Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

第一顆人造衛星發射升空|科學史上的今天:10/4

張瑞棋_96
・2015/10/04 ・873字 ・閱讀時間約 1 分鐘 ・SR值 502 ・六年級

-----廣告,請繼續往下閱讀-----

1957年的今天,一具蘇聯的火箭悄悄發射升空,成功將一顆約莫海灘球大小(直徑58公分),有著四根細長天線的小圓球送上五百多公里高的軌道,為夜空增添一顆閃爍的星星。它就是第一顆人造衛星──史普尼克一號(Sputnik 1)

一張印有史普尼克一號的古巴郵票。圖片來源:pinterest

史普尼克的俄文原義是「旅程中的同伴」。

多恰當的名字,它就像地球在宇宙時空旅行中的同伴,每一個半小時就繞行地球一圈,並以無線電波不停地向地球發射訊號──像不像你散步時,不停繞著你轉圈圈,還興奮地對你輕吠的小狗?啊,說到小狗,一個月後發射的史普尼克二號,還真的載了一隻名為萊卡(Laika)的三歲小狗上太空(漆黑的宇宙中牠那閃閃發亮的眼珠是望向牠來自的藍色地球,還是遠方的點點繁星?牠會不會想念那寒冷卻可自由流浪的街頭?)。

當然,大吃一驚的美國不會將史普尼克一號視為友善的小狗,那可是冷戰時期啊!無論是考慮面子問題或國防威脅,絕對無法接受敵人獨佔太空,於是為了迎頭趕上,美國迅速投入大量資源於太空計畫。不過蘇聯也沒原地踏步,1959年分別完成第一次繞月飛行與第一艘太空船降落月球;1961年將第一位太空人加加林(Yuri Gagarin)送上太空;1965年列昂諾夫(Alexey Leonov)完成人類第一次太空漫步;連續十幾年都由蘇聯在太空競賽中拔得頭籌,直到1969年美國才超越蘇聯,阿姆斯壯成為第一位踏上月球的人類。

-----廣告,請繼續往下閱讀-----

而史普尼克一號早已不在天空。1958年初,在繞行地球1,440圈、完成七千萬公里的飛行後,史普尼克於墜落地球時燒毀於大氣層中,結束它短短三個月的壽命。但它帶來的影響卻相當深遠;除了為美蘇間的太空競賽揭開序幕,也因而促成往後人造衛星用於各種民生用途與科學研究,包括廣播、通訊、導航、氣象、遙測、太空望遠鏡、……等等。喔,對了,還帶給村上春樹靈感,在世紀末寫出《史普尼克的情人》(中譯《人造衛星情人》)。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1026 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
223 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
2

文字

分享

0
0
2
太空提案創意不設限!2023 RunSpace 太空創新無限挑戰獲獎團隊專訪
PanSci_96
・2023/11/13 ・3491字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 撰文/陳子翔、林彥興

全新的太空時代已經揭開序幕,不同於上一次太空競賽時期,如今的太空發展不再是大國政府限定專利,隨者商業潛力的成長近年民間太空產業蓬勃發展,成為吸引創新思維和專業技能的重要領域。在太空產業充滿機會的新時代,RunSpace 太空創新無限挑戰也在去年正式開辦,為台灣太空新創注入能量!

RunSpace 是經濟部產業發展署太空計畫的一環,是一項沒有參賽資格限制,不限專業領域背景,不論是學生還是社會人士都可以報名參加的太空提案競賽。參加者除了提案參與競賽之外,也會在主辦單位舉辦的 Space Bootcamp 訓練營中提升實力,並與其他團隊互相交流。

邁入第二屆的 RunSpace,這次收到了比去年更多優秀且富有創意的提案。最終,三支團隊從決賽脫穎而出,冠軍與亞軍分別由「3Q」與「太空藥局」團隊奪得,而「Project Subsidium」則同時獲得季軍與企業最愛獎。

冠軍隊伍「3Q」提出以電子膠帶實現智慧溫控,降低衛星開發成本

電子紙是一種耗電極低且不需背光的顯示器技術,常見的應用包括電子書閱讀器、公車站牌到站資訊等等。但你有想過,這樣的技術居然也可以應用在太空中嗎?本次冠軍團隊「3Q」,提出名為「ASTRID」的可變色電子膠帶。利用電子墨水技術,它能像是烏賊的身體一樣根據環境改變顏色,調整衛星表面的吸熱放熱效率,從而實現衛星的智慧溫控。

-----廣告,請繼續往下閱讀-----

團隊負責人蘇惟思指出,衛星在太空中運行時,其中一面會受到高溫陽光照射,另一面又面向寒冷太空,同時內部的儀器自身也會產熱,因此唯有做好熱控系統,才能維持衛星運作,而散熱器(Radiator)正是衛星熱控系統中重要的一環。傳統上,衛星製造商往往要根據每個衛星的大小、運行軌道與內部儀器的需求,去設計出不一樣的散射器以滿足溫控需求。但若使用 ASTRID 電子膠帶,即可不用針對每個任務重新設計散熱器的形狀、大小與位置,而是透過改變散熱器表面的顏色,去滿足不同熱控需求,如此一來就能大幅降低衛星開發的時間與金錢成本。

蘇惟思表示,ASTRID 技術的構想與測在他大學就讀太空工程系時就已經開始,今年初他以這項技術在美國成立新創公司 SQUID3 Space,目前也正積極的進行募資與尋找潛在客戶,這次參與 RunSpace 競賽獲獎,也對投資者來說有一些加分效果。

最後,蘇惟思分享了寶貴經驗,為未來有志投身太空創新創的人提供建議。首先,他強調不要害怕在競賽中失利,或是被投資者、客戶回絕。去年他也有參與第一屆 RunSpace,而當時連前三名都沒有拿到,但不放棄繼續嘗試才有機會有好的成果。他還分享了曾有人告訴他:「如果創業期間,一週內沒有被客戶或投資者拒絕超過一次,就代表你不夠努力。」

他也提到在創業過程中,許多工程師容易犯一個錯誤,即先開發產品,然後再尋找客戶。在做專題或研究時,開發自己想做的產品,解決自己有興趣的問題是可行的方向,但是在​​創業上不要只埋頭於自己的專案,而沒有先暸解市場的需求。

-----廣告,請繼續往下閱讀-----

冠軍得主3Q團隊,在展覽攤位上以遠距視訊的方式與參展者互動,介紹 ASTRID 的相關資訊。

亞軍團隊「太空藥局」提出太空方舟製藥,期望開拓太空市場新藍海

RunSpace 是太空主題的競賽,但這並不意味只有航太與工程背景的團隊才能參加。亞軍團隊「太空藥局」就是來自生技產業,他們提出名為「太空方舟」概念,希望未來只要攜帶簡易的裝置和材料,就能在太空中生產人類生存所需營養素與藥品,滿足長時間太空旅行的需求。

團隊說明,太空方舟的構想是將人體所需的營養或藥物基因保存在經設計過的細胞中,並在需要時使用這些細胞來生產這些營養素與藥物。這樣一來,在資源與空間有限的太空旅行中,可以用很小的空間與循環資源實現永續生產,太空旅行所需的營養素將不再需要全都從地球發射升空,而是在太空船上實現自給自足。

這次 RunSpace 的提案中,太空藥局以蝦紅素為例,團隊指出蝦紅素是天然超級抗氧化劑,對於太空中長時間逗留的太空人有助於抵抗輻射、保護皮膚、減緩老化和降低罹癌風險。目前傳統蝦紅素的取得方式主要仰賴捕撈磷蝦,或是透過大量土地面積養殖藻類取得,但這兩種方式都需要使用地球上的資源,無法在太空生產,而且也容易對生態造成破壞。

-----廣告,請繼續往下閱讀-----

因此,太空方舟成了理想的解決方案,既實現太空環境下永續生產,也提供一個耗費資源更少、更環保的生產方式。同時太空方舟的技術還可以用於保存重要的營養與藥物生產基因迴路,提供資源安全性的策略,應對氣候變遷和戰爭等風險。

同時隊長也分享了團隊進入太空產業的想法,他指出太空旅行需在有限的空間與資源下,循環生產足夠人類長時間生存的物資,而台灣的環境其實也與太空旅行有相似之處。台灣沒有廣大的土地與豐富的天然資源,也因此太空方舟不僅是針對太空旅行的藥品、營養品的生產方案,也是未來台灣可以採用的永續生產方式。

此外,團隊認為生物科技本來就是台灣的強項,非常有潛力可以應用在太空需求,且在太空產業中,生醫領域相對於火箭或是衛星領域還是個藍海,有很多商業與技術發展潛力,值得台灣投入。

季軍隊伍「Project Subsidium」提出太空無人機 EVAid,打造太空漫步萬能助手

本屆季軍得主則是 Project Subsidium,團隊的兩位成員皆是台科大在學學生,並分別來自電機系與建築系。他們提出了名為 EVAid 的小型太空無人機,旨在成為太空漫步的萬能助手,協助太空人太空漫步的工作進行與活動紀錄拍攝。除了奪下季軍之外,這項提案也獲得了本屆中華電信企業最愛獎的肯定。

-----廣告,請繼續往下閱讀-----

Project Subsidium 團隊表示,這個特殊的團隊名稱取名靈感來自 NASA 的太空探索任務,因 NASA 多採用與任務內容或精神有關的一個英文單字為太空任務取名。團隊也笑著說,在斟酌要使用哪個英文單字後,他們覺得使用拉丁文感覺更酷更有趣一些,而"subsidium"則是拉丁文協助的意思,呼應 EVAid 太空無人機能提供太空漫步協助的目標。

EVAid 外觀呈現四面體,每個端點裝有離子引擎,並在表面設有太陽能板。EVAid 的一大特色是模組化的設計,讓它可根據不同的需求,去設計不同模組安裝在擴充接點上。比如裝設攝影機、燈光、工具架甚至是機械手臂,滿足太空人艙外活動時拍攝、照明、放置工具的需求。由於其自帶推進器,因此 EVAid 也可以成為太空人的移動工具,或是接上太空站的艙體協助移動太空站組件。

即便成員都不是航太背景,Project Subsidium 團隊認為,太空產業要深入可以非常專業,但在網路資源豐富的現代,一些涉及範圍比較廣的題目,只要有心其實也是每個人也都可以嘗試,也會有自己的專業派上用場的地方。例如在控制系統和無人機相關知識,就與電機系所學相關,而建築系的專長則在設計圖繪製會模型製作上派上了用場。

團隊也分享了以學生身份參加 RunSpace 過程中遇到的一些小挑戰,像是在參賽過程中還是要顧及學校課程與考試,成果發表與頒獎的時間也很不巧的正好是期中考週。另外他們也提到,暑期團隊成員分隔兩地,也有遠距工作與溝通的問題需要克服。

-----廣告,請繼續往下閱讀-----

最後,Project Subsidium 團隊分享了這兩年參與 RunSpace 學到的寶貴經驗,他們表示不需要一次就試圖做規模龐大,想要"Do Everythig"的專案,而是要考量商業可行性。在類似 RunSpace 的競賽中,明確的目標和可行性分析至關重要。

季軍得主 Project Subsidium 的作品 EVAid 模型展示,端點為離子引擎的噴嘴,中間的圓形處則是與其他模組相接的接點。

2023 RunSpace 太空創新無限挑戰圓滿落幕,而下一屆的 RunSpace 預計將邀請更多國際上的太空科研單位與業界團隊加入策略夥伴,同時讓更多國際上的團隊報名參賽,共同推動太空創新,也讓 RunSpace 成為更加國際化,主題多元的太空盛事!

-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
第一位拍下太空彩色照片的太空人:約翰・葛倫 ——《重返阿波羅》
PanSci_96
・2019/08/16 ・1639字 ・閱讀時間約 3 分鐘 ・SR值 470 ・五年級

-----廣告,請繼續往下閱讀-----

太空人約翰・葛倫與相機的相遇

約翰・葛倫。圖/Wiki

1962 年冬天,水星任務太空人約翰・葛倫在一間藥房買了一部安斯可全自動(Ansco Autoset)相機。儘管這部相機出身平凡,卻成了葛倫的得力助手,拍下了第一張人類從太空中拍攝的彩色照片。

時間:1962 年 製造者:美能達(Minolta) 來源:日本和美國 材料:金屬、玻璃、水晶、塑膠、魔鬼氈 尺寸:13.5 × 7.5 × 24.5 公分。約翰·葛倫使用Minolta的底片相機。圖/Smithsonian National Air and Space Museum 

一開始,葛倫的軌道任務並不包括拍照。飛行任務中指定使用的相機,是為了科學研究而配置,不是為任務做記錄,而且 NASA 認為,太空人拍照會干擾水星計畫的工程學目標。在美國第一次載人太空飛行時,並沒有手持相機的選項,尤其艾倫・薛帕德的自由 7 號太空艙根本沒有為飛行員設計的窗戶。

-----廣告,請繼續往下閱讀-----

雖然到了水星任務的第二位飛行員高斯・格里森時,NASA 為他的自由鐘 7 號(Liberty Bell 7)安裝了一面梯形的窗戶,他的任務還是不包括攝影。但是葛倫相信,把太空飛行的冒險和世界分享是非常重要的,而且照片「有助於為看照片的人轉譯太空人的經驗」。

工程師改造現成相機,讓使用者即使穿著厚重的太空衣也可以操作。

他向休士頓的載人太空飛行中心(Manned Spaceflight Center),也就是後來的詹森太空中心(Johnson Space Center)主任羅伯特・吉爾魯斯(Robert Gilruth)提出請求,後來得到允許。

任務之前,葛倫去佛羅里達州的可可海灘(Cocoa Beach)理髮,之後在附近的藥房看到一部相機,他進去把相機拿起來看,注意到它有全自動曝光功能, 表示使用時不需調整相機,可以為短暫的任務省下珍貴的時間和專注力。這部相機除了當時最先進的功能,還有簡單、易於使用的設計。他花了 45 美元買下這部相機,帶回 NASA。

-----廣告,請繼續往下閱讀-----

約翰・葛倫乘著友誼7號於地球軌道飛行時,使用安斯可相機拍下了佛羅里達海岸。

「一天之中看到四次美麗的日落,那真是無可言喻的感覺。」

──約翰・葛倫(JohnGlenn),在友誼7號飛行之後

相機的改良

因為葛倫必須穿太空衣飛行,會有厚厚的手套和魚缸型的頭盔,因此相機必須適當改造。美國無線電公司(RCA) 的一位承包人,綽號「紅」的羅蘭・威廉斯(Roland “Red” Williams)很快製作出槍把式控制握柄,把相機上下顛倒, 讓握柄和相機的過片桿和曝光鈕相連。

這個握柄讓葛倫用一隻手就可以拿相機拍照。然後威廉斯又在新的相機「頂上」加裝了拍立得(Polaroid)的觀景窗,讓葛倫拍攝地球時不受頭盔影響。

1962 年 2 月 20 日,約翰・葛倫乘著巨大的擎天神號(Atlas)火箭進入地球軌道,同時帶著安斯可和另一部徠卡(Leica)相機。他成為繼其他水星任務夥伴的次軌道飛行後,第一個在地球軌道上飛行的美國人。

-----廣告,請繼續往下閱讀-----

約翰·葛倫使用的另一台Leica底片機。圖/Smithsonian National Air and Space Museum 

葛倫用安斯卡相機作為白天或拍攝地平線景觀的傻瓜相機,而徠卡相機則安裝了光譜鏡片,用來拍攝獵物座的紫外線影像。在微重力環境中,安斯卡相機運作得相當成功。葛倫後來回憶:「我需要用到兩隻手時, 就放開相機,讓它飄浮在我面前。」

雖然葛倫的照片傳遍世界各地,卻沒有達到後來阿波羅任務太空人照片的標誌性地位。要等很多年後,NASA 才開始重視太空影像的大眾傳播。因為NASA 官員把攝影視為工程記錄和科學研究的手段,所以遲遲沒有把照片視為早期飛行計畫的重要部分。

約翰・葛倫拍下的太平洋。

-----廣告,請繼續往下閱讀-----

 

本文摘自 大石國際文化重返阿波羅

 

-----廣告,請繼續往下閱讀-----