0

4
3

文字

分享

0
4
3

從「工人智慧」到「人工智慧」——《普林斯頓最熱門的電腦通識課》

商業周刊
・2022/03/13 ・3569字 ・閱讀時間約 7 分鐘

  • 作者/ 布萊恩·柯尼罕( Brian W. Kernighan)
  • 譯者/ 李芳齡

人工智慧的開端

在電腦發展之初的二十世紀中期,人們開始思考可以如何用電腦來執行通常只有人類才能做到的事情,一個明顯的目標是玩西洋跳棋和西洋棋之類的棋盤遊戲,因為這領域有個優點,那就是有完全明確的規則,並有一大群感興趣且有資格稱為專家的人。

另一個目標是把一種語言翻譯成另一種語言,這顯然困難得多,但更為重要,例如,在冷戰時期,從俄文到英文的機器翻譯是很要緊的事。其他的應用包括語音辨識與生成,數學與邏輯推理,做決策,及學習過程。

這些主題的研究很容易取得資助,通常是來自美國國防部之類的政府機構。我們已經在前文中看到,美國國防部對早期網路研究的資助有多珍貴,它引領出網際網路的發展。人工智慧的研究也同樣受到激勵及慷慨資助。

我認為,把 1950 年代及 1960 年代的人工智慧研究形容為「天真的樂觀」,應該是公允的。當時的科學家覺得突破就快到來,再過個五或十年,電腦就能正確地翻譯語言,在西洋棋比賽中擊敗最優的人類棋手。

我當時只是個大學生,但我著迷於這個領域和潛在成果,大四時的畢業論文就以人工智慧為主題。可惜,那篇論文早已被我搞丟了,我也想不起當年的我是否也抱持相同於當時普遍的樂觀態度。

但是,事實證明,幾乎每個人工智慧的應用領域都遠比設想的要困難得多,「再過個五或十年」總是一次又一次被端出來。成果很貧乏,資金用罄了,這領域休耕了一、二十年,那段期間被稱為「人工智慧之冬」。

網際網路發展成未來趨勢。圖/Pexels

把專家的判斷規則,直接寫成一堆判斷式的「工人智慧」階段

到了 1980 年代和1990年代,這個領域開始用一種不同的方法復耕了,這方法名為專家系統(expert systems)或規則式系統(rule-based systems)。

專家系統是由領域專家寫出很多規則,程式設計師把這些規則轉化為程式,讓電腦應用它們來執行某個工作。醫療診斷系統就是一個著名的應用領域,醫生制定研判一名病患有何問題的規則,讓程式去執行診斷、支援、補充,或理論上甚至取代醫生。

MYCIN 系統是早期的一個例子,用於診斷血液感染,它使用約 600 條規則,成效至少跟一般醫生一樣好。這系統是由專家系統先驅愛德華.費根鮑姆(Edward Feigenbaum)發展出來的,他因為在人工智慧領域的貢獻,於 1994 年獲頒圖靈獎。

專家系統有一些實質性的成功,包括顧客支援系統、機械維修系統以及其他焦點領域,但最終看來也有重大限制。

實務上,難以彙集一套完整的規則,而且有太多例外情況。這種方法未順利擴大應用於大量主題或新問題領域,需要隨著情況變化或了解的改進,更新規則,舉例而言,想想看,在 2020 年遇上一名體溫升高、喉嚨痛、劇烈咳嗽的病患時,診斷規則該如何改變?這些原本是一般感冒的症狀,或許有輕微的併發症,但很可能是新冠肺炎,具有高傳染性,且對病患本身及醫療人員都非常危險。

擺脫「工人智慧」,讓電腦能自學——機器學習的基本概念

機器學習的基本概念是對一種演算法給予大量的例子,讓它自行學習,不給它一套規則,也不明確地編程讓它去解決特定問題。

最簡單的形式是,我們為程式提供一個標記了正確值的訓練集(training set),例如,我們不試圖建立如何辨識手寫數字的規則,而是用一個大樣本的手寫數字去訓練一套學習演算法,我們對每個訓練資料標記其數值,這演算法使用它在辨識訓練資料時的成功及失敗來學習如何結合這些訓練資料的特徵,得出最佳辨識結果。

當然,所謂的「最佳」,並不是確定的:機器學習演算法盡力去提高得出好結果的機率,但不保證完美。訓練之後,演算法根據它從訓練集學到的,對新的資料進行分類,或是預測它們的值。

監督式學習——人類教電腦看見特徵,由演算法來算出規則

使用有標記的資料(labeled data/tagged data)來學習,此稱為監督式學習(supervised learning)。大多數監督式學習演算法有一個共通的架構,它們處理大量標記了正確類別(正確值)的例子,例如,這文本是不是垃圾郵件,或者,這照片中的動物是哪種動物,或者,一棟房子的可能價格。演算法根據這個訓練集,研判能讓它得出最佳分類或做出最佳預測的參數值;其實就是讓它學習如何從例子做出推斷。

我們仍然得告訴演算法,哪些「特徵」能幫助做出正確研判,但我們不對這些特徵給予權值或把它們結合起來。舉例而言,若我們試圖訓練演算法去過濾郵件,我們需要與垃圾郵件內容有關的特徵,例如類似郵件用詞(「免費!」)、已知的垃圾郵件主題、怪異字符、拼字錯誤、不正確的文法等等。

這些特徵單獨來看,並不能研判一份郵件就是垃圾郵件,但給予足夠的標記資料,演算法就能開始區別垃圾郵件與非垃圾郵件——至少,在濫發垃圾郵件者做出進一步調整之前,這演算法具有此過濾成效。

手寫數字辨識是一個眾所周知的問題,美國國家標準與技術研究院(National Institute of Standards and Technology,NIST)提供一公開測試組,有 60,000 個訓練圖像集和 10,000 個測試圖像集,<圖表>是其中一個小樣本。機器學習系統對此資料的辨識成效很好,在公開競賽中,錯誤率低於 0.25%,亦即平均 400 個字符中只有一個錯誤。

機器學習演算法可能因種種因素而失敗,例如,「過度擬合」(over-fitting),演算法對其訓練資料的表現很好,但對新資料的表現遠遠較差。或者,我們可能沒有足夠的訓練資料,或是我們提供了錯誤的特徵集,或者,演算法產生的結果可能確證了訓練集內含偏誤。

這在刑事司法應用系統(例如判刑或預測再犯)中是特別敏感的問題,但在使用演算法來對人們做出研判的任何情況,也會造成問題,例如信用評等、房貸申請、履歷表篩選。

垃圾郵件偵測及數位辨識系統是分類型演算法(classification algorithms)的例子:對資料項做出正確分類。

預測型演算法(prediction algorithms)則是試圖預測一數值,例如房子價格、運動比賽得分、股市趨勢。

舉例而言,我們可能試圖根據位置、年齡、客廳面積與房間數等主要特徵來預測房子價格,更複雜的模型——例如 Zillow 使用的模型——會加入其他特徵,例如相似房屋之前的售價、社區特色、房地產稅、當地學校素質。

非監督式學習——讓電腦自己找出特徵與規則

不同於監視式學習,非監督式學習(unsupervised learning)使用未加入標記的訓練資料,亦即沒有對資料加上任何標記或標籤。非監督式學習演算法試圖在資料中找出型態或結構,根據資料項的特徵,把它們分組。有一種盛行的演算法名為「k 群集分析」(k-means clustering),演算法盡力把資料分成 k 群,讓每一群中的資料項相似性最大化,並且各群之間的相似性最小化。

舉例而言,為研判文件的作者,我們可能假設有兩名作者,我們選擇可能的關聯性特徵,例如句子的長度、詞彙量、標點符號風格等等,然後讓分群演算法(clustering algorithm)盡它所能地把文件區分成兩群。

非監督式學習也適用於在一群資料項中辨識離群項(outliers),若大多數資料項以某種明顯方式群集,但有一些資料項不能如此群集,可能代表必須進一步檢視這些資料項。

舉例而言,設若<圖表>中的人工資料代表信用卡使用情形的某個層面,多數資料點分別群集於兩大群之一,但有一些資料點無法群集於這兩群中的任何一群,或許,這些資料點沒什麼問題——群集分析不需要做到完美,但它們也可能是詐欺或錯誤的情況。

群集分析以辨識異常值。圖/普林斯頓最熱門的電腦通識課

非監督式學習的優點是不需要做可能滿花錢的訓練資料標記工作,但它不能應用於所有情況。使用非監督式學習,必須思考出與各群集相關的一些可用的特徵,當然,對於可能有多少個分群,也需有一個起碼的概念。

我曾經做過一個實驗,使用一個標準的 k 群集分析演算法來把約 5,000 個臉孔影像區分為兩群,我天真地期望這演算法或許能區分出性別。結果是,它的正確率約 90%,我不知道它是根據什麼來下結論的,我也無法從那些錯誤的情況中看出什麼明顯型態。

——摘自《普林斯頓最熱門的電腦通識課》,2022 年 2 月,商業周刊

文章難易度
商業周刊
12 篇文章 ・ 3 位粉絲

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
161 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
AI 的 3 種學習形式:不同的目標功能,不同的訓練方式——《 AI 世代與我們的未來》
聯經出版_96
・2022/12/27 ・2368字 ・閱讀時間約 4 分鐘

搭配不同的任務,人工智慧的應用方式也不一樣,所以開發人員用來創造人工智慧的科技也不一樣。這是部署機器學習時最基礎的挑戰:不同的目標和功能需要不同的訓練技巧。

機器學習最基礎的挑戰:不同目標和功能需配合不同訓練技巧。圖/Pexels

不過,結合不同的機器學習法,尤其是應用神經網路,就出現不同的可能性,例如發現癌症的人工智慧。

機器的 3 種學習形式

在我們撰寫本章的時候,機器學習的三種形式:受監督式學習、不受監督式學習和增強式學習,都值得注意。

受監督式學習催生了發現海利黴素的人工智慧。總結來說,麻省理工學院的研究人員想要找出有潛力的新抗生素,在資料庫裡放入二千種分子來訓練模型,輸入項目是分子結構,輸出項目是抑菌效果;研究人員把分子結構展示給人工智慧看,每一種結構都標示抗菌力,然後讓人工智慧去評估新化合物的抗菌效果。

這種技巧稱為受監督式學習,因為人工智慧開發人員利用包含了輸入範例(即分子結構)的資料集,在這裡面,每一筆數據都單獨標示研究人員想要的輸出項目或結果(即抗菌力)。

開發人員已經把受監督式學習的技巧應用於許多處,例如創造人工智慧來辨識影像。為了這項任務,人工智慧先拿已經標示好的圖像來訓練,學著把圖像和標籤,例如把貓的照片和「貓」的標籤,聯想在一起,人工智慧把圖片和標籤的關係編碼之後,就可以正確地辨識新圖片。

貓貓!圖/Pexels

因此,當開發人員有一個資料集,其中每個輸入項目都有期望的輸出項目,受監督式學習就能有效地創造出模型,根據新的輸入項目來預測輸出項目。

不過,當開發人員只有大量資料,沒有建立關係的時候,他們可以透過不受監督式學習來找出可能有用的見解。因為網際網路與資料數位化,比過去更容易取得資料,現在企業、政府和研究人員都被淹沒在資料中。

行銷人員擁有更多顧客資訊、生物學家擁有更多資料、銀行家有更多金融交易記錄。當行銷人員想要找出客戶群,或詐騙分析師想要在大量交易中找到不一致的資訊,不受監督式學習就可以讓人工智慧在不確定結果的資訊中找出異常模式。

這時,訓練資料只有輸入項目,然後工程師會要求學習演算法根據相似性來設定權重,將資料分類。舉例來說,像網飛(Netflix)這樣的影音串流服務,就是利用演算法來找出哪些觀眾群有類似的觀影習慣,才好向他們推薦更多節目;但要優化、微調這樣的演算法會很複雜:因為多數人有好幾種興趣,會同時出現在很多組別裡。

影音串流服務利用演算法,進而推薦使用者可能喜歡的節目。圖/Pexels

經過不受監督式學習法訓練的人工智慧,可以找出人類或許會錯過的模式,因為這些模式很微妙、數據規模又龐大。因為這樣的人工智慧在訓練時沒有明定什麼結果才「適當」,所以可以產生讓人驚豔的創新見解,這其實和人類的自我教育沒什麼不同——無論是人類自學或是人工智慧,都會產生稀奇古怪、荒謬無理的結果。

不管是受監督式學習法或不受監督式學習法,人工智慧都是運用資料來執行任務,以發現新趨勢、識別影像或做出預測。在資料分析之外,研究人員想要訓練人工智慧在多變的環境裡操作,第三種機器學習法就誕生了。

增強式學習:需要理想的模擬情境與回饋機制

若用增強式學習,人工智慧就不是被動地識別資料間的關聯,而是在受控的環境裡具備「能動性」,觀察並記錄自己的行動會有什麼反應;通常這都是模擬的過程, 把複雜的真實世界給簡化了,在生產線上準確地模擬機器人比較容易,在擁擠的城市街道上模擬就困難得多了。

但即使是在模擬且簡化的環境裡,如西洋棋比賽,每一步都還是會引發一連串不同的機會與風險。因此,引導人工智慧在人造環境裡訓練自己,還不足以產生最佳表現,這訓練過程還需要回饋。

西洋棋比賽中的每一步會引發一連串機會與風險。圖/Pexels

提供反饋和獎勵,可以讓人工智慧知道這個方法成功了。沒有人類可以有效勝任這個角色:人工智慧因為在數位處理器上運作,所以可以在數小時或數日之內就訓練自己幾百次、幾千次或幾十億次,人類提供的回饋相比之下根本不切實際。

軟體工程師將這種回饋功能自動化,謹慎精確地說明這些功能要如何操作,以及這些功能的本質是要模擬現實。理想情況下,模擬器會提供擬真的環境,回饋功能則會讓人工智慧做出有效的決定。

阿爾法元的模擬器就很簡單粗暴:對戰。阿爾法元為了評估自己的表現,運用獎勵功能,根據每一步創造的機會來評分。

增強式學習需要人類參與來創造人工智慧的訓練環境(儘管在訓練過程中不直接提供回饋):人類要定義模擬情境和回饋功能,人工智慧會在這基礎上自我訓練。為產生有意義的結果,謹慎明確地定義模擬情境和回饋功能至關重要。

——本文摘自《 AI 世代與我們的未來:人工智慧如何改變生活,甚至是世界?》,2022 年 12 月,聯經出版公司,未經同意請勿轉載。

聯經出版_96
27 篇文章 ・ 16 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。

1

2
0

文字

分享

1
2
0
你覺得 AI 會思考嗎?從圖靈測驗到 AlphaGo ,持續進步的人工智慧——《 AI 世代與我們的未來》
聯經出版_96
・2022/12/26 ・2373字 ・閱讀時間約 4 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

原本人類就對機器有些好奇:機器會思考嗎?機器有智力嗎?機器會有智力嗎?

這些問題本來還不急著回答,但是當研究人員在一九四三年創造出第一台現代電腦,也就是電子、數位、可編寫程式的機器之後,這些問題就顯得急迫了。

這些問題看來格外費解,因為智力的本質一直都沒有答案。

機器有智力嗎?會思考嗎?圖/Pexels

機器人有智力嗎?圖靈測試出現

數學家與解碼專家亞倫.圖靈(Alan Turing)在一九五○年提出解決方案,他的文章標題相當謙和,他在〈計算機器與智力〉一文中建議完全擱置機器智力的問題。圖靈認為真正重要的不是機制,而是智力的展現;他解釋說,因為其他生物的內在生命仍不可知,所以我們衡量智力的唯一方法就是觀察外部行為。圖靈用這個觀點避開長達數世紀的哲學辯論,不去討論智力的本質。

他所推出的「模仿遊戲」就是讓一台機器操作熟練到觀察者無法區別機器和人類的行為,屆時,這台機器就可以貼上「擁有智力」的標籤。

圖靈測試就出現了。

很多人望文生義,從字面解釋圖靈測試,想像著機器人符合條件的話就會和人一樣(如果真有其事的話)。實際應用上,在遊戲或競賽等定義明確、狀況設定清楚的活動中,圖靈測試可有效衡量「有智力的」機器表現如何。圖靈測試並不要求機器做到和人類完全無法區分的地步,而是要判斷機器的表現是不是像人;在這過程中,圖靈測試著重於表現,而非過程。

這樣的產生器算人工智慧,倒不是因為的模型細節符合什麼標準,而是因為他們寫出來的訊息很接近人類寫出來的訊息,能通過測試是因為這模型經過訓練,運用大量線上資訊。

電影《模仿遊戲》改編 自圖靈於二戰期間,幫助破譯納粹軍事密碼的真實故事。圖/IMDb

人工智慧怎麼「學習」?

一九五六年,科學家約翰.麥卡錫(John McCarthy)進一步定義了人工智慧:

若機器可執行「需要人類智力才能進行的工作」,即具備人工智慧。

圖靈和麥卡錫對人工智慧的評估自此形成基準,將我們的焦點從智力的定義轉移到表現(看似有智的行為)的評估上,不再聚焦於人工智慧這個詞在更深奧的哲學、認知與神經科學層面。

過去的半個世紀以來,機器幾乎都無法呈現這種智力,這條死路好像已經走到底了。電腦在精確定義的程式基礎上運作數十年,但因為電腦既靜態且僵化,所以電腦分析也受到局限;傳統的程式可以組織大量資料,執行複雜的計算,可是卻無法辨識類似物品的圖片,或適應不準確的輸入項目。

人類思想不精確又模糊,確實是人工智慧發展過程中難以排除的障礙。然而,過去的十年內,創新的運算方式已經創造出新的人工智慧,模稜兩可的程度可和人類相提並論。人工智慧也不精確、恆動、隨機應變,並且能夠「學習」。

人工智慧「學習」的方式就是先消化資料,然後從資料中觀察,得出結論。

過去的系統需要精確地輸入和輸出項目,不精確的功能人工智慧就不需要。人工智慧在翻譯的時候,不會把每個字都替換掉,而是會找出模式和慣用語,因此翻出來的譯文也會一直變化,因為人工智慧會隨著環境變遷而進化,還能辨識出對人類很新奇的解決方案。在機器領域裡,這四種特質都具有革命性。

以前需仰賴專業棋士,將棋路編寫為程式。圖/Pexels

以阿爾法元在西洋棋世界的突破來說,以前的西洋棋程式要倚賴人類的專業,把人類的棋路編寫為程式;但阿爾法元的技巧是自己和自己對戰數百萬場後磨練出來的,軟體從對戰過程中自己發現了模式。

飛快進步的演算法

這些「學習」技巧的基石是演算法,而演算法就是一連串的步驟,把輸入項目(例如遊戲規則或棋子的走法)翻譯成可重複的輸出項目(例如獲勝)。經典演算法例如長除法等計算,必須精準、可預測,機器學習演算法則不用;經典演算法有許多步驟,分別產出精準的結果,機器學習演算法則一步一步改善不精準的結果。

這些技巧目前進步飛快,以航空來說,很快地,人工智慧就能成為各種飛行器的正駕駛或副駕駛了。在美國國防部高等研究計劃署(DARPA)的專案「阿爾法纏鬥」(Alpha Dogfight)中,人工智慧戰機飛行員在模擬戰鬥中的表現超越了人類飛行員;不管是要操縱噴射機參戰或操縱無人機送貨,人工智慧都會劇烈影響軍事與民用航空。

人工智慧能成為各種飛行器的駕駛。圖/Pexels

儘管我們現在看到的創新還只是開端,但這些變化已經微妙地改變了人類體驗的紋理,在接下來的數十年內,這趨勢只會愈來愈快。

驅動人工智慧轉型的科技概念很複雜也很重要,所以本章會特別解釋機器學習的演化、現況與應用,說明儘管機器學習強大到讓人害怕,但也有自身的限制。

我們必須先簡介機器學習的架構、能力和限制,才能理解機器學習將帶來的社會、文化和政治變化。

——本文摘自《 AI 世代與我們的未來:人工智慧如何改變生活,甚至是世界?》,2022 年 12 月,聯經出版公司,未經同意請勿轉載。

所有討論 1
聯經出版_96
27 篇文章 ・ 16 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。