0

0
0

文字

分享

0
0
0

【科學簡史】國家安全比人權更重要?–人體試驗的黑暗史(2)

miss9_96
・2016/01/17 ・4424字 ・閱讀時間約 9 分鐘 ・SR值 557 ・八年級

把「國家安全」或「國家面子」置於人民的福祉之上,整個國家是多麼的醜惡啊……

醜惡的疾病,醜惡的人心

梅毒對多數人來說,是個只聞其名、不知其貌的疾病,事實上,這難以啟齒的性病沒有想像的這麼稀罕,單在2014年,就有將近7000名台灣人染上梅毒而求診。而梅毒的病徵變化多端,長久以來讓許多醫學家、歷史學家著迷。難以確診的特性,讓它有了個響亮的外號-「偉大的模仿者(Great Imitator)」。梅毒初期會造成生殖器潰瘍、全身性紅疹,末期患者會長出梅毒肉瘤、摧毀患者的五官,侵入中樞神經,扭曲病人的心智,隨著病情加重,病人的尊嚴和靈魂也跟著消失殆盡……

梅毒
歷史上關於梅毒的畫作,左圖顯示了梅毒讓患者皮膚出現紅丘,右圖則是末期梅毒使得臉與五官扭曲。from: wikimedia

僅管梅毒和人類從數百年前就一路纏鬥至今,但最早發展出來的藥物是現代人聞之色變的劇毒重金屬-水銀,當時的醫師不僅會把水銀抹在潰瘍處,更會讓病人攝取水銀,希望內外夾攻之下,能夠治好梅毒,但可惜的是,這種以毒攻毒的療法,水銀的毒害通常比梅毒還要嚴重。1932年的美國政府,為了觀察梅毒在人體上的惡化,啟動了「塔斯基吉梅毒試驗」,邀請非洲裔的梅毒患者加入科學研究,計畫內容要求病人定期回診、抽血,但不給予藥物。不給藥很殘忍嗎?其實在二戰之前,幾乎沒有藥物可以對付梅毒 [註1],面對惡疾,醫師也只有束手無策罷了。

時光流轉,世界陷入烽火,戰前由亞歷山大·弗萊明爵士(Sir Alexander Fleming)所發現的青黴素 [註2],其療效在戰爭的催化之下迅速擴大。醫師們挾著史上首支抗生素向微生物們宣戰,青黴素猶如魔術子彈般地,一個個撂倒那些知名的疾病。1943年,首篇用青黴素治療梅毒的動物實驗報告出現了,同年的冬天,美國紐約的約翰·馬奧尼(John F. Mahoney)醫師等人,發表了用青黴素治療梅毒病人的臨床報告。青黴素逐漸成為治療梅毒的標準療法。

全世界的梅毒標準療程正在改變,但詭異的是,美國的衛生機關完全漠視塔斯基吉梅毒試驗受試者的治療權益,任憑他們將梅毒傳染給配偶、子嗣,慢慢的因病痛而死亡。1945年,同盟國的軍隊攻入納粹集中營,揭開了慘無人道的恐怖實驗。震驚之餘,醫界展開了檢討,在1947年提出了「紐倫堡公約」的聲明,主張實驗主持人在任何情況之下,都不得傷害受試者。剎那間,放任國民生死於不顧的「塔斯基吉梅毒試驗」成了官員們的燙手山芋,要選擇公開和道歉嗎?當時的官僚們選了他們最擅長的作法-「掩蓋」,數百位公民的生命,被政府官員掩埋在公文堆裡,隨著官員們的上班、下班,時間一天天的過去,受試者們逐漸的死去……

-----廣告,請繼續往下閱讀-----
梅毒患者
左上圖:梅毒螺旋體的電子顯微鏡圖;右上圖:第2期梅毒的全身性紅丘;左下圖:實驗者正在替受試者抽血,攝於1953年,此時抗生素已是標準療法,但政府從未想過要治療他們;右下圖:非洲裔的尤妮斯·禮薇斯(Eunice Rivers)護士正和受害者談話,禮薇斯擔任政府和受害者的溝通橋樑長達數十年,但她忽視拯救受害者的行為,飽受爭議。from: wikimedia & wikimedia

在「國家安全」和「國家面子」之下,沒有人是安全的

二戰結束,揭開了鐵幕的年代。冷戰的威脅讓美國政府感到強烈的恐懼,強烈到政府決定拿國民當白老鼠,開始測試自家的生化武器……

50年代,一艘神秘的小船緩緩地駛近舊金山海灣,船上放出像是燃煤的白煙,氣體和水氣結成薄霧,裊裊地朝著岸上的城市飄去,船隻上的海員從港邊釋放特殊的細菌,試圖讓城裡的居民受到感染。實驗非常成功,細菌擴散到灣岸的城裡,感染了許多人,數日後,多位民眾因罕見的細菌感染住進醫院,一位市民死亡。

60年代,黑衣男子潛入紐約市地鐵,將實驗室開發的特殊細菌,滴在車廂的燈泡上,再悄聲地離去。列車緩緩地駛出車站,炙熱的燈泡慢慢地將神秘的水珠蒸散,特殊的微生物隨著蒸氣而散布到擁擠的車廂。不知情的乘客一口口吸進了充滿細菌的空氣,上萬名過著跟你、我一樣生活的紐約客,帶著細菌離開了車站,通勤的旅客變成了數量龐大的活動感染載具,整個紐約市變成了巨大的細菌之城。

上述的情節並非來自科幻電影,主導者也非邪惡的保護傘公司,而是在冷戰期間,雙眼被「國安」意識蒙蔽的美國政府。由於對新式的戰爭懷著巨大的恐懼,美國從二戰結束後開始進行許多特殊實驗,但實驗的受試者以及方式卻大有問題。器官移植領域的開拓者-法蘭西斯·摩爾(Francis D. Moore)醫師(請見【科學簡史】–器官移植(一))就曾在回憶錄裡言道:「在擔任衛生署顧問期間,我目睹到了政府主導的有違倫理人體試驗。

-----廣告,請繼續往下閱讀-----

政府正在研究能夠讓人神經錯亂、陷入瘋狂的毒氣,他們找了一群年輕大兵來試驗。我大為震驚,但官員們振振有詞地說道:『國家安全需要防範於未然!』……後來那些志願的年輕人們,有些發生情感問題,有些開始催殘自己的身體……」。冷血的官員們視「紐倫堡公約」和「赫爾辛基宣言」於無物,他們的眼中只剩下國家安全面子,百姓的生命就只剩下了統計上的意義而已。

摩爾醫師的自傳裡寫了一段有意思的話:「政府會承認百億元的虧損或超支,但如果少數人因政府而受傷或死亡,它們通常會選擇-『掩蓋事實』。」

正義的叛徒

僅管美國政府努力掩蓋,仍有許多具有爭議性的人體試驗走漏風聲,包括上述的生化恐怖攻擊實驗、放射性物質對人體的影響實驗等,社會輿論持續地對政府施壓,但最終撂倒美國政府的卻是一名來自官僚系統裡的叛徒,一名有良心的叛徒。

1972年以前,沒多少人聽過彼得·邦司頓(Peter Buxtun)這名律師的名字。60年代,邦司頓先生在公共衛生服務部工作時,意外地發現了塔斯基吉梅毒試驗的內容,他決定依從自己的良心向上舉報。從60年代起,邦司頓先生一再地循正常的管道向高層反應,但都被龐大的官僚系統敷衍、安撫。面對巨大的政府機器,邦司頓先生無力抵抗,他需要更強大的力量。1972年7月,邦司頓先生走向了媒體,揭發試驗的內幕,隔日更登上紐約時報的頭版,全國為之譁然。美國國會召開公聽會,邦司頓先生在會上的證詞,證實了美國政府竟會允許如此非人道且充滿種族歧視的人體實驗進行,數百位國民在政府的默許之下痛苦地死去。一系列保護受試者的法案在數年內被通過,建全了人體試驗的整體環境,邦司頓先生這名遵從良心的叛徒,卻是人體試驗發展史上的聖騎士之一。

-----廣告,請繼續往下閱讀-----
正義叛徒
左上圖:一群參與塔斯基吉梅毒試驗的受試者;右上圖:向媒體告密,因而催生一系列法案的邦司頓先生;下圖:翻拍的報告,可以看出實驗初期共有425名患者,到了1969年已有276人死亡(死亡率:約62%,未得梅毒者約53%)。from: wikimedia

塔斯基吉梅毒試驗的終結

檢視這些在美國發生的非人道實驗,顯示了一個由來已久的問題,當實驗僅由科學家把關的時候,易受傷害的族群就有可能會遭受到有違倫理的對待。

讓我們回到1974年的美國。邦司頓先生揭發的新聞掀起了一連串的效應,政治壓力催生了國家研究法(National Research Act/ Public Law 93-348),規定所有的人體試驗,都必須經由試驗倫理委員會Institutional Review Board/IRB,以下簡稱IRB)審查許可,而IRB的組成,將會包含法律、倫理道德和其他領域的專業人士,以多方面的觀點來保障受試者的權益。

那塔斯基吉梅毒試驗的受害者呢?據評估,加入實驗的四百多人當中,約有100位患者死於梅毒,約40位妻子被丈夫傳染,而將近20名嬰兒一出生就罹患梅毒。1972年,這個長達40年的不人道的實驗,終於被中止了,但直到1997年,柯林頓總統才公開道歉,距離實驗開始的那一刻起,已經65年過去了,當年的倖存者,早就所剩無幾……

易受傷害族群 爭議行為 案例
兒童 不當影響 2011年,一名國中老師在未徵得同意的情況之下,擅自量測學童腦波
社會階級較低 高壓強迫 納粹集中營的低溫人體實驗
經濟貧乏者 不當影響 塔斯基吉梅毒試驗
少數族群者 忽視權益 茶室性行為(Tearoom trade),研究同性戀在酒吧內的性行為論文,內容的細節過於詳細(車牌、住宅地址),嚴重侵犯隱私權
緊急情況 忽視權益 美國政府允許人工血液-PolyHeme在患者失血昏迷時,可在未得到患者同意的情況下直接使用

容易受到實驗傷害的族群和各項案例

-----廣告,請繼續往下閱讀-----

當IRB的權力大於一切的時候……

IRB的審查標準將以1979年貝爾蒙特報告(The Belmont Report)為最高指導,內文的三大倫理原則是:對人的尊重對病人的好處,以及公平。由於成員涵蓋各界專業人士,臨床實驗不再僅由科學家監控,有效地避免了如同塔斯基吉梅毒試驗等邪惡的人體研究。

但,這就是對病人最好的方式了嗎?下一章,我們將從器官移植界的領航者-史達策(Thomas E. Starzl)醫師的親身經歷(請見【科學簡史】–器官移植(三)),來看看當IRB的權力高於一切之時,病人的生死不再取決於醫師的技術,而是抽籤的手氣,在那個病人失去了自主權力的年代。

接下來…第三章-是誰剝奪了病人自主的權力?

-----廣告,請繼續往下閱讀-----

本文感謝衛生福利部台東醫院檢驗科張昱維(Yu-Wei Chang)協助

  • 註1:這種情形直到1907年才開發出首支有效的化療藥物-砷606,但可惜的是,砷606有保存不易、副作用大的缺點,在治療上未能成為梅毒的標準療法。
  • 註2:亞歷山大·弗萊明爵士、霍華德·弗洛里爵士(Howard Walter Florey, Baron Florey)和恩斯特·伯利斯·柴恩爵士(Sir Ernst Boris Chain)因為發現及開發青黴素對於治療疾病的貢獻,而獲得1945年的諾貝爾醫學獎。

參考文獻

  • 中華民國疾病管制局傳染病統計資料查詢系統
  • World Health Organization (1973) Penicillin in the Treatment of Syphilis: The Experience of Three Decades, Stationery Office Books
  • John F. Mahoney, R. C. Arnold, AD Harris (1943) Penicillin Treatment of Early Syphilis-A Preliminary Report, American Journal of Public Health and the Nation’s Health, 33, 1387-1391
  • John P. Fernandez; Robert A. O’Rourke; Gordon A. Ewy (1970) Rapid Active External Rewarming in Accidental Hypothermia, The Journal of the American Medical Association, 212, 153-156, DOI: 10.1001/jama.1970.03170140109029
  • Lisa Martino-Taylor (2008) The Military-Industrial-Academic Complex and a New Social Autism, Journal of Political and Military Sociology, 36, 37-52
  • Jonathan D Moreno (2001) Undue risk: secret state experiments on humans, Routledge, New York, USA
  • Mark Wheelis, Lajos Rózsa, Malcolm Dando (2006) Deadly Cultures Biological Weapons since 1945, Harvard University Press, Cambridge, USA
  • Francis D. Moore (2010) 奇蹟與恩典:細數半世紀來的外科進展,望春風文化,台北市,中華民國
  • Thomas E. Starzl (2007) 拼圖人:一個器官移植外科醫師的回憶錄,望春風文化,台北市,中華民國
  • Human Subjects Research,美國衛生和公眾服務部官方網頁。
  • The Belmont Report,美國衛生和公眾服務部官方網頁。
  • 美國 1979貝爾蒙特報告,輔仁大學人體試驗委員會編譯。
  • Tuskegee’s Long Arm Still Touches a Nerve,紐約時報官方網頁。
  • 財團法人醫學研究倫理基金會,GCP人體試驗講習班上課內容
  • 師擅測腦波 16國小童被當「白老鼠」,NOWnews新聞網。

其他篇章:

  1. 納粹醫師心中的惡魔–人體試驗的黑暗史(1)
  2. 誰有資格替病人選擇?–人體試驗的黑暗史(3)
-----廣告,請繼續往下閱讀-----
文章難易度
miss9_96
170 篇文章 ・ 1130 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

6
0

文字

分享

2
6
0
暗箭難防!被「吹箭」注射高端疫苗有可能嗎?——從獸醫角度探討吹箭的原理與應用
安之_96
・2021/08/24 ・1782字 ・閱讀時間約 3 分鐘

近日 COVID-19 高端疫苗議題持續延燒,甚至有謠言直指政府會用吹箭強迫國民中鏢。然而,用吹箭打針是真的有可能嗎?它又是如何做到的呢?

一般人對於吹箭的了解,第一個想到的總是古代暗器、或是原住民狩獵的工具。但事實上,對一名獸醫師而言,吹箭其實是再稀鬆平常不過的日常。

獸醫使用吹箭,主要目的是在一定的距離之外,透過麻醉放倒兇猛或是敏感緊張的動物。舉例而言,野生動物 / 動物園獸醫師會在動物需要健康檢查,或是疑似生病時,透過吹箭放倒動物進行醫療。而動保處的獸醫師,也會透過吹箭來麻倒流浪犬貓,捕捉來進行絕育,以此控制流浪動物數量。

吹箭除了是暗器、原住民狩獵的工具,在日本忍術中也有其應用。圖/維基百科

吹箭是如何達到注射效果的?

其實,吹箭的「箭」非常特別,是將一般的注射針巧妙改造後,讓它在刺入身體的同時,釋放出裡面的藥物。所以說,如果用一般的針,就算真的給你射中,藥也沒辦法完全打進去啦!(以為在射飛鏢嗎)

回答這個問題前,不妨先回頭想像一般打藥的狀況:護理師會先用酒精棉擦拭,然後要你深呼吸,再用超快的手速把針戳進去,並把藥推到底。最後,再拿著乾棉花按住傷口,要嚇得臉色蒼白的你自己壓迫止血。

可想而知,要使用吹箭一般沒有閒情逸致事先用酒精消毒。而一段距離外,即使能夠成功刺入,也少了一股注射藥劑進去目標物體內的推力。

-----廣告,請繼續往下閱讀-----

因此,改造的第一步在於創造出一個打入身體後才出現的「推力」!簡略地說,透過剪開針筒尾端,並將另一個空針筒的活塞取出,塞入尾羽毛線(像是羽毛球一樣為了在空中穩定!),最後,再將附有毛線的活塞塞入針筒尾端,在這個多出的空間內灌入瓦斯氣後,就創造出了一種壓力!

第二步,是讓藥物不會在打入身體前就不小心噴出來!這裡小巧思是,把針頭開口封起來後,在側邊開一個小開口,並用套子蓋住。這個目的在於,在刺入身體時,套子順勢被推開後,才會顯露出側開口。

此時,加上瓦斯氣的推力,就可以一氣呵成地把藥物打入身體內!

改造後的「吹箭」。圖/DAN-INJECT

完成了超炫改良注射針後,只要再找一根空心長管子,就準備好吹箭的工具了!雖然簡單說就只是用力吹氣,但其實這是很考驗技巧的一項技術,尤其是在目標會移動的狀態下!而老練的獸醫師,可以神準地在 10 公尺以上的距離準確擊中目標!

-----廣告,請繼續往下閱讀-----
獸醫體驗營中的吹箭練習畫面。圖/台北市立動物園

其實除了看似土派用吹的吹箭之外,還有很炫的空氣槍可以用科技的力量來取代吹氣的噴射力,但因為屬於管制品,且價位較高,目前還是以傳統吹箭法為主。

吹箭運動中的慢動作畫面。

通常吹箭會瞄準哪裡?

其實給藥途徑很多,有分成皮內、皮下、肌肉以及血管。而吹箭這種方式主要就是透過肌肉注射,如果是需要打皮內、皮下或是血管的藥物劑型或劑量,則不適合透過吹箭的方式給予。

那一般吹箭會瞄準哪裡的肌肉呢?一般會瞄準肉多的地方!獸醫通常會瞄準動物的臀部、大腿等肉多且面積大的地方,提高出擊的成功率。

網傳要保護手臂跟脖子,老實說這些部位真要射中還真不簡單!不提手是很靈活且擺動幅度大的部位。脖子不但肉不多,更是有豐富血管神經的地方,如果是特意瞄準脖子,根本是想謀殺了吧!

-----廣告,請繼續往下閱讀-----

總結而言,利用吹箭的方式打疫苗,理論上絕對是可行的!然而,說政府會用吹箭的方式強迫施打高端疫苗,讓民眾心生恐懼,絕對不是一件對疫情有幫助的事。

參考資料

-----廣告,請繼續往下閱讀-----
所有討論 2