈因為彈體大,裝的燃料多,速度又快,因此射程極遠,這對丟核彈的一方來說是非常有利的重要特性,因為沒有人會想把核彈丟在自己的腳邊,因此射程是越遠越好。而射程遠所帶出來的另一個問題,就是獲取目標的正確坐標並不容易,超音速飛行下的高溫也會影響反艦飛彈的精確度。但是如果是使用核子彈頭,那這些問題也完全不是問題,因為如果是使用核武器,就算誤差一公里也等於沒有誤差,大概知道航母艦隊的位置在哪裡就可以發動攻擊,核彈頭的巨大威力可以讓這些問題都不再是問題。

至於高速飛行下高溫所造成的巨大紅外線訊號,在物理上仍然是無解的難題,但是也不是沒有戰術上的彌補方式。前蘇聯一向信奉以量取勝,反艦飛彈的攻擊也不例外。對付像航母戰鬥群這樣的高價值目標,前蘇聯想定的戰術是以大量的反艦飛彈同時攻擊,以飽合攻勢擊潰航母戰鬥群的防空系統,這也是為什麼俄系巡洋艦或驅逐艦上配備的超音速反艦飛彈數量都很驚人的原因。到了中後期,俄系超音速反艦飛彈更發展出特異功能,可以在飛行途中以無線電協調攻擊,並由其中一枚飛彈爬升到一定的高度擔任「領頭彈」。這枚「領頭彈」除了爬的高、看得遠,可以將目標的最新坐標更新給其它低空掠海飛行的飛彈以外,還能以特定的飛行模式來製造更大的紅外線假訊號,以吸引敵人的火力,干擾整個防空網的運作,好掩護其它的飛彈。萬一「領頭彈」被擊落,電腦還會自動協調出另外一枚的「領頭彈」,這枚新的「領頭彈」會自己爬升到特定高度,以接替原先那一枚「領頭彈」的任務。

-----廣告,請繼續往下閱讀-----

同時俄系超音速反艦飛彈的攻擊模式也有很多種可以選擇,除了傳統的低空突破以外,「攻頂模式」也非常有威力,飛彈在發射以後就會不斷爬升,然後以高速俯衝而下,以高度來換取終端的超高速度,使敵方難以攔截。所以俄系超音速反艦飛彈壓縮敵人反應時間的思維完全不一樣,亞音速反艦飛彈是靠「飛的低、儘量不要被發現來使敵人措手不及」。俄系超音速反艦飛彈則是以「反正就是藏不了,就以龐大的數量與超高速度來使敵人來不及處理」。也是因為有這樣的彈海思維,加上岸基長程海上攻擊機與艦載戰機互相搭配的狼群攻擊戰術,最後終於讓美國不得不砸重金發展了神盾防空系統。

所以對前蘇聯來說,超音速反艦飛彈的技術問題對他們來說都不是問題,也因此俄系的超音速反艦飛彈,擁有一個完整的發展體系,型號琳瑯滿目,自成一個家族,冷戰結束後還能與魚子醬、伏特加與蘇愷戰機一起外銷到世界各國,除了能賺錢以外,還能展現俄羅斯對區域事務的影響力。

蘇聯軍艦(圖片來源:人民網)

東亞小國的應對之道──以小博大

這在俄羅斯對越南的軍售案中表現的最為淋漓盡致,越南在引進了俄羅斯的岸射版「寶石」超音速反艦飛彈與艦射版的「天王星」超音速反艦飛彈以後,已不再是昔日的吳下阿蒙。這種武器的確可以讓小國海軍在對抗大型艦隊時,取得局部的戰術優勢。台灣部署雄風三型飛彈,日本發展 XASM-3 飛彈,南韓也開始研發超音速反艦飛彈,並絕對不是偶然的巧合,而是大家深思熟慮後不約而同想出來的最佳方案,頗有師法前蘇聯故智的味道。

-----廣告,請繼續往下閱讀-----

雖然地球的物理限制仍然不變,但是這二十幾年來高強度合金材料的進步非常大,超音速反艦飛彈在高速高溫下對彈體的影響已經減少許多,加上衝壓引擎技術的成熟,讓彈體變小但射程卻變的更長。超音速反艦飛彈的巨大紅外線訊號問題雖然沒有完全解決,但是也有了非常顯著的改善。這都讓超音速反艦飛彈的發展部署門檻變低,缺少大型軍艦的小國海軍也能裝備超音速反艦飛彈。以台灣為例,除了把雄風三型裝在成功級飛彈巡防艦上,未來甚至還打算把雄風三型就在更小的迅海艦上。

滿載排水量可能只在六百噸上下的迅海艦,將會配備高達八枚的雄風三型超音速反艦飛彈,其實就暗示了台灣海軍的彈海思維,若以兩艘為一組的傳統快艇戰術編隊來計算,在遇到高價值目標時選擇火力全開,那將是連續十六枚超音速反艦飛彈的密集攻勢。雖然沒有戰術性核武的加持,但是這樣的攻擊密度,高價值目標想要全身而退也將會有點難度。

小巧的迅海艦配備高達八枚的雄風三型超音速反艦飛彈,是非常典型以小搏大的戰術。過去前蘇聯是要在大洋上與美國的航母戰鬥群正面對決,必需要有巨大的艦體平台,容納超大彈體的俄系超音速反艦飛彈以外,還要裝備各種雷達與射控系統,以進行獨立作戰。

而且因為地球曲率的關係,艦上雷達的有效操作距離往往很難超過四、五十公里,射程高達上百公里的超音速飛彈要能發揮最大效能,往往必需使用直升機來獲取目標與中繼指揮,這也讓艦體平台必需要有直升機甲板來提供空中支援。同時各種防空飛彈、魚雷與聲納系統、近迫武器系統等,也都不可或缺,否則將難以對抗擁有超強航空兵力的美國航母戰鬥群。所以最後會發展出像基洛夫級與光榮級這種超大型的飛彈巡洋艦,也就不令人意外了。

-----廣告,請繼續往下閱讀-----

但是越南向俄羅斯所購買的獵豹級護衛艦,雖然配備了天王星超音速反艦飛彈,但是噸位並不大,缺乏長程作戰能力,台灣的迅海艦則更小,可能只能配備非常陽春的雷達系統,根本無法獨立指揮超音速反艦飛彈進行長程作戰。那為什麼越南與台灣海軍會選擇以這麼小型的艦體平台為超音速反艦飛彈的載台?

xs3
(圖片來源:假圖天國)

飛彈、航母、戰略價值

除了省錢這一個重要因素以外,更重要的關鍵原因,就在於越南與台灣都採守勢作戰,擁有許多外島可以部署雷達與射控系統。台灣因為地型的關係,更有高聳的中央山脈可以建置大型的雷達站,以作為海上防禦的耳目。也就是說,發射飛彈的艦體平台可能根本連敵艦在哪裡都不知道,只是負責接收陸上基地所提供的資料來發射飛彈,當飛彈一發射,就交由陸上基地利用資料鍊來指揮。同時,對採守勢的那一方來說,敵我識別的困難度較低,這與在大洋上作戰是完全不一樣的情況。防禦方對於周邊海域的水文情況、航線航道與雷達回跡特徵通常都非常的熟悉,並有外島雷達站與陸基巡邏機當耳目,較不易出現無法識別目標敵我的情況,在戰時不是我方艦隊的不明大型船團逼近我方海域,那八九不離十,大概就是敵方艦隊或是大型登陸船團了。至於如果需要空中的訊號中繼,防禦方往往因地利之便,可以迅速的派出陸基直升機支援。這樣的分工讓採守勢的小國海軍可以將長程超音速反艦飛彈部署在極小的載台上,以分擔防禦任務,而無需另外耗費巨資發展極大型的作戰平台。對這些國家而言,這也是部署超音速反艦飛彈門檻大為降低的根本原因。

日本、南韓、台灣、越南相繼走上發展部署長程超音速反艦飛彈的道路,但是其實第一島鍊與亞洲大陸之間的海域並不十分寬廣。射程動輒超過一百五十公里的超音速飛彈,其艦上發射平台不必離岸太遠,火力覆蓋範圍就幾乎可以包含所有的主要航道。再加上未來如果這些使用國將岸射版的超音速反艦飛彈部署在離島或靠近重要航線的海岸上,那會使這一片海域無時無刻都處在超音速反艦飛彈的攻擊範圍內。對大型的作戰艦隊而言,大洋是個極其有利的環境,狹小的海域反而危機重重。原因就是離海岸太近,會讓艦隊處於岸射反艦飛彈的威脅中,同時躲在峽彎、港口、離島附近周邊,不易偵測到的艦艇,也可能是反艦飛彈的發射平台,更別說陸基戰機所發動的反艦攻擊。所以作戰艦隊離海岸越近,其反應時間就越短,對反艦的防禦一方就會越有利。

-----廣告,請繼續往下閱讀-----

美國的航母戰鬥群能在大洋中取得優勢,有幾個重要原因,其一就是美國東西岸的軍港都直接面對大洋,大型艦隊一出港,就在大洋之上,不易受威脅。其二就是美國的航空母艦可以搭載的艦載機數量極為龐大,這與航母艦隊可以維持的在空機數量有很大的關係,中小型航母之所以常常被批評華而不實,就在於只能搭載十餘架艦載機的中小型航母,在平均妥善率七成的水準下,根本無力長時間維持二十四小時都有在空機保護航母艦隊。攻方只要持續採騷擾戰術,幾天之內就能讓航母艦隊的戰機升空作戰能量耗盡。

美國的「超級航母」福特級
美國的「超級航母」──福特級核動力航空母艦。圖/wikipedia

也因此,中小型航母缺乏長時間離岸作戰的能力,因為常常需要岸上基地的各種支援,才能發揮最大的作戰效益,但是不離開第一島鍊與亞洲大陸之間的狹小海域,卻又會時時刻刻都處於長程超音速反艦飛彈的攻擊威脅之中。所以說中小型航空母艦是種戰略性的武器,在戰時不一定能帶來顯著的戰術優勢,卻在承平時期有極大的戰略效果。但是反過來說,如果在戰時可以一舉擊沉敵方的中小型航母,也許在戰術上而言並不能全面扭轉戰局,但是卻有極大的戰略宣傳效果。這是一體兩面的事,所有的武器都一樣,有其優勢,也一定有其罩門。特別是航空母艦是超級錢坑,而且是一年比一年還要燒錢的錢坑,因為艦體會老化,艦載機也會老化,會不斷佔據龐大的國防資源,很難不造成排擠效應。許多老牌海權國家為了面子而供養著航空母艦,但是這些航空母艦很多都長期停泊在港口裡,很少出海航行,不是沒有原因的。擁有航空母艦對於整個國家的國防發展而言,恐怕也不是那麼正面的。

本文轉載自:

-----廣告,請繼續往下閱讀-----
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia