0

5
1

文字

分享

0
5
1

如何斷開中文峰峰相連的詞彙鎖鍊,讓電腦能讀懂字裡行間的語意?

研之有物│中央研究院_96
・2018/07/13 ・7302字 ・閱讀時間約 15 分鐘 ・SR值 536 ・七年級

  • 執行編輯|林婷嫻  美術編輯|張語辰

「自然語言處理」是什麼?

讓電腦擁有理解人類語言的能力,就是自然語言處理(Natural Language Processing,縮寫 NLP)。然而,人和人之間就會誤會彼此的語言了,電腦要如何理解語義?中研院資訊科學研究所的馬偉雲助研究員說明:以中文來說,最基本的,要先教電腦學會「斷詞」和「理解詞的意思」。

電腦和人腦的語言不同,那要如何讓電腦擁有理解人類語言的能力呢?source:maxpixel

如何理解一種語言?

小時候學習中文,會背誦課文詞彙的注釋,在作業簿練習這個詞的寫法。到了國中時期學英文,面對像天書般的英文文章,會把不懂的單字圈起來,拿出字典查這個字的意思。為什麼這樣做?

因為,詞彙是語言的最小單位。

然而,中文有一個特殊現象,就是「詞」和「詞」之間沒有邊界,整句串起來像條鎖鏈,不像英文有空格將每個字斷開。所以,若要理解一篇中文文章,必須先學會斷詞,而要學會斷詞,必須先知道這是一個詞、以及這個詞的意思。否則可能會產生這種令人「難過」的情況:

中文的詞沒有邊界,若誤解「詞的意思」與「句法結構」,會寫出這般造句練習。 資料來源/網路趣聞

那麼,問題來了,如果聰明的人類都會誤解複雜的語言,那麼只懂 011000110 的電腦有可能學會斷詞、甚至理解同一個詞在不同上下文的意思嗎?其實,這就是自然語言處理(Natural Language Processing)的研究目標。本文專訪中研院中文詞知識庫小組計畫主持人馬偉雲,聊聊自然語言處理究竟是什麼。

-----廣告,請繼續往下閱讀-----
馬偉雲,是一名對於「讓機器擁有理解語言的能力」深感著迷的計算機科學家。 攝影/張語辰

「自然語言」有多自然?

我們先來了解「自然語言」的定義,與「程式語言」有什麼差別。

程式語言 vs. 自然語言 圖說設計/林婷嫻、張語辰

簡要來說,程式語言是人類為了與計算機溝通,而設計的人工語言;而自然語言的自然,是相對於「人工」語言的「自然」,換句話說,自然語言是人們溝通時自然地發展出來的語言。「自然語言處理」的目標,就在於讓電腦理解、或是運用人類語言。

如何教電腦學會一種語言?

若要讓電腦理解人類的語言,以中文來說,分成兩步驟:

第一步是斷詞、理解詞;第二步則是分析句子,包含語法及語義的自動解析。

自然語言處理透過這兩個步驟,將複雜的語言轉化為電腦容易處理、計算的形式。早期是人工訂定規則,現在則是讓機器自己學習。

-----廣告,請繼續往下閱讀-----

早期的方式是基於一套詞彙資料庫,用程式語言寫好人工訂定的規則,讓電腦依指令做出反應。但這種人工方式不可能包含所有語言的歧異性,例如,當同樣的詞在不同上下文產生不同意思,就會和原本的人工規則相互牴觸。

1980 年代末期,自然語言處理引進機器學習(Machine Learning)的演算法,不再用程式語言命令電腦所有規則,而是建立演算法模型,讓電腦學會從訓練的資料中,尋找資料所含的特定模式和趨勢。我們實驗室──中研院的「中文詞知識庫小組」團隊──就是利用機器學習的演算法,讓電腦學會從訓練的資料中,自動歸納出語言的特性。

自然語言處理的演變。 圖說設計/林婷嫻、張語辰

訓練電腦處理自然語言,需要什麼樣的資料?

我們團隊成員涵蓋中研院語言所、資訊所的研究人員,所以我們也充分利用這兩個領域的專長。

首先,語言學家為九萬多個中文詞彙定義了完整的語法、以及語義表達方式,並且也標明詞彙之間的關係,例如:「蝴蝶」和「昆蟲」具備「前者是後者的一種」這樣的詞彙關係;「醫生」和「病人」具備「前者醫治後者」這樣的詞彙關係。這樣的表達構建了中文的知識圖譜,我們稱為「廣義知網」。

-----廣告,請繼續往下閱讀-----

詞彙的語法、語義定義完畢後,接下來我們就依這些規則,大量分析文章中的每個句子、每個詞彙的語法和語義,並將分析的結果記錄下來 ,這就是「語料標注」的工作。這些標注的語料,提供給電腦系統進行機器學習,讓電腦學會自動歸納、找出語言的語法以及語義。

我們的想法是,既然語言學家已分析了某些語言結構的邏輯,那麼基於這些存在的語言學知識來教電腦歸納出語言的特性,是一種相當自然合理的方式。

只是我們大多數情況下,不會直接教電腦學會語言學上的規則,給它一條魚,不如給它一支釣竿。我們是給電腦看語言學家分析完成的大量結果,由電腦利用機器學習而自動歸納得到 「規則」, 並以參數的方式(請別擔心,一定是人們看得懂的形態),儲存在資訊學家所設計的模型當中。這種電腦自動學出來的模型,能夠很好地解決語言歧異性,也不會有人工寫死規則的問題。

電腦可以認識所有「詞」嗎?

語言的詞彙組合無窮無盡,不可能將所有詞都收進資料庫中訓練電腦。當電腦面對與時俱進的新詞,例如「郭書瑤」、「班奈狄克 · 康柏拜區」、「漫撕男」、「非典」,電腦就無法辨識、理解這個詞。

通常未知詞可分為幾種類型:可能是人名、可能是複合詞、或可能是專有名詞。

我們團隊將「中文斷詞」這個工作,切分成下圖 7 個步驟,每個步驟都是一種演算法模組,處理一種特別的問題。

-----廣告,請繼續往下閱讀-----
中文斷詞系統的處理步驟。
資料來源/〈未知詞擷取作法〉,作者:馬偉雲

教電腦擷取人名,是相對單純的工作,因為人名的結構有跡可循。

中文人名通常是三個字、或兩個字,甚至能參考百家姓、某一年考生的所有名字來建立資料庫,例如「慧」、「婷」常出現在女性人名中,而「雄」這個字常用在男性人名中。從統計機率來看,有些字則是不可能作為人名使用。人名的前後文也會有一些暗示訊息,例如「XXX 表示…」、「 XXX 做了…」、「執行長 XXX」。當電腦分析訓練用的文章資料,自己找出這些規律,電腦就能學會判斷某些未知詞是否為人名。

此外,「複合詞」也是舉不勝舉的未知詞來源。

中文的複合詞,由相當隨性的詞性結構組成,例如「趣味性」,隨意置換字尾,就變成「趣味感」或是「趣味化」。複合詞的字差一點點,就能延伸許多詞意,這讓電腦需辨識的詞彙量變得無比龐大。這部分透過前輩們的研究,漸漸找出複合詞的組成邏輯,整理在中央研究院漢語平衡語料庫(標記了一千多萬個詞彙),也整理出常用詞首、詞尾字資料庫。

-----廣告,請繼續往下閱讀-----

目前斷詞系統中的複合詞主要是針對「名詞複合詞」,但其實我們也在「動詞複合詞」上也累積了不少研究。舉一個實例來說明,例如「開聊」和「聊開」:

「開」的複合動詞結構舉例。
資料來源/〈現代漢語複合動詞之詞首詞尾研究〉,作者:邱智銘、駱季青、陳克健

從語言學的角度,動詞是句子的核心,也是最重要的中心語。「開」這個字有著動詞中心語的起始功能(inchoative),然而放在詞首、詞尾不同位置會產生些微差異。

除了人名、複合詞,新聞或網路文章還會看到許多新創的專有詞,例如:非典(SARS 重症非典型肺炎的簡稱)、河蟹(意指封鎖、掩蓋負面消息)。這類專有詞可以透過 bottom-up merging algorithm(合併字詞演算法)處理。

以「河蟹」為例,透過合併字詞演算法分析新聞、網路文章等資料,電腦會發現:通常「河」後面就是「蟹」,「蟹」前面就是「河」,「河蟹」兩個字一起出現的統計機率蠻高的,而且整組詞意無法單用「河」或「蟹」的各別字意取代。因此,電腦就會判斷「河蟹」最可能是個專有詞、並做出斷詞。

-----廣告,請繼續往下閱讀-----

此外,就算是字典當中已經有的詞彙,有時候仍然會有不同斷詞的情況,我們必須根據上下文決定哪一種斷法才是正確的。例如:「努力才能成功」的「才能」應該切分為兩個詞彙:「才」和「能」,語義接近英文的 “to make”;而「他的領導才能很突出」的「才能」是一個詞彙,不可切分,在此表達英文的 “ability” 的意思。

語言學家會把這樣子的斷詞標注清楚,供電腦進行機器學習。經過不同語句的大量標注,電腦最後會自己學會利用「才能」的上下文做判斷。 資料來源/馬偉雲說明

電腦理解「詞」了,那「句子」呢?

學會斷詞、並理解個別的詞義之後,下一步我們就要使電腦學會理解整個句子的意思。例如「張三打李四」和「李四被張三打」,兩個句子雖然句型不同,但是語義卻是一樣。

我們怎麼表達句子的語義呢?答案是透過「結構樹」。

「張三打李四」和「李四被張三打」,兩個句子的結構樹。 資料來源/馬偉雲說明

我們將每個詞彙集結成片語,再把每個片語標記上它所扮演的語義角色(semantic role)。「張三」在兩個結構樹中都是「打」的發動者(agent)的角色,而「李四」都是「打」的對象(goal)的角色。如此一來,透過包含語義角色的結構樹,我們可以得知這兩個句子擁有相同的語義。

先透過人工訂好結構樹的表達,下一步就是要利用機器學習,使電腦能夠自動針對每一句產生出正確的結構樹。歷年來,中文詞知識庫小組從中央研究院漢語平衡語料庫抽取句子,經由電腦初步剖析成結構樹,再加以人工修正檢驗,共整理了六萬多個中文句結構樹圖,標注了各個中文句的語法以及語義角色,這些就形成機器學習的訓練材料,使得電腦剖析結構樹的工作越做越好。

-----廣告,請繼續往下閱讀-----

自然語言處理的進展到了這裡,斷詞有解,句子結構及語義有解,但還有另一個難題──曖昧不清的指代詞。

寫作時為了避免某些詞重複出現,會使用別的指代詞,像是「他」、「某某職稱」等等。用句子舉例,「張三打李四,他很痛」,覺得痛的人究竟是誰?除了考量語句結構,也需基於常識和上下文來理解。

若要教電腦理解指代詞、處理「指代消解」(Coreference Resolution)的問題,有兩種方式。一種較傳統,用程式語言寫好所有判定的人工規則,好處是較精準,壞處是有其侷限,因為列舉的規則不可能對應至世間所有指代情形。另一種是機器學習的方式,當電腦分析所有訓練文章的上下文發現:幾乎都是被打的李四感到痛,「他 = 李四」這個相關性的機率即為最高,進而做為電腦日後判斷的準則。

自然語言處理的方法,有因「深度學習」而改變嗎?

近年來蓬勃發展的深度學習(Deep Learning),提出了另一種方法來教電腦表達詞彙。這種方法是將詞彙轉換為「詞向量」,也就是 Word Vector 或稱 Word Embedding,作法是讓電腦閱讀大量文章,利用前後文的統計特性,慢慢學習出每一個詞彙的詞向量,不必利用任何語言學知識。

詞向量的概念。(其中的向量數字為舉例) 資料來源/馬偉雲 圖說重製/林婷嫻、張語辰

舉例來說,傳統的符號學中,「蝴蝶」、「瓢蟲」、「爬」是不同的三個詞彙。但改成用向量思考,「蝴蝶」和「瓢蟲」的向量距離就會比較近,「蝴蝶」和「爬」的向量距離就會比較遠,隨著訓練的文本越來越多,電腦可以自動調整各個詞彙的向量,解決訓練資料不足的問題,並提升電腦的抽象化思考。

運用「詞向量」的好處是,很多時候針對特定的自然語言處理任務,訓練資料是不足的。因為許多字詞的語義,在人類語感上明明意思很接近、可以相通,但對機器來說,詞彙符號(也就是字元)不同,就是截然不同的詞彙,造成各個詞彙在訓練資料的統計佔比相當低,無法得到足夠信心水準的分析結果。

然而,訓練過程中,若我們以「詞彙向量」作統計,在向量空間上,有些字詞間的向量很靠近,團結力量大,就會發現相近的詞彙向量在訓練資料的統計佔比大幅提升,解決了訓練資料不足的困境。同時,詞彙向量在深度學習的模型之中,被視為可修改的參數,所以也具備了語義(詞彙向量)自動調整的能力。

You shall know a word by the company it keeps.

John Rupert Firth 這句古老的語言學名言,恰巧能說明「詞向量」的思維。其實每個詞就像一個人,若想了解這個人,可以觀察他身旁的人是什麼模樣,也就是物以類聚的概念。

我們團隊目前嘗試結合「傳統詞彙符號」與「詞向量」,共同從事自然語言處理的任務、以及教電腦表達知識。傳統詞彙符號的好處,在於提供清晰的解釋與穩定的應用,而詞向量可以解決訓練資料不足的困境,並且提供語義(詞彙向量)自動調整的能力。這兩者的長處互補,結合起來具有很高的學理價值、更多應用突破。

自然語言處理,有什麼用?

其實,自然語言處理的用途,已經悄悄在我們身邊幫上許多忙。

自然語言處理,常見的後續應用。 資料來源/李宏毅演講 圖說重製/林婷嫻、張語辰

例如,運用「摘要文本大綱」的能力,電腦可以擔任助手,幫助連睡覺時間都快沒有的醫生閱讀最新的醫學報告、篩選醫學文獻,找出眼前這位病患的病徵,可能跟哪些疾病相關、或是服用某種藥物可能有哪些副作用。像是 2017 年台北醫學大學,就導入 IBM 的 Watson for Oncology(人工智慧治療輔助系統),協助醫師診斷致病機制複雜的癌症。

現在許多人遇到地震、颱風等災害,第一步是上社群媒體發佈消息,例如哪裡的大樓倒了、哪些親友失聯了、各地需要捐助多少物資等等。若運用自然語言處理,讓電腦自動搜集、分析這些社群媒體的文本,就能幫助整合災情、協助救援。

另外,輿情分析聊天機器人等熱門應用,其基礎也需要先讓電腦理解人類所使用的語言,掌握其中的句法結構、分析字裡行間的情緒,才能統計輿情、或讓機器人做出適當的聊天回應。

自然語言處理,是時間的累積。從民國 75 年到現在,中研院資訊所和語言所合作建立許多語料庫和線上系統,我們很歡迎公家機關和公益團體無償使用,也歡迎有需求的單位來討論合作方式。

為什麼會對「讓電腦擁有語言能力」感到著迷?

我很幸運十幾年前有機會進入這個領域,那時候很驚嘆:怎麼會有一種學問,可以把「語言學」和「計算機科學」結合在一起。

語言是很複雜的現象,語言也代表人類的智慧,像是我們的思緒、意識,很多都是透過語言來展現。

1999 年那時候,我在交大電腦科學與資訊工程系碩士班是做語音辨識,那時候我只懂「聲音訊號」的處理,很好奇「語言」這塊怎麼讓電腦了解。當時和中研院接觸,知道中研院做了很多自然語言處理的工作,例如蒐集大量語料,用計算機的方式把語言的統計特性找出來。

後來我來到中研院服國防役,從研究助理做起,跟著陳克健老師研究中文的斷詞切分,也逐漸發現原來理解語言有非常多面向,包含:語音、詞彙本身的學問、語法結構(這句話怎麼說才合理)、語義解讀(這句話是什麼意思),還有「語用」,也就是什麼時候講這句話、為什麼要這樣講。

2006 年之後,我到美國哥倫比亞大學的電腦科學系讀碩博士,除了博士論文是做機器翻譯,也在那裡的實驗室研究電腦的 Q&A 系統:問電腦問題,讓電腦讀過一堆文獻後回答,這些文獻資料包含中文、英文和阿拉伯文,三種語言混合運用。因為國防上的需求,美國國防部需要透過電腦幫助,了解這些文本在說什麼。

有些對人工智慧發展的疑慮是,在近年電腦深度學習的運算過程中,不知道為什麼會這樣得出結果、難以控制電腦。但現在有一種發展方向,叫做「可解釋人工智慧」(Explainable AI),明確了解電腦運算過程,藉以優化表現、降低人們擔憂。舉例來說,當 IBM 的 Watson for Oncology 建議醫生要開刀治療病患,醫生也得知道電腦分析文本的過程、為什麼會下這個決策,不是電腦控制人而已。

至於之前曾傳出 Facebook 的 AI 對話失控,其實是過度擔憂。

因為這只是 Facebook 工程師教電腦學會「談判」的過程中,電腦自動將對話內容表達地極簡再極簡、能通就好。

當初唸書時,「自然語言」很冷門,跟別人說也不知道這是什麼東西,因為那時人工智慧在商業上還沒有實際應用,和我們的生活還很遙遠。選擇這個領域並不是因為有遠見,只是基於好奇參與、覺得這很有趣,過程就看到自然語言處理(NLP)蓬勃發展至今。

參考資料

本著作由研之有物製作,原文為〈斷開中文的鎖鍊!自然語言處理(NLP)〉以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。
本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

在網站上看不過癮?研之有物出書啦!

研之有物:穿越古今!中研院的25堂人文公開課》等著你來認識更多中研院精彩的研究。





-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3620 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
AI 能像人類一樣思考?諾貝爾物理學獎研究助力人工智慧模擬人類大腦
PanSci_96
・2024/11/14 ・2117字 ・閱讀時間約 4 分鐘

即使再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?畢竟電腦的電子元件和我們大腦中的神經細胞結構截然不同。再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?

錯,可以。

2024 年諾貝爾物理學獎跌破所有專家的眼鏡,頒給了兩位研究機器學習的科學家——約翰·霍普菲爾德(John Hopfield)和傑佛瑞·辛頓(Geoffrey Hinton)。他們以「人工」的方法打造了類神經網路,最終模擬出生物的「智慧」,奠定了當代深度學習的基礎。

為什麼解決人工智慧發展瓶頸的,竟然會是物理學?物理要怎麼讓 AI 更像人類?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從巴甫洛夫的狗到赫布理論:理解學習的基礎

為了解答這個疑問,我們需要一些背景知識。

20 世紀初,俄羅斯心理學家巴甫洛夫發現,狗在食物還沒入口前,就會開始分泌唾液。他進行了一系列實驗,改變食物出現前的環境,比如讓狗習慣在聽到鈴聲後馬上得到食物。久而久之,狗只要聽到鈴聲,就會開始分泌唾液。

大約 50 年後,神經科學家赫布(Donald Hebb)提出了一個假說:大腦中相近的神經元,因為經常同時放電,會產生更強的連結。這種解釋稱為「赫布理論」,不僅奠定了神經心理學的發展,更成為現代深度學習的基礎。

然而,赫布理論雖然描述了鄰近神經元的關係,卻無法解釋大腦如何建構出如此複雜的聯想網路。

-----廣告,請繼續往下閱讀-----

霍普菲爾德網路:物理學家對神經網路的貢獻

然而,赫布理論雖能描述神經元之間的關係,卻缺乏數學模型。物理學家約翰·霍普菲爾德從數學家約翰·康威(John Conway)的「生命遊戲」(Game of Life)中獲得靈感,試圖建立一個可以在電腦上運行的記憶系統。

霍普菲爾德受「生命遊戲」啟發,嘗試建立電腦記憶系統。圖/envato

「生命遊戲」由數學家康威(John Conway)發明,玩家開始時有一個棋盤,每個格子代表一個細胞,細胞可以是「活」或「死」的狀態。根據特定規則,細胞會根據鄰居的狀態決定下一次的生存狀態。康威的目的是展示複雜的系統不一定需要複雜的規則。

霍普菲爾德發現,這個遊戲與赫布理論有強大的關聯性。大腦中的大量神經元,在出生時處於初始狀態,經過刺激後,神經元間的連結會產生或斷裂,形成強大的記憶系統。他希望利用這些理論,創造一個能在電腦上運行的記憶系統。

然而,他面臨一個難題:赫布理論沒有明確的數學模型來決定神經元連結的規則。而在電腦上運行,必須要有明確的數學規則。

-----廣告,請繼續往下閱讀-----

物理學的啟發:易辛模型

霍普菲爾德從物理學的研究中找到了類似的模型:易辛模型(Ising Model)。這個模型用於解釋鐵磁性物質的磁性特性。

在鐵磁性物質中,電子具有「自旋」,自旋產生磁矩。電子的自旋方向只有「向上」或「向下」,這就像生命遊戲中細胞的「生」或「死」。鄰近的電子會影響彼此的自旋方向,類似於細胞之間的互動。

易辛模型能用數學描述電子間的相互影響,並通過計算系統能量,得出自旋狀態的分佈。霍普菲爾德借用了這個概念,將神經元的互動視為電子自旋的互動。

他結合了康威生命遊戲的時間演化概念、易辛模型的能量計算,以及赫布理論的動態連結,創造了「霍普菲爾德網路」。這讓電腦能夠模擬生物大腦的學習過程。

-----廣告,請繼續往下閱讀-----

突破瓶頸:辛頓與波茲曼機

約翰·霍普菲爾德於1982年發明聯想神經網路,即「霍普菲爾網路」。圖/wikimedia

然而,霍普菲爾德網路並非完美。它容易陷入「局部最小值」的問題,無法找到系統的全局最優解。為了解決這個問題,加拿大計算機科學家傑佛瑞·辛頓(Geoffrey Hinton)提出了「波茲曼機」(Boltzmann Machine)。

辛頓將「模擬退火」的概念引入神經網路,允許系統以一定的機率跳出局部最小值,尋找全局最優解。他還引入了「隱藏層」的概念,將神經元分為「可見層」和「隱藏層」,提高了網路的學習能力。

受限波茲曼機(Restricted Boltzmann Machine)進一步簡化了模型,成為深度學習的基礎結構之一。這些創新使得 AI 能夠更有效地模擬人類的思維和學習過程。

AI 的未來:跨學科的融合

霍普菲爾德和辛頓的工作,將物理學的概念成功應用於人工智慧。他們的研究不僅解決了 AI 發展的瓶頸,還奠定了深度學習的基礎,對現代 AI 技術產生了深遠的影響。因此,2024 年諾貝爾物理學獎頒給他們,並非意外,而是對他們在跨學科領域的重大貢獻的肯定。

-----廣告,請繼續往下閱讀-----

AI 的發展,離不開物理學、生物學、數學等多學科的融合。霍普菲爾德和辛頓的工作,正是這種融合的典範。未來,隨著科學技術的進步,我們有理由相信,AI 將越來越接近人類的思維方式,甚至可能超越我們的想像。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1256 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。