0

5
1

文字

分享

0
5
1

分貝越高聽起來就越大聲?——淺談「等響曲線」,揭開聽覺感知的神秘面紗!

雅文兒童聽語文教基金會_96
・2021/10/13 ・2964字 ・閱讀時間約 6 分鐘

  • 文/邱彥哲|雅文基金會聽語科學研究中心助理

馬路旁停著一台沒有熄火、引擎正在運轉的車,另一側站著一位警察,正在吹哨指揮交通。你覺得哪個聲音「聽起來」比較清楚呢?你會發現,高亢的哨音比較大聲,而且清楚;而低沉的引擎聲,似乎又小聲又模糊。雖然這只是舉例,卻也是我們的生活經歷。想知道背後的原因嗎?請繼續看下去,讓我們一起揭開聽覺感知的神秘面紗。

街道上充斥各種聲音,有些聲音特別清楚,有些則十分模糊。圖/GoodFon

你真的知道「聲音」是什麼嗎?

在認識聽覺感知之前,我們要先從聲音本質講起。我們都知道,以物理的角度來說,聲音是一種振動能量。物體藉由重複性的移動產生振動,振動影響周圍介質(一般來說是空氣),介質粒子會因疏密變化而產生壓力,最後形成波的型態,將能量傳遞出去。聲波振動有兩種性質:一個是頻率(Frequency),也就是一秒內振動的次數,以赫茲(Hertz, Hz)作為單位;另一個是音強(Intensity),與聲波的振幅有關,也可以說是振動產生的氣壓大小,專業上會以「力」的單位「每平方公尺多少牛頓(Newton, N; N/m2)」來標示。

然而,直接使用牛頓標示音強,數值範圍會過大,也較不直觀,所以通常會將此數值轉換為我們常見的「分貝」(decibels, dB)來表示。在這裡,我們只要知道分貝數大小表示聲音物理上的強度就可以了。讀到這行,強烈的睡意是否已經襲來?先等等!聲音還有你不為人知的一面。

分貝比較大,聽起來卻比較小聲?

換個角度,從人類感知的面向來講,上述物理現象,其實可以對應到我們常說的「音高」跟「音量」:頻率對應音高,通常頻率越高,音高越高;音強對應音量,通常音強越大,音量越大。但是,上面說的只是「通常」的情況。實際上,事情不是我們想的那麼簡單。

我們可以把人類的感知能力當作一面濾鏡,當外界刺激進入感知範圍後,事物的邏輯就可能會產生新的樣貌。拿前面的「音量」來說,並不是在所有情況下,音強大的聲音,聽起來就真的比較大聲;因為聲音還同時有頻率的性質,所以在感知音量時,也會受到頻率的影響。

-----廣告,請繼續往下閱讀-----

咦?也就是說,一個音強比較大的聲音,聽起來可能會比較小聲嗎?沒錯!同樣音強,但不同頻率的聲音,就聽覺感受來說,音量聽起來確實可能會不一樣。那麼,人類感知音量的全貌,究竟是什麼樣子呢?

音量感知的秘密──等響曲線

首次針對這類議題探討的,是物理學家 Fletcher 及 Munson (1993)。他們研究的背景是在 1933 年。當時,對於音量大小的描述,還停留在使用樂理強弱符號(如:p, piano, 表示「弱」; f, forte, 表示「強」)的相對概念。他們意識到,即使都用「強」來描述某個聲音,大家的感受卻不盡相同。於是他們進行實驗,運用數學方法,繪製出一張曲線圖,被後人稱為弗萊徹–蒙森曲線(Fletcher–Munson Curves),也就是「等響曲線(Equal-Loudness Curves)」的概念原型。

這張圖被後來的研究者不斷修正,直到 2003 年,國際標準化組織(International Organization for Standardization, 簡稱 ISO)發表最新版本「ISO 226:2003」。有了這張圖,音量感知的秘密就昭然若揭了──等響曲線堪稱人類音量感知的「鳥瞰圖」!

ISO 226:2003 等響曲線圖。橫軸為頻率(K 表示千倍),縱軸為分貝數。藍色曲線為舊版本之 40 方曲線,紅色曲線為最新修正版本。圖/ Wikipedia

心理感受的「音量」 ≠ 物理實際的「音強」

看不懂這張圖嗎?沒關係,且讓我娓娓道來。在此之前,我們要先了解「響度」的概念。在心理聲學領域,研究者會使用響度來表示我們一般所說的音量,並以方(Phon)」作為響度的單位。方是什麼呢?簡單來講,就是一個聲音以 1,000 赫茲純音為參考音的主觀音量大小(Howard & Angus, 2017)。舉例來說,40 方表示 1,000 赫茲的純音,以音強 40 分貝播放時,所聽起來的音量大小;若是 60 方的話,則是 1,000 赫茲純音,以音強 60 分貝播放時,所聽起來的音量大小。

-----廣告,請繼續往下閱讀-----

有了響度的概念,我們回頭看圖,會發現在等響曲線圖中,40 方的曲線從 1,000 赫茲往低頻區間延伸時,分貝數會逐漸上升。這就是說,如果兩個聲音要聽起來一樣大聲(響度/音量),100 赫茲聲音的分貝數(音強)需要比 1,000 赫茲來得大才有辦法。換個角度解釋,物理上同樣是 60 分貝(音強)的聲音,在 100 赫茲上,我們聽起來差不多僅是 40 方響度(音量)的聲音大小,但在 1,000 赫茲時,聽起來卻會更大聲。

聽起來是不是有點複雜呢?其實,你只要記住以下兩點即可:

  1. 等響曲線圖中,同一曲線所經之處,聲音響度/音量(聽起來)都是相等的。
  2. 人類音量感知對 1,000 赫茲附近的頻率特別敏感(聽起來特別大聲)。

現在,你知道為什麼低頻引擎聲會聽起來那麼模糊了吧?這時候你可能會說:「喔,我知道了。但這跟我有什麼關係呢?」有的,這和你荷包的關係可大了!

等響曲線的日常應用──聲音照相

你知道政府已經在 2021 年開始進行「聲音照相」(張雄風,2020)執法了嗎?所謂「聲音照相」,是指行經規定路段的車輛,如果超過指定分貝,就會被裝有噪音計的「聲音照相機」紀錄下來,進行開罰。你可能想問:「蛤?用噪音計量一量就要罰我,有沒有道理啊?」有呢!噪音計可是為我們量身訂做的喔!

所謂「聲音照相」,是指行經規定路段的車輛,如果超過指定分貝,就會被裝有噪音計的「聲音照相機」紀錄下來,進行開罰。

圖/臺北市環保局

根據《噪音管制法》訂定之《噪音管制標準》第二條之二(2013),「音量:以分貝(dB(A))為單位,括號中 A 指在噪音計上 A 權位置之測量值。」也就是說,噪音計在量測到噪音時,要以「分貝(A)」為單位。我相信你聽過分貝,但沒想到分貝還有分 A、B、C?

-----廣告,請繼續往下閱讀-----

其實,所謂的分貝(A)指的是「針對原始分貝值進行 A 加權」後的結果,而「A 加權」其實就是模擬等響曲線中的 40 方曲線。進行 A 加權的過程,是將噪音低頻區間的分貝數減少,再少量增加中高頻區間的分貝數(王栢村,2018)。因為噪音計最後呈現的數值,是所有頻率區間的平均結果,若是不經過 A 加權,低頻區間的數值會使整體分貝數過度膨脹,這樣「測起來」就會跟「聽起來」不一樣了。可見噪音不是隨意測量,要罰人民的錢也不是那麼容易的呢!

閱讀至此,我們了解到,人類對於不同頻率的聲音,有著不同的音量敏感度,而且聲音也能從心理感知的角度來觀察。再者,等響曲線除了揭露音量感知的神秘面紗,還實際在社會秩序中發揮作用,可見等響曲線是多麼重要的發現啊! 

參考文獻

-----廣告,請繼續往下閱讀-----
文章難易度
雅文兒童聽語文教基金會_96
58 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
2

文字

分享

0
3
2
噪音對小寶寶有什麼影響?——淺談胎兒的聽覺系統發展
雅文兒童聽語文教基金會_96
・2022/03/05 ・3191字 ・閱讀時間約 6 分鐘

  • 文/朱家瑩|雅文基金會聽語科學研究中心研究員

懷孕的準媽媽總是想要給寶寶最好的,讓肚子裡的胎兒贏在起跑點——市面上五花八門的胎教音樂,通通拿來給胎兒聽!據傳,莫札特的音樂能讓胎兒剛出生智力就高人一等[1],於是準媽媽選擇了莫札特的《小星星變奏曲》。為了讓肚裡的胎兒好好接收到音樂,準媽媽直接將耳機貼在肚皮上,讓聲音少些阻隔,能夠直達胎兒的耳邊。但是請小心,這樣的音量可能過大,很可能會造成胎兒的聽力損失。

準媽媽應避免「貼身」播放胎教音樂,免得音量過大,很可能會造成胎兒的聽力損失。圖/Freepik

從媽媽的肚子裡開始「聽」

在肚子裡的胎兒,因為隔著媽媽的肚皮、子宮、羊水和甩也甩不掉的脂肪,不僅聽到的音頻較不完整,且音量也小了許多。但,即便有宛如銅牆鐵壁般的保護,若讓胎兒長時間暴露在高於 60 分貝(dBA)的低頻噪音下,仍可能會造成寶寶的聽力損失[2]

什麼?胎兒也可能會有噪音性聽損?那什麼時候該開始注意周遭的聲音,避免讓胎兒還未出生就因噪音而聽損呢?在討論前,先讓我們瞭解一下胎兒的聽覺系統發展。

就像國道建設,聽覺系統也是一段一段接起來

讓我們聽到聲音的聽覺系統分為兩個部分:一個是接收聲音的耳朵構造,包含外耳、中耳及內耳中的耳蝸;另一個則是在大腦中處理聲音的訊號的聽覺皮質(auditory cortex)。

-----廣告,請繼續往下閱讀-----

耳朵構造的發展很早就開始了。從第一孕期(0-14 週)開始,大約在 15 週時就會發展完成,而內耳毛細胞則是在 10-12 週開始分化;大約在第二孕期開始,依序由內毛細胞發展到外毛細胞[2, 3]。當內毛細胞發展完成,可以將聲音訊號傳遞到腦幹及顳葉時,聽覺系統就可以開始運作了,這時候大約是 25 到 29 週[4]。內毛細胞是聲音的接收器,連結著聽神經,聲音刺激引發內毛細胞震動後,就可將聲音傳輸到可以處理聲音訊號的聽覺皮質。

因此,當內毛細胞發展完成後,也就是第三孕期(28-40 週)時,聽覺系統開始運作。這時胎兒可以藉由耳毛細胞傳遞訊號到大腦,進而聽到聲音。

當內外毛細胞發展完成後,聽覺刺激就能一路上傳到聽覺皮質,正式啟用聽覺系統。圖/修改自 Freepik,增加各孕期階段之聽覺系統發展內容

胎兒也需要聽覺刺激——沒刺激就沒發展

聽覺系統的發展仰賴聽覺刺激來訓練毛細胞傳達訊息到大腦。因此,當聽覺系統開工後,便需要有聲音刺激來訓練毛細胞。文獻指出,懷胎 7 月起到出生 1 個月內,是讓胎兒學習不同聲音頻率的最佳時機[5]!不管是父母的說話或哼唱聲、環境中的講話聲,或是音樂,都是很好的刺激來源。

揪兜媽爹!聲音不是「大」又「多」就好

不過,要特別注意音量以及給予的方式,因為胎兒的耳毛細胞還很脆弱,有可能會因為過大且持續的聲音刺激造成聽力損失,得不償失。

-----廣告,請繼續往下閱讀-----

我們大多是透過空氣傳遞的方式聽到聲音,但肚子裡的胎兒可不一樣。外界聲音要先穿透媽媽厚厚的肚皮、子宮跟羊水才能抵達(可以想像在水裡摀著耳朵聽聲音)。因為耳朵都被羊水塞住了,胎兒是透過骨頭傳遞的方式聽聲音,能聽到的僅限於低頻音域(500 Hz 以下),如此可以保護負責處理高頻聲音的耳毛細胞[2]。但是,超過 60 分貝(dBA)的低頻噪音還是應該要避免,否則就會造成還在學習傳導訊息的耳毛細胞受到傷害,進而造成不可逆的聽力損失。

動滋動滋,媽媽肚子自動強化重低音

低頻噪音可以輕易穿透媽媽的肚子,聲壓不僅不會減少,甚至可能會增加,容易造成胎兒的耳毛細胞受到傷害。相對地,高頻噪音(500 Hz 以上)則很難進到胎兒的內耳,而且一旦進入媽媽的肚子後,還會減少 20-30 dB 的聲壓[6],因此低頻噪音對於胎兒的影響遠大於高頻噪音。

除此之外,也要注意工作環境和生活環境中的噪音。研究指出,若準媽媽的工作場域暴露在 80 分貝(dBA)的噪音當中,除了會造成胎兒聽損外,也容易早產[7];而若生活環境吵雜,像是住家靠近機場,每天暴露在 60 到 65 分貝(dBA)的飛機噪音中,也容易造成胎兒出生體重過輕[8]。由此可見,噪音對於胎兒的影響不僅是聽力發展!

不同分貝(dBA)的聽覺感受、生活中的相關聲音範例,以及對於人的影響。但此表中所呈現的分貝數是包含全頻率的聲音,並非特定高頻或低頻。表/翻譯自參考資料 9

聲光玩具可以是最佳保姆,但也可能是聽力殺手

聽覺系統的發展在出生後仍然持續進行[10],因此仍然需要不同的聲音刺激。不過,市面上常見的聲光玩具,對於嬰幼兒的聽力有潛在的危險性,所以挑選玩具時也需多多留意。

-----廣告,請繼續往下閱讀-----

嬰幼兒的鼓膜對於噪音很敏感,因為他們的耳道比大人短,再加上嬰幼兒的手臂長度較短,在玩玩具時,玩具和耳朵的距離比大人近,音量也會相對大聲[11]。對於年紀更小的嬰幼兒,有些甚至還沒有能力將過大音量的聲光玩具移開,同時也沒有足夠的認知能力可以辨識什麼樣的聲音音量是屬於太大聲的噪音[12]

挑選嬰幼兒玩具時,需要多加留意玩具的音量。圖/Pexels

根據 Sight & Hearing Association 2021 年的調查報告[13],下圖舉例的玩具音量皆超過 100 分貝(dBA)。可以看到玩具的種類包含尖叫雞、電子樂器、聲光機器人,甚至是音效書。

選購玩具時,若音量對你來說有點大聲,那就不要猶豫,請把它放回架上。尚未拆封的玩具因有包裝阻隔,會再降低一些音量——要是你覺得大聲,那對嬰幼兒更是震耳欲聾[14]。若是手邊已經有聲光玩具,也不用急著丟掉,可以用膠帶貼住喇叭,降低音量[15],或者直接拔掉電池[16]

聽覺系統自胎兒時期開始發展,因此當寶寶開始聽得到聲音時,就要避免持續性的噪音可能造成的聽力損害,而噪音的來源可能就是身邊常見的聲源,包含胎教音樂跟聲光玩具等。這些被視為「好」的聲音,一旦超過可容忍的音量,就會變成「不好」的噪音了。

-----廣告,請繼續往下閱讀-----
音量超標的玩具品項,包含尖叫雞、電子樂器、聲光機器人,還有音效書。圖/Amazon

參考文獻

  1. Rauscher, F. H., Shaw, G. L., & Ky, C. N. (1993). Music and spatial task performanceNature365(6447), 611-611.
  2. Graven, S. N., & Browne, J. V. (2008). Auditory development in the fetus and infant. Newborn and infant nursing reviews, 8(4), 187-193.
  3. James, W. (2000). Development of the ear and hearingJournal of perinatology20(1), S12-S20.
  4. Moore, J. K., & Linthicum, F. H. (2007). The human auditory system: A timeline of development. International Journal of Audiology, 46(9), 460–478. 
  5. Kisilevsky, B. S., Hains, S. M., Lee, K., Xie, X., Huang, H., Ye, H. H., … & Wang, Z. (2003). Effects of experience on fetal voice recognitionPsychological Science, 14(3), 220-224.
  6. Gerhardt, K. J., & Abrams, R. M. (2000). Fetal exposures to sound and vibroacoustic stimulationJournal of Perinatology20(1), S21-S30.
  7. Gupta, A., Gupta, A., Jain, K., & Gupta, S. (2018). Noise pollution and impact on children healthThe Indian Journal of Pediatrics85(4), 300-306.
  8. Knipschild, P., Meijer, H., & Sallé, H. (1981). Aircraft noise and birth weightInternational Archives of Occupational and Environmental Health48(2), 131-136.
  9. Committee on Environmental Health. (1997). Noise: a hazard for the fetus and newbornPediatrics100(4), 724-727.
  10. Litovsky, R. (2015). Development of the auditory systemHandbook of clinical neurology129, 55-72.
  11. Hellstrom, P. A., Dengerink, H. A., & Axelsson, A. (1992). Noise levels from toys and recreational articles for children and teenagersBritish journal of audiology26(5), 267-270.
  12. Axelsson, A. (1996). The risk of sensorineural hearing loss from noisy toys and recreational activities in children and teenagersInternational Journal for Consumer and Product Safety3(3), 137-146.
  13. Sight & Hearing Association (2021). Sight & Hearing Association Releases 2021 Annual Noisy Toys List.
  14. Jabbour, N., Weinreich, H. M., Owusu, J., Lehn, M., Yueh, B., & Levine, S. (2019). Hazardous noise exposure from noisy toys may increase after purchase and removal from packaging: A call for advocacy. International Journal of Pediatric Otorhinolaryngology, 116, 84-87.
  15. Weinreich, H. M., Jabbour, N., Levine, S., & Yueh, B. (2013). Limiting hazardous noise exposure from noisy toys: simple, sticky solutionsThe Laryngoscope, 123(9), 2240-2244.
  16. Zappi, R. E. (2021). Watch for Holiday Toys That Can Pose a Hearing Hazard.
-----廣告,請繼續往下閱讀-----
雅文兒童聽語文教基金會_96
58 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

5
1

文字

分享

0
5
1
分貝越高聽起來就越大聲?——淺談「等響曲線」,揭開聽覺感知的神秘面紗!
雅文兒童聽語文教基金會_96
・2021/10/13 ・2964字 ・閱讀時間約 6 分鐘

  • 文/邱彥哲|雅文基金會聽語科學研究中心助理

馬路旁停著一台沒有熄火、引擎正在運轉的車,另一側站著一位警察,正在吹哨指揮交通。你覺得哪個聲音「聽起來」比較清楚呢?你會發現,高亢的哨音比較大聲,而且清楚;而低沉的引擎聲,似乎又小聲又模糊。雖然這只是舉例,卻也是我們的生活經歷。想知道背後的原因嗎?請繼續看下去,讓我們一起揭開聽覺感知的神秘面紗。

街道上充斥各種聲音,有些聲音特別清楚,有些則十分模糊。圖/GoodFon

你真的知道「聲音」是什麼嗎?

在認識聽覺感知之前,我們要先從聲音本質講起。我們都知道,以物理的角度來說,聲音是一種振動能量。物體藉由重複性的移動產生振動,振動影響周圍介質(一般來說是空氣),介質粒子會因疏密變化而產生壓力,最後形成波的型態,將能量傳遞出去。聲波振動有兩種性質:一個是頻率(Frequency),也就是一秒內振動的次數,以赫茲(Hertz, Hz)作為單位;另一個是音強(Intensity),與聲波的振幅有關,也可以說是振動產生的氣壓大小,專業上會以「力」的單位「每平方公尺多少牛頓(Newton, N; N/m2)」來標示。

然而,直接使用牛頓標示音強,數值範圍會過大,也較不直觀,所以通常會將此數值轉換為我們常見的「分貝」(decibels, dB)來表示。在這裡,我們只要知道分貝數大小表示聲音物理上的強度就可以了。讀到這行,強烈的睡意是否已經襲來?先等等!聲音還有你不為人知的一面。

分貝比較大,聽起來卻比較小聲?

換個角度,從人類感知的面向來講,上述物理現象,其實可以對應到我們常說的「音高」跟「音量」:頻率對應音高,通常頻率越高,音高越高;音強對應音量,通常音強越大,音量越大。但是,上面說的只是「通常」的情況。實際上,事情不是我們想的那麼簡單。

我們可以把人類的感知能力當作一面濾鏡,當外界刺激進入感知範圍後,事物的邏輯就可能會產生新的樣貌。拿前面的「音量」來說,並不是在所有情況下,音強大的聲音,聽起來就真的比較大聲;因為聲音還同時有頻率的性質,所以在感知音量時,也會受到頻率的影響。

-----廣告,請繼續往下閱讀-----

咦?也就是說,一個音強比較大的聲音,聽起來可能會比較小聲嗎?沒錯!同樣音強,但不同頻率的聲音,就聽覺感受來說,音量聽起來確實可能會不一樣。那麼,人類感知音量的全貌,究竟是什麼樣子呢?

音量感知的秘密──等響曲線

首次針對這類議題探討的,是物理學家 Fletcher 及 Munson (1993)。他們研究的背景是在 1933 年。當時,對於音量大小的描述,還停留在使用樂理強弱符號(如:p, piano, 表示「弱」; f, forte, 表示「強」)的相對概念。他們意識到,即使都用「強」來描述某個聲音,大家的感受卻不盡相同。於是他們進行實驗,運用數學方法,繪製出一張曲線圖,被後人稱為弗萊徹–蒙森曲線(Fletcher–Munson Curves),也就是「等響曲線(Equal-Loudness Curves)」的概念原型。

這張圖被後來的研究者不斷修正,直到 2003 年,國際標準化組織(International Organization for Standardization, 簡稱 ISO)發表最新版本「ISO 226:2003」。有了這張圖,音量感知的秘密就昭然若揭了──等響曲線堪稱人類音量感知的「鳥瞰圖」!

ISO 226:2003 等響曲線圖。橫軸為頻率(K 表示千倍),縱軸為分貝數。藍色曲線為舊版本之 40 方曲線,紅色曲線為最新修正版本。圖/ Wikipedia

心理感受的「音量」 ≠ 物理實際的「音強」

看不懂這張圖嗎?沒關係,且讓我娓娓道來。在此之前,我們要先了解「響度」的概念。在心理聲學領域,研究者會使用響度來表示我們一般所說的音量,並以方(Phon)」作為響度的單位。方是什麼呢?簡單來講,就是一個聲音以 1,000 赫茲純音為參考音的主觀音量大小(Howard & Angus, 2017)。舉例來說,40 方表示 1,000 赫茲的純音,以音強 40 分貝播放時,所聽起來的音量大小;若是 60 方的話,則是 1,000 赫茲純音,以音強 60 分貝播放時,所聽起來的音量大小。

-----廣告,請繼續往下閱讀-----

有了響度的概念,我們回頭看圖,會發現在等響曲線圖中,40 方的曲線從 1,000 赫茲往低頻區間延伸時,分貝數會逐漸上升。這就是說,如果兩個聲音要聽起來一樣大聲(響度/音量),100 赫茲聲音的分貝數(音強)需要比 1,000 赫茲來得大才有辦法。換個角度解釋,物理上同樣是 60 分貝(音強)的聲音,在 100 赫茲上,我們聽起來差不多僅是 40 方響度(音量)的聲音大小,但在 1,000 赫茲時,聽起來卻會更大聲。

聽起來是不是有點複雜呢?其實,你只要記住以下兩點即可:

  1. 等響曲線圖中,同一曲線所經之處,聲音響度/音量(聽起來)都是相等的。
  2. 人類音量感知對 1,000 赫茲附近的頻率特別敏感(聽起來特別大聲)。

現在,你知道為什麼低頻引擎聲會聽起來那麼模糊了吧?這時候你可能會說:「喔,我知道了。但這跟我有什麼關係呢?」有的,這和你荷包的關係可大了!

等響曲線的日常應用──聲音照相

你知道政府已經在 2021 年開始進行「聲音照相」(張雄風,2020)執法了嗎?所謂「聲音照相」,是指行經規定路段的車輛,如果超過指定分貝,就會被裝有噪音計的「聲音照相機」紀錄下來,進行開罰。你可能想問:「蛤?用噪音計量一量就要罰我,有沒有道理啊?」有呢!噪音計可是為我們量身訂做的喔!

所謂「聲音照相」,是指行經規定路段的車輛,如果超過指定分貝,就會被裝有噪音計的「聲音照相機」紀錄下來,進行開罰。

圖/臺北市環保局

根據《噪音管制法》訂定之《噪音管制標準》第二條之二(2013),「音量:以分貝(dB(A))為單位,括號中 A 指在噪音計上 A 權位置之測量值。」也就是說,噪音計在量測到噪音時,要以「分貝(A)」為單位。我相信你聽過分貝,但沒想到分貝還有分 A、B、C?

-----廣告,請繼續往下閱讀-----

其實,所謂的分貝(A)指的是「針對原始分貝值進行 A 加權」後的結果,而「A 加權」其實就是模擬等響曲線中的 40 方曲線。進行 A 加權的過程,是將噪音低頻區間的分貝數減少,再少量增加中高頻區間的分貝數(王栢村,2018)。因為噪音計最後呈現的數值,是所有頻率區間的平均結果,若是不經過 A 加權,低頻區間的數值會使整體分貝數過度膨脹,這樣「測起來」就會跟「聽起來」不一樣了。可見噪音不是隨意測量,要罰人民的錢也不是那麼容易的呢!

閱讀至此,我們了解到,人類對於不同頻率的聲音,有著不同的音量敏感度,而且聲音也能從心理感知的角度來觀察。再者,等響曲線除了揭露音量感知的神秘面紗,還實際在社會秩序中發揮作用,可見等響曲線是多麼重要的發現啊! 

參考文獻

-----廣告,請繼續往下閱讀-----
文章難易度
雅文兒童聽語文教基金會_96
58 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

3
1

文字

分享

0
3
1
音叉「噹」一聲,就知有沒有?那些你不知道的聽力篩檢
雅文兒童聽語文教基金會_96
・2021/05/17 ・2880字 ・閱讀時間約 6 分鐘 ・SR值 559 ・八年級

  • 文 / 張晏銘、謝耀文 | 雅文基金會聽力師

還記得以前唸國小和幼兒園時,學期初老師會叫一班又一班的同學,排排站在保健室外頭等候體檢嗎?保健室護理師會幫大家量身高、體重、看看牙齒,以及會拿出一個像是叉子一樣的東西,在左邊敲一下、右邊噹一聲,請我們聽到就舉手,通過的打勾,沒通過的打叉;又或者在考汽車駕照檢測時,除了看著佈滿紅綠點的數字外,檢查人員也會在我們耳邊敲擊音叉,確認有沒有聽到聲音。你是不是也有同樣的疑問:為什麼「噹」一聲就能知道聽力有沒有問題?

那些年我們經歷過的音叉測試

音叉是在 1711 年由英國一位宮廷小號手,約翰·朔爾 (John Shore) 所發明,原本是為了替魯特琴調音校正使用;而後因為人體生理構造的獨特性及音叉的方便攜帶性,衍生出一系列的檢查方法進行聽力篩檢,多數的檢測用音叉以五個不同頻率為一組,其中又以 256 Hz 與 512 Hz 最為常見。測試時除可以敲擊不同頻率的音叉,確認受測者有沒有聽到該頻率的聲音外,還可以透過音叉擺放位置的不同組合,來瞭解聽損者的聽損型態:聽損型態概分為三種,傳導性聽損為聲音經由外耳或中耳傳遞時受阻,感音神經性聽損表示內耳或聽神經區域受損,混合性聽損則表示兼具傳導性聽損及感音神經性聽損特徵。

圖一:不同頻率的音叉樣式。圖/Tuning Fork Tests – Evoked Potential

韋伯測試 (Weber Test)〔1〕:將振動音叉置於額頭,正常聽力者會感覺聲音在正中間沒有偏向;若是單側傳導性聽損者,會感覺聲音偏向聽力受損耳,但若是單側感音神經性聽損者,則會感覺聲音偏向聽力正常耳。

圖二:韋伯測試 (Weber Test) 與林內測試 (Rinne Test) 音叉擺放位置示意圖。圖/Weber and Rinne tests – UpToDate

林內測試 (Rinne Test)〔2〕:將音叉底基部置於耳後乳突骨處,待受測者聽不到聲音時,將音叉移到耳朵耳道口旁,詢問是否有聽到聲音,若是可聽到聲音(即Rinne Test陽性,R+),代表聽力正常或感音神經性聽損,但若移到耳旁後沒聽到聲音(即 Rinne Test 陰性,R-),則判斷可能為傳導性聽力受損(尚有其他反應結果,本文未一一列舉)。

-----廣告,請繼續往下閱讀-----

音叉檢測法看似簡單,但其實在「噹」一聲之前,不論是敲擊力道、放置位置距離等皆有詳細規範。雖然無法由此得知完整的聽力健康狀態,但由於流程快速簡單,因此也成為部分學校聽力篩檢的檢測方式。當然,聽力篩檢的方式並不只有這一種,接下來介紹幾種不同的聽篩方法!

動動手指也能知道聽力好壞!?

一般聽力篩檢用的儀器,因為價錢昂貴又非生活中唾手可得,施測時的環境條件和執行門檻也比較高,需要受過訓練的專業人員來操作,因此不少的簡易聽篩方式因應而生,其中像「手指摩擦測試法」〔3〕,便不需要複雜的設備就能執行。測試時站在受測者的後方,將雙手懸空在受測者兩耳旁約 5 公分的距離,分別用左手或右手輕輕搓動手指,並詢問對方是否有聽到聲音,只要不到 30 秒的時間就能得知有沒有通過篩檢!這背後的原理其實是當我們輕輕摩擦手指時,產生的音量大約是 25 分貝 (dB A),且摩擦時的聲音能量主要分布在高頻,而年齡導致的聽力退化多由高頻開始,也因此目前多應用於老年人聽力篩檢〔4.5.6〕

然而這樣的方法雖然容易操作,並不具有頻率特定性,且操作上需避免視覺線索的提示,受到人為因素影響的機率也較高,所以無法完全取代標準的聽力篩檢工具。

圖三:手指摩擦測試法示意圖。圖/9 Simple Medical Tests to Check Your Health Right Now

你問我答的聽力問卷調查

現實生活中人們可能偶會沒接收到細微的聲音卻不自知,但當與人溝通交談時常需要對方重述,或者頻繁的聽錯對話內容,那便會是個不可忽視的「紅色警訊 (Red Flag)。為能客觀瞭解生活中的實際傾聽狀態,學者設計出了問卷或聽覺行為量表測驗,只需回答幾個簡單的問題,可以使受測者去留心到不同環境下自己的聆聽表現,例如年長者聽障問卷 (Hearing Handicap Inventory for Elderly-Screening; HHIE-S) 〔7〕;而對於無法自主表達的嬰幼兒或兒童,則可透過主要照顧者或學校老師的生活照護與觀察,來留意其表現,例如:雅文基金會整理的微聽損警示量表嬰幼兒聽力簡易居家行為量表等都能便捷、迅速的觀察身邊的人是否存在聽力健康疑慮。

-----廣告,請繼續往下閱讀-----

與時代潮流接軌的「聽力管家」

隨著網路科技的發達,聽力測驗工具也可以線上化,只要透過網路下載 App 便可進行聽力追蹤。這類型的測驗模式大概可分三種;第一種是模擬標準的聽力檢測,給予不同頻率的聲音,找出受測者在各頻率能聽到最小聲的聲音,如此一來在家也能取得自己的聽力圖;第二種模式則是找出可以聽見的最高頻率,雖然人耳理論上可以接收 20-20000 Hz 頻率的聲音,但隨著年齡增長,高頻聲音察覺能力會漸漸退化,藉此特徵去換算出耳朵的年齡;第三種模式則是噪音中的語詞聽辨測驗,多是讓受測者在有背景噪音的情況下,聽取一小段數字後跟著輸入,輸入正確語音會變得更小聲,但當輸入錯誤語音音量就會變大聲,最終找出受測者能回答正確時的語音和噪音的音量比,藉此做為是否需進一步追蹤聽力的參考依據。

表格:聽力篩檢APP〔8.9.10〕

線上聽檢十分便捷,但在選擇聽力測驗時,仍須留意測驗是否有提供完整操作說明、耳機校正程序或明確的檢查結果(如:聽力圖、聽力年齡等),以及是否能針對結果給予後續適當的建議〔8.9.10〕

聽篩種類百百款,仍然不是萬靈丹

不論是甚麼類型的篩檢測驗,都會有其限制,無法完整的全面瞭解聽力健康狀況,因此在察覺聽力健康出現問題後,仍應回診進行完整的聽力評估,確認是否需進一步介入。聽力也是我們身體機能的一種,隨年齡增長便有退化的可能,因此唯有定期檢查與追蹤,方能即時掌握聽力健康狀態,切勿輕忽怠慢唷!

參考資料

  1. Wahid, N., Hogan,C., & Attia M.(2021).Weber Test.
  2. Kong, E. L., & Fowler, J. B. (2017). Rinne Test.
  3. Torres-Russotto, D., Landau, W. M., Harding, G. W., Bohne, B. A., Sun, K., & Sinatra, P. M. (2009). Calibrated finger rub auditory screening test (CALFRAST). Neurology72(18), 1595-1600.
  4. Strawbridge, W. J., & Wallhagen, M. I. (2017). Simple tests compare well with a hand‐held audiometer for hearing loss screening in primary care. Journal of the American Geriatrics Society65(10), 2282-2284.
  5. Jin, J. (2021). Screening for Hearing Loss in Older Adults. JAMA325(12), 1234-1234.
  6. Ramdoo, K., Bowen, J., Dale, O. T., Corbridge, R., Chatterjee, A., & Gosney, M. A. (2014). Opportunistic hearing screening in elderly inpatients. SAGE open medicine2, 2050312114528171.
  7. 齊凡翔、陳建宏、楊宗翰、劉殿楨(2015)年長者聽障問卷-篩檢版得分與純音及語音聽力檢查結果之相關性。臺灣耳鼻喉頭頸外科雜誌50(4), 257-265
  8. 張晏銘、馬英娟、林淑芬(2016年12月29日)。數位時代中的聽能管理智慧工具
  9. 馬英娟(2018年7月28日)。APP玩科技,聽力保健真容易。取自:https://www.chfn.org.tw/publication/article/2/hearing_app
  10. 唐佩君(2019年3月2日)。世衛推免費App 不同音量3數字測聽力。中央通訊社。
-----廣告,請繼續往下閱讀-----
雅文兒童聽語文教基金會_96
58 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。